1 //===-- ThreadSanitizer.cpp - race detector -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer, a race detector.
10 //
11 // The tool is under development, for the details about previous versions see
12 // http://code.google.com/p/data-race-test
13 //
14 // The instrumentation phase is quite simple:
15 // - Insert calls to run-time library before every memory access.
16 // - Optimizations may apply to avoid instrumenting some of the accesses.
17 // - Insert calls at function entry/exit.
18 // The rest is handled by the run-time library.
19 //===----------------------------------------------------------------------===//
20
21 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Metadata.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/InitializePasses.h"
40 #include "llvm/ProfileData/InstrProf.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/Instrumentation.h"
46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
47 #include "llvm/Transforms/Utils/EscapeEnumerator.h"
48 #include "llvm/Transforms/Utils/Local.h"
49 #include "llvm/Transforms/Utils/ModuleUtils.h"
50
51 using namespace llvm;
52
53 #define DEBUG_TYPE "tsan"
54
55 static cl::opt<bool> ClInstrumentMemoryAccesses(
56 "tsan-instrument-memory-accesses", cl::init(true),
57 cl::desc("Instrument memory accesses"), cl::Hidden);
58 static cl::opt<bool> ClInstrumentFuncEntryExit(
59 "tsan-instrument-func-entry-exit", cl::init(true),
60 cl::desc("Instrument function entry and exit"), cl::Hidden);
61 static cl::opt<bool> ClHandleCxxExceptions(
62 "tsan-handle-cxx-exceptions", cl::init(true),
63 cl::desc("Handle C++ exceptions (insert cleanup blocks for unwinding)"),
64 cl::Hidden);
65 static cl::opt<bool> ClInstrumentAtomics(
66 "tsan-instrument-atomics", cl::init(true),
67 cl::desc("Instrument atomics"), cl::Hidden);
68 static cl::opt<bool> ClInstrumentMemIntrinsics(
69 "tsan-instrument-memintrinsics", cl::init(true),
70 cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden);
71
72 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
73 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
74 STATISTIC(NumOmittedReadsBeforeWrite,
75 "Number of reads ignored due to following writes");
76 STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size");
77 STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes");
78 STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads");
79 STATISTIC(NumOmittedReadsFromConstantGlobals,
80 "Number of reads from constant globals");
81 STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads");
82 STATISTIC(NumOmittedNonCaptured, "Number of accesses ignored due to capturing");
83
84 static const char *const kTsanModuleCtorName = "tsan.module_ctor";
85 static const char *const kTsanInitName = "__tsan_init";
86
87 namespace {
88
89 /// ThreadSanitizer: instrument the code in module to find races.
90 ///
91 /// Instantiating ThreadSanitizer inserts the tsan runtime library API function
92 /// declarations into the module if they don't exist already. Instantiating
93 /// ensures the __tsan_init function is in the list of global constructors for
94 /// the module.
95 struct ThreadSanitizer {
96 bool sanitizeFunction(Function &F, const TargetLibraryInfo &TLI);
97
98 private:
99 void initialize(Module &M);
100 bool instrumentLoadOrStore(Instruction *I, const DataLayout &DL);
101 bool instrumentAtomic(Instruction *I, const DataLayout &DL);
102 bool instrumentMemIntrinsic(Instruction *I);
103 void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local,
104 SmallVectorImpl<Instruction *> &All,
105 const DataLayout &DL);
106 bool addrPointsToConstantData(Value *Addr);
107 int getMemoryAccessFuncIndex(Value *Addr, const DataLayout &DL);
108 void InsertRuntimeIgnores(Function &F);
109
110 Type *IntptrTy;
111 FunctionCallee TsanFuncEntry;
112 FunctionCallee TsanFuncExit;
113 FunctionCallee TsanIgnoreBegin;
114 FunctionCallee TsanIgnoreEnd;
115 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
116 static const size_t kNumberOfAccessSizes = 5;
117 FunctionCallee TsanRead[kNumberOfAccessSizes];
118 FunctionCallee TsanWrite[kNumberOfAccessSizes];
119 FunctionCallee TsanUnalignedRead[kNumberOfAccessSizes];
120 FunctionCallee TsanUnalignedWrite[kNumberOfAccessSizes];
121 FunctionCallee TsanAtomicLoad[kNumberOfAccessSizes];
122 FunctionCallee TsanAtomicStore[kNumberOfAccessSizes];
123 FunctionCallee TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1]
124 [kNumberOfAccessSizes];
125 FunctionCallee TsanAtomicCAS[kNumberOfAccessSizes];
126 FunctionCallee TsanAtomicThreadFence;
127 FunctionCallee TsanAtomicSignalFence;
128 FunctionCallee TsanVptrUpdate;
129 FunctionCallee TsanVptrLoad;
130 FunctionCallee MemmoveFn, MemcpyFn, MemsetFn;
131 };
132
133 struct ThreadSanitizerLegacyPass : FunctionPass {
ThreadSanitizerLegacyPass__anoncd3d41d20111::ThreadSanitizerLegacyPass134 ThreadSanitizerLegacyPass() : FunctionPass(ID) {}
135 StringRef getPassName() const override;
136 void getAnalysisUsage(AnalysisUsage &AU) const override;
137 bool runOnFunction(Function &F) override;
138 bool doInitialization(Module &M) override;
139 static char ID; // Pass identification, replacement for typeid.
140 private:
141 Optional<ThreadSanitizer> TSan;
142 };
143
insertModuleCtor(Module & M)144 void insertModuleCtor(Module &M) {
145 getOrCreateSanitizerCtorAndInitFunctions(
146 M, kTsanModuleCtorName, kTsanInitName, /*InitArgTypes=*/{},
147 /*InitArgs=*/{},
148 // This callback is invoked when the functions are created the first
149 // time. Hook them into the global ctors list in that case:
150 [&](Function *Ctor, FunctionCallee) { appendToGlobalCtors(M, Ctor, 0); });
151 }
152
153 } // namespace
154
run(Function & F,FunctionAnalysisManager & FAM)155 PreservedAnalyses ThreadSanitizerPass::run(Function &F,
156 FunctionAnalysisManager &FAM) {
157 ThreadSanitizer TSan;
158 if (TSan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F)))
159 return PreservedAnalyses::none();
160 return PreservedAnalyses::all();
161 }
162
run(Module & M,ModuleAnalysisManager & MAM)163 PreservedAnalyses ThreadSanitizerPass::run(Module &M,
164 ModuleAnalysisManager &MAM) {
165 insertModuleCtor(M);
166 return PreservedAnalyses::none();
167 }
168
169 char ThreadSanitizerLegacyPass::ID = 0;
170 INITIALIZE_PASS_BEGIN(ThreadSanitizerLegacyPass, "tsan",
171 "ThreadSanitizer: detects data races.", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)172 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
173 INITIALIZE_PASS_END(ThreadSanitizerLegacyPass, "tsan",
174 "ThreadSanitizer: detects data races.", false, false)
175
176 StringRef ThreadSanitizerLegacyPass::getPassName() const {
177 return "ThreadSanitizerLegacyPass";
178 }
179
getAnalysisUsage(AnalysisUsage & AU) const180 void ThreadSanitizerLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
181 AU.addRequired<TargetLibraryInfoWrapperPass>();
182 }
183
doInitialization(Module & M)184 bool ThreadSanitizerLegacyPass::doInitialization(Module &M) {
185 insertModuleCtor(M);
186 TSan.emplace();
187 return true;
188 }
189
runOnFunction(Function & F)190 bool ThreadSanitizerLegacyPass::runOnFunction(Function &F) {
191 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
192 TSan->sanitizeFunction(F, TLI);
193 return true;
194 }
195
createThreadSanitizerLegacyPassPass()196 FunctionPass *llvm::createThreadSanitizerLegacyPassPass() {
197 return new ThreadSanitizerLegacyPass();
198 }
199
initialize(Module & M)200 void ThreadSanitizer::initialize(Module &M) {
201 const DataLayout &DL = M.getDataLayout();
202 IntptrTy = DL.getIntPtrType(M.getContext());
203
204 IRBuilder<> IRB(M.getContext());
205 AttributeList Attr;
206 Attr = Attr.addAttribute(M.getContext(), AttributeList::FunctionIndex,
207 Attribute::NoUnwind);
208 // Initialize the callbacks.
209 TsanFuncEntry = M.getOrInsertFunction("__tsan_func_entry", Attr,
210 IRB.getVoidTy(), IRB.getInt8PtrTy());
211 TsanFuncExit =
212 M.getOrInsertFunction("__tsan_func_exit", Attr, IRB.getVoidTy());
213 TsanIgnoreBegin = M.getOrInsertFunction("__tsan_ignore_thread_begin", Attr,
214 IRB.getVoidTy());
215 TsanIgnoreEnd =
216 M.getOrInsertFunction("__tsan_ignore_thread_end", Attr, IRB.getVoidTy());
217 IntegerType *OrdTy = IRB.getInt32Ty();
218 for (size_t i = 0; i < kNumberOfAccessSizes; ++i) {
219 const unsigned ByteSize = 1U << i;
220 const unsigned BitSize = ByteSize * 8;
221 std::string ByteSizeStr = utostr(ByteSize);
222 std::string BitSizeStr = utostr(BitSize);
223 SmallString<32> ReadName("__tsan_read" + ByteSizeStr);
224 TsanRead[i] = M.getOrInsertFunction(ReadName, Attr, IRB.getVoidTy(),
225 IRB.getInt8PtrTy());
226
227 SmallString<32> WriteName("__tsan_write" + ByteSizeStr);
228 TsanWrite[i] = M.getOrInsertFunction(WriteName, Attr, IRB.getVoidTy(),
229 IRB.getInt8PtrTy());
230
231 SmallString<64> UnalignedReadName("__tsan_unaligned_read" + ByteSizeStr);
232 TsanUnalignedRead[i] = M.getOrInsertFunction(
233 UnalignedReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
234
235 SmallString<64> UnalignedWriteName("__tsan_unaligned_write" + ByteSizeStr);
236 TsanUnalignedWrite[i] = M.getOrInsertFunction(
237 UnalignedWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
238
239 Type *Ty = Type::getIntNTy(M.getContext(), BitSize);
240 Type *PtrTy = Ty->getPointerTo();
241 SmallString<32> AtomicLoadName("__tsan_atomic" + BitSizeStr + "_load");
242 TsanAtomicLoad[i] =
243 M.getOrInsertFunction(AtomicLoadName, Attr, Ty, PtrTy, OrdTy);
244
245 SmallString<32> AtomicStoreName("__tsan_atomic" + BitSizeStr + "_store");
246 TsanAtomicStore[i] = M.getOrInsertFunction(
247 AtomicStoreName, Attr, IRB.getVoidTy(), PtrTy, Ty, OrdTy);
248
249 for (int op = AtomicRMWInst::FIRST_BINOP;
250 op <= AtomicRMWInst::LAST_BINOP; ++op) {
251 TsanAtomicRMW[op][i] = nullptr;
252 const char *NamePart = nullptr;
253 if (op == AtomicRMWInst::Xchg)
254 NamePart = "_exchange";
255 else if (op == AtomicRMWInst::Add)
256 NamePart = "_fetch_add";
257 else if (op == AtomicRMWInst::Sub)
258 NamePart = "_fetch_sub";
259 else if (op == AtomicRMWInst::And)
260 NamePart = "_fetch_and";
261 else if (op == AtomicRMWInst::Or)
262 NamePart = "_fetch_or";
263 else if (op == AtomicRMWInst::Xor)
264 NamePart = "_fetch_xor";
265 else if (op == AtomicRMWInst::Nand)
266 NamePart = "_fetch_nand";
267 else
268 continue;
269 SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart);
270 TsanAtomicRMW[op][i] =
271 M.getOrInsertFunction(RMWName, Attr, Ty, PtrTy, Ty, OrdTy);
272 }
273
274 SmallString<32> AtomicCASName("__tsan_atomic" + BitSizeStr +
275 "_compare_exchange_val");
276 TsanAtomicCAS[i] = M.getOrInsertFunction(AtomicCASName, Attr, Ty, PtrTy, Ty,
277 Ty, OrdTy, OrdTy);
278 }
279 TsanVptrUpdate =
280 M.getOrInsertFunction("__tsan_vptr_update", Attr, IRB.getVoidTy(),
281 IRB.getInt8PtrTy(), IRB.getInt8PtrTy());
282 TsanVptrLoad = M.getOrInsertFunction("__tsan_vptr_read", Attr,
283 IRB.getVoidTy(), IRB.getInt8PtrTy());
284 TsanAtomicThreadFence = M.getOrInsertFunction("__tsan_atomic_thread_fence",
285 Attr, IRB.getVoidTy(), OrdTy);
286 TsanAtomicSignalFence = M.getOrInsertFunction("__tsan_atomic_signal_fence",
287 Attr, IRB.getVoidTy(), OrdTy);
288
289 MemmoveFn =
290 M.getOrInsertFunction("memmove", Attr, IRB.getInt8PtrTy(),
291 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy);
292 MemcpyFn =
293 M.getOrInsertFunction("memcpy", Attr, IRB.getInt8PtrTy(),
294 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy);
295 MemsetFn =
296 M.getOrInsertFunction("memset", Attr, IRB.getInt8PtrTy(),
297 IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy);
298 }
299
isVtableAccess(Instruction * I)300 static bool isVtableAccess(Instruction *I) {
301 if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa))
302 return Tag->isTBAAVtableAccess();
303 return false;
304 }
305
306 // Do not instrument known races/"benign races" that come from compiler
307 // instrumentatin. The user has no way of suppressing them.
shouldInstrumentReadWriteFromAddress(const Module * M,Value * Addr)308 static bool shouldInstrumentReadWriteFromAddress(const Module *M, Value *Addr) {
309 // Peel off GEPs and BitCasts.
310 Addr = Addr->stripInBoundsOffsets();
311
312 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
313 if (GV->hasSection()) {
314 StringRef SectionName = GV->getSection();
315 // Check if the global is in the PGO counters section.
316 auto OF = Triple(M->getTargetTriple()).getObjectFormat();
317 if (SectionName.endswith(
318 getInstrProfSectionName(IPSK_cnts, OF, /*AddSegmentInfo=*/false)))
319 return false;
320 }
321
322 // Check if the global is private gcov data.
323 if (GV->getName().startswith("__llvm_gcov") ||
324 GV->getName().startswith("__llvm_gcda"))
325 return false;
326 }
327
328 // Do not instrument acesses from different address spaces; we cannot deal
329 // with them.
330 if (Addr) {
331 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
332 if (PtrTy->getPointerAddressSpace() != 0)
333 return false;
334 }
335
336 return true;
337 }
338
addrPointsToConstantData(Value * Addr)339 bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) {
340 // If this is a GEP, just analyze its pointer operand.
341 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr))
342 Addr = GEP->getPointerOperand();
343
344 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
345 if (GV->isConstant()) {
346 // Reads from constant globals can not race with any writes.
347 NumOmittedReadsFromConstantGlobals++;
348 return true;
349 }
350 } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) {
351 if (isVtableAccess(L)) {
352 // Reads from a vtable pointer can not race with any writes.
353 NumOmittedReadsFromVtable++;
354 return true;
355 }
356 }
357 return false;
358 }
359
360 // Instrumenting some of the accesses may be proven redundant.
361 // Currently handled:
362 // - read-before-write (within same BB, no calls between)
363 // - not captured variables
364 //
365 // We do not handle some of the patterns that should not survive
366 // after the classic compiler optimizations.
367 // E.g. two reads from the same temp should be eliminated by CSE,
368 // two writes should be eliminated by DSE, etc.
369 //
370 // 'Local' is a vector of insns within the same BB (no calls between).
371 // 'All' is a vector of insns that will be instrumented.
chooseInstructionsToInstrument(SmallVectorImpl<Instruction * > & Local,SmallVectorImpl<Instruction * > & All,const DataLayout & DL)372 void ThreadSanitizer::chooseInstructionsToInstrument(
373 SmallVectorImpl<Instruction *> &Local, SmallVectorImpl<Instruction *> &All,
374 const DataLayout &DL) {
375 SmallPtrSet<Value*, 8> WriteTargets;
376 // Iterate from the end.
377 for (Instruction *I : reverse(Local)) {
378 if (StoreInst *Store = dyn_cast<StoreInst>(I)) {
379 Value *Addr = Store->getPointerOperand();
380 if (!shouldInstrumentReadWriteFromAddress(I->getModule(), Addr))
381 continue;
382 WriteTargets.insert(Addr);
383 } else {
384 LoadInst *Load = cast<LoadInst>(I);
385 Value *Addr = Load->getPointerOperand();
386 if (!shouldInstrumentReadWriteFromAddress(I->getModule(), Addr))
387 continue;
388 if (WriteTargets.count(Addr)) {
389 // We will write to this temp, so no reason to analyze the read.
390 NumOmittedReadsBeforeWrite++;
391 continue;
392 }
393 if (addrPointsToConstantData(Addr)) {
394 // Addr points to some constant data -- it can not race with any writes.
395 continue;
396 }
397 }
398 Value *Addr = isa<StoreInst>(*I)
399 ? cast<StoreInst>(I)->getPointerOperand()
400 : cast<LoadInst>(I)->getPointerOperand();
401 if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) &&
402 !PointerMayBeCaptured(Addr, true, true)) {
403 // The variable is addressable but not captured, so it cannot be
404 // referenced from a different thread and participate in a data race
405 // (see llvm/Analysis/CaptureTracking.h for details).
406 NumOmittedNonCaptured++;
407 continue;
408 }
409 All.push_back(I);
410 }
411 Local.clear();
412 }
413
isAtomic(Instruction * I)414 static bool isAtomic(Instruction *I) {
415 // TODO: Ask TTI whether synchronization scope is between threads.
416 if (LoadInst *LI = dyn_cast<LoadInst>(I))
417 return LI->isAtomic() && LI->getSyncScopeID() != SyncScope::SingleThread;
418 if (StoreInst *SI = dyn_cast<StoreInst>(I))
419 return SI->isAtomic() && SI->getSyncScopeID() != SyncScope::SingleThread;
420 if (isa<AtomicRMWInst>(I))
421 return true;
422 if (isa<AtomicCmpXchgInst>(I))
423 return true;
424 if (isa<FenceInst>(I))
425 return true;
426 return false;
427 }
428
InsertRuntimeIgnores(Function & F)429 void ThreadSanitizer::InsertRuntimeIgnores(Function &F) {
430 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
431 IRB.CreateCall(TsanIgnoreBegin);
432 EscapeEnumerator EE(F, "tsan_ignore_cleanup", ClHandleCxxExceptions);
433 while (IRBuilder<> *AtExit = EE.Next()) {
434 AtExit->CreateCall(TsanIgnoreEnd);
435 }
436 }
437
sanitizeFunction(Function & F,const TargetLibraryInfo & TLI)438 bool ThreadSanitizer::sanitizeFunction(Function &F,
439 const TargetLibraryInfo &TLI) {
440 // This is required to prevent instrumenting call to __tsan_init from within
441 // the module constructor.
442 if (F.getName() == kTsanModuleCtorName)
443 return false;
444 initialize(*F.getParent());
445 SmallVector<Instruction*, 8> AllLoadsAndStores;
446 SmallVector<Instruction*, 8> LocalLoadsAndStores;
447 SmallVector<Instruction*, 8> AtomicAccesses;
448 SmallVector<Instruction*, 8> MemIntrinCalls;
449 bool Res = false;
450 bool HasCalls = false;
451 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread);
452 const DataLayout &DL = F.getParent()->getDataLayout();
453
454 // Traverse all instructions, collect loads/stores/returns, check for calls.
455 for (auto &BB : F) {
456 for (auto &Inst : BB) {
457 if (isAtomic(&Inst))
458 AtomicAccesses.push_back(&Inst);
459 else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst))
460 LocalLoadsAndStores.push_back(&Inst);
461 else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
462 if (CallInst *CI = dyn_cast<CallInst>(&Inst))
463 maybeMarkSanitizerLibraryCallNoBuiltin(CI, &TLI);
464 if (isa<MemIntrinsic>(Inst))
465 MemIntrinCalls.push_back(&Inst);
466 HasCalls = true;
467 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores,
468 DL);
469 }
470 }
471 chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, DL);
472 }
473
474 // We have collected all loads and stores.
475 // FIXME: many of these accesses do not need to be checked for races
476 // (e.g. variables that do not escape, etc).
477
478 // Instrument memory accesses only if we want to report bugs in the function.
479 if (ClInstrumentMemoryAccesses && SanitizeFunction)
480 for (auto Inst : AllLoadsAndStores) {
481 Res |= instrumentLoadOrStore(Inst, DL);
482 }
483
484 // Instrument atomic memory accesses in any case (they can be used to
485 // implement synchronization).
486 if (ClInstrumentAtomics)
487 for (auto Inst : AtomicAccesses) {
488 Res |= instrumentAtomic(Inst, DL);
489 }
490
491 if (ClInstrumentMemIntrinsics && SanitizeFunction)
492 for (auto Inst : MemIntrinCalls) {
493 Res |= instrumentMemIntrinsic(Inst);
494 }
495
496 if (F.hasFnAttribute("sanitize_thread_no_checking_at_run_time")) {
497 assert(!F.hasFnAttribute(Attribute::SanitizeThread));
498 if (HasCalls)
499 InsertRuntimeIgnores(F);
500 }
501
502 // Instrument function entry/exit points if there were instrumented accesses.
503 if ((Res || HasCalls) && ClInstrumentFuncEntryExit) {
504 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
505 Value *ReturnAddress = IRB.CreateCall(
506 Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress),
507 IRB.getInt32(0));
508 IRB.CreateCall(TsanFuncEntry, ReturnAddress);
509
510 EscapeEnumerator EE(F, "tsan_cleanup", ClHandleCxxExceptions);
511 while (IRBuilder<> *AtExit = EE.Next()) {
512 AtExit->CreateCall(TsanFuncExit, {});
513 }
514 Res = true;
515 }
516 return Res;
517 }
518
instrumentLoadOrStore(Instruction * I,const DataLayout & DL)519 bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I,
520 const DataLayout &DL) {
521 IRBuilder<> IRB(I);
522 bool IsWrite = isa<StoreInst>(*I);
523 Value *Addr = IsWrite
524 ? cast<StoreInst>(I)->getPointerOperand()
525 : cast<LoadInst>(I)->getPointerOperand();
526
527 // swifterror memory addresses are mem2reg promoted by instruction selection.
528 // As such they cannot have regular uses like an instrumentation function and
529 // it makes no sense to track them as memory.
530 if (Addr->isSwiftError())
531 return false;
532
533 int Idx = getMemoryAccessFuncIndex(Addr, DL);
534 if (Idx < 0)
535 return false;
536 if (IsWrite && isVtableAccess(I)) {
537 LLVM_DEBUG(dbgs() << " VPTR : " << *I << "\n");
538 Value *StoredValue = cast<StoreInst>(I)->getValueOperand();
539 // StoredValue may be a vector type if we are storing several vptrs at once.
540 // In this case, just take the first element of the vector since this is
541 // enough to find vptr races.
542 if (isa<VectorType>(StoredValue->getType()))
543 StoredValue = IRB.CreateExtractElement(
544 StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0));
545 if (StoredValue->getType()->isIntegerTy())
546 StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy());
547 // Call TsanVptrUpdate.
548 IRB.CreateCall(TsanVptrUpdate,
549 {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
550 IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy())});
551 NumInstrumentedVtableWrites++;
552 return true;
553 }
554 if (!IsWrite && isVtableAccess(I)) {
555 IRB.CreateCall(TsanVptrLoad,
556 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
557 NumInstrumentedVtableReads++;
558 return true;
559 }
560 const unsigned Alignment = IsWrite
561 ? cast<StoreInst>(I)->getAlignment()
562 : cast<LoadInst>(I)->getAlignment();
563 Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType();
564 const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
565 FunctionCallee OnAccessFunc = nullptr;
566 if (Alignment == 0 || Alignment >= 8 || (Alignment % (TypeSize / 8)) == 0)
567 OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx];
568 else
569 OnAccessFunc = IsWrite ? TsanUnalignedWrite[Idx] : TsanUnalignedRead[Idx];
570 IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
571 if (IsWrite) NumInstrumentedWrites++;
572 else NumInstrumentedReads++;
573 return true;
574 }
575
createOrdering(IRBuilder<> * IRB,AtomicOrdering ord)576 static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
577 uint32_t v = 0;
578 switch (ord) {
579 case AtomicOrdering::NotAtomic:
580 llvm_unreachable("unexpected atomic ordering!");
581 case AtomicOrdering::Unordered: LLVM_FALLTHROUGH;
582 case AtomicOrdering::Monotonic: v = 0; break;
583 // Not specified yet:
584 // case AtomicOrdering::Consume: v = 1; break;
585 case AtomicOrdering::Acquire: v = 2; break;
586 case AtomicOrdering::Release: v = 3; break;
587 case AtomicOrdering::AcquireRelease: v = 4; break;
588 case AtomicOrdering::SequentiallyConsistent: v = 5; break;
589 }
590 return IRB->getInt32(v);
591 }
592
593 // If a memset intrinsic gets inlined by the code gen, we will miss races on it.
594 // So, we either need to ensure the intrinsic is not inlined, or instrument it.
595 // We do not instrument memset/memmove/memcpy intrinsics (too complicated),
596 // instead we simply replace them with regular function calls, which are then
597 // intercepted by the run-time.
598 // Since tsan is running after everyone else, the calls should not be
599 // replaced back with intrinsics. If that becomes wrong at some point,
600 // we will need to call e.g. __tsan_memset to avoid the intrinsics.
instrumentMemIntrinsic(Instruction * I)601 bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) {
602 IRBuilder<> IRB(I);
603 if (MemSetInst *M = dyn_cast<MemSetInst>(I)) {
604 IRB.CreateCall(
605 MemsetFn,
606 {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
607 IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false),
608 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
609 I->eraseFromParent();
610 } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) {
611 IRB.CreateCall(
612 isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn,
613 {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
614 IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()),
615 IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
616 I->eraseFromParent();
617 }
618 return false;
619 }
620
621 // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x
622 // standards. For background see C++11 standard. A slightly older, publicly
623 // available draft of the standard (not entirely up-to-date, but close enough
624 // for casual browsing) is available here:
625 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
626 // The following page contains more background information:
627 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
628
instrumentAtomic(Instruction * I,const DataLayout & DL)629 bool ThreadSanitizer::instrumentAtomic(Instruction *I, const DataLayout &DL) {
630 IRBuilder<> IRB(I);
631 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
632 Value *Addr = LI->getPointerOperand();
633 int Idx = getMemoryAccessFuncIndex(Addr, DL);
634 if (Idx < 0)
635 return false;
636 const unsigned ByteSize = 1U << Idx;
637 const unsigned BitSize = ByteSize * 8;
638 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
639 Type *PtrTy = Ty->getPointerTo();
640 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
641 createOrdering(&IRB, LI->getOrdering())};
642 Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType();
643 Value *C = IRB.CreateCall(TsanAtomicLoad[Idx], Args);
644 Value *Cast = IRB.CreateBitOrPointerCast(C, OrigTy);
645 I->replaceAllUsesWith(Cast);
646 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
647 Value *Addr = SI->getPointerOperand();
648 int Idx = getMemoryAccessFuncIndex(Addr, DL);
649 if (Idx < 0)
650 return false;
651 const unsigned ByteSize = 1U << Idx;
652 const unsigned BitSize = ByteSize * 8;
653 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
654 Type *PtrTy = Ty->getPointerTo();
655 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
656 IRB.CreateBitOrPointerCast(SI->getValueOperand(), Ty),
657 createOrdering(&IRB, SI->getOrdering())};
658 CallInst *C = CallInst::Create(TsanAtomicStore[Idx], Args);
659 ReplaceInstWithInst(I, C);
660 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) {
661 Value *Addr = RMWI->getPointerOperand();
662 int Idx = getMemoryAccessFuncIndex(Addr, DL);
663 if (Idx < 0)
664 return false;
665 FunctionCallee F = TsanAtomicRMW[RMWI->getOperation()][Idx];
666 if (!F)
667 return false;
668 const unsigned ByteSize = 1U << Idx;
669 const unsigned BitSize = ByteSize * 8;
670 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
671 Type *PtrTy = Ty->getPointerTo();
672 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
673 IRB.CreateIntCast(RMWI->getValOperand(), Ty, false),
674 createOrdering(&IRB, RMWI->getOrdering())};
675 CallInst *C = CallInst::Create(F, Args);
676 ReplaceInstWithInst(I, C);
677 } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) {
678 Value *Addr = CASI->getPointerOperand();
679 int Idx = getMemoryAccessFuncIndex(Addr, DL);
680 if (Idx < 0)
681 return false;
682 const unsigned ByteSize = 1U << Idx;
683 const unsigned BitSize = ByteSize * 8;
684 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
685 Type *PtrTy = Ty->getPointerTo();
686 Value *CmpOperand =
687 IRB.CreateBitOrPointerCast(CASI->getCompareOperand(), Ty);
688 Value *NewOperand =
689 IRB.CreateBitOrPointerCast(CASI->getNewValOperand(), Ty);
690 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
691 CmpOperand,
692 NewOperand,
693 createOrdering(&IRB, CASI->getSuccessOrdering()),
694 createOrdering(&IRB, CASI->getFailureOrdering())};
695 CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args);
696 Value *Success = IRB.CreateICmpEQ(C, CmpOperand);
697 Value *OldVal = C;
698 Type *OrigOldValTy = CASI->getNewValOperand()->getType();
699 if (Ty != OrigOldValTy) {
700 // The value is a pointer, so we need to cast the return value.
701 OldVal = IRB.CreateIntToPtr(C, OrigOldValTy);
702 }
703
704 Value *Res =
705 IRB.CreateInsertValue(UndefValue::get(CASI->getType()), OldVal, 0);
706 Res = IRB.CreateInsertValue(Res, Success, 1);
707
708 I->replaceAllUsesWith(Res);
709 I->eraseFromParent();
710 } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) {
711 Value *Args[] = {createOrdering(&IRB, FI->getOrdering())};
712 FunctionCallee F = FI->getSyncScopeID() == SyncScope::SingleThread
713 ? TsanAtomicSignalFence
714 : TsanAtomicThreadFence;
715 CallInst *C = CallInst::Create(F, Args);
716 ReplaceInstWithInst(I, C);
717 }
718 return true;
719 }
720
getMemoryAccessFuncIndex(Value * Addr,const DataLayout & DL)721 int ThreadSanitizer::getMemoryAccessFuncIndex(Value *Addr,
722 const DataLayout &DL) {
723 Type *OrigPtrTy = Addr->getType();
724 Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
725 assert(OrigTy->isSized());
726 uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
727 if (TypeSize != 8 && TypeSize != 16 &&
728 TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
729 NumAccessesWithBadSize++;
730 // Ignore all unusual sizes.
731 return -1;
732 }
733 size_t Idx = countTrailingZeros(TypeSize / 8);
734 assert(Idx < kNumberOfAccessSizes);
735 return Idx;
736 }
737