1 /* Copyright 2017 The TensorFlow Authors. All Rights Reserved. 2 3 Licensed under the Apache License, Version 2.0 (the "License"); 4 you may not use this file except in compliance with the License. 5 You may obtain a copy of the License at 6 7 http://www.apache.org/licenses/LICENSE-2.0 8 9 Unless required by applicable law or agreed to in writing, software 10 distributed under the License is distributed on an "AS IS" BASIS, 11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 See the License for the specific language governing permissions and 13 limitations under the License. 14 ==============================================================================*/ 15 16 #ifndef TENSORFLOW_COMPILER_JIT_FLAGS_H_ 17 #define TENSORFLOW_COMPILER_JIT_FLAGS_H_ 18 19 #include <vector> 20 21 #include "absl/types/optional.h" 22 #include "tensorflow/core/platform/types.h" 23 #include "tensorflow/core/protobuf/config.pb.h" 24 #include "tensorflow/core/util/command_line_flags.h" 25 26 namespace tensorflow { 27 28 struct XlaAutoJitFlag { 29 // Control compilation of operators into XLA computations on CPU and GPU 30 // devices. 0 = use ConfigProto setting; -1 = off; 1 = on for things very 31 // likely to be improved; 2 = on for everything. 32 // 33 // If all non-CPU ops in the graph being optimized are placed on a single GPU 34 // and there is at least one node placed on that GPU then 35 // `optimization_level_single_gpu` applies. Otherwise 36 // `optimization_level_general` applies. 37 // 38 // Experimental. 39 int32 optimization_level_single_gpu; 40 int32 optimization_level_general; 41 }; 42 43 // Sets the xla_auto_jit_flag based on the given flag string. Supported syntax 44 // is: 45 // <number>: sets general and single_gpu setting to the provided number. 46 // single-gpu(<number>): sets the single_gpu setting to the provided number. 47 bool SetXlaAutoJitFlagFromFlagString(const string& value); 48 49 // Flags associated with the XLA bridge's mark_for_compilation_pass module. 50 struct MarkForCompilationPassFlags { 51 XlaAutoJitFlag xla_auto_jit_flag; 52 53 // Minimum number of operators in an XLA compilation. Ignored for operators 54 // placed on an XLA device or operators explicitly marked for compilation. 55 int32 tf_xla_min_cluster_size; 56 57 // Maximum number of operators in an XLA compilation. 58 int32 tf_xla_max_cluster_size; 59 60 // If non-empty, limit XLA clustering to the following TF operations. 61 string tf_xla_ops_to_cluster; 62 63 // Dump graphs during XLA compilation. 64 bool tf_xla_clustering_debug; 65 66 // Enables global JIT compilation for CPU via SessionOptions. 67 bool tf_xla_cpu_global_jit; 68 69 // "Compiler fuel" for clustering. Only this many ops will be marked as 70 // eligible for clustering. 71 int64 tf_xla_clustering_fuel; 72 73 // If tf_xla_disable_deadness_safety_checks_for_debugging is set to true then 74 // we do not do deadness related safety checks. This is unsound in general, 75 // but can be used as a debugging aid. 76 bool tf_xla_disable_deadness_safety_checks_for_debugging; 77 78 // If tf_xla_disable_resource_variable_safety_checks_for_debugging is set to 79 // true then we do not do safety checks to preserve TensorFlow's resource 80 // variable concurrency semantics. This is unsound in general, but can be 81 // used as a debugging aid. 82 bool tf_xla_disable_resource_variable_safety_checks_for_debugging; 83 }; 84 85 // Flags associated with the XLA bridge's xla_device module. 86 struct XlaDeviceFlags { 87 // Switch the CPU device into "on-demand" mode, where instead of 88 // autoclustering ops are compiled one by one just-in-time. 89 // Enabling this mode by a legacy flag is a temporary mechanism. When this 90 // feature is battle-tested, we will switch this to be a session option. 91 bool tf_xla_compile_on_demand; 92 93 // Enables "XLA" devices if this flag is set. 94 bool tf_xla_enable_xla_devices; 95 }; 96 97 // Flags common to the _Xla* ops and their kernels. 98 struct XlaOpsCommonFlags { 99 // If true, _XlaCompile always refuses to compile the cluster, which means the 100 // XLA clusters always run in the TF executor. Defaults to false. 101 bool tf_xla_always_defer_compilation; 102 // If true, _XlaCompile compiles the cluster asynchronously with respect to 103 // the main execution. The fallback path is taken while compilation happens. 104 bool tf_xla_async_compilation; 105 }; 106 107 // Flags for the build_xla_ops pass. 108 struct BuildXlaOpsPassFlags { 109 // Enables lazy compilation for TF/XLA (only when auto-clustering) if true. 110 // Defaults to true. 111 bool tf_xla_enable_lazy_compilation; 112 113 // If true then insert Print nodes to print out values produced by XLA 114 // clusters. Useful for debugging. 115 bool tf_xla_print_cluster_outputs; 116 117 // If true, insert CheckNumerics nodes for every floating point typed input to 118 // an XLA cluster. 119 bool tf_xla_check_cluster_input_numerics; 120 121 // If true, insert CheckNumerics nodes for every floating point typed output 122 // from an XLA cluster. 123 bool tf_xla_check_cluster_output_numerics; 124 125 // Disables all constant folding. The primary use for this is for testing to 126 // guarantee that tests are run on XLA and not on TF's CPU implementation. 127 bool tf_xla_disable_constant_folding; 128 }; 129 130 // Flags for the IntroduceFloatingPointJitter pass. 131 struct IntroduceFloatingPointJitterPassFlags { 132 // The amount of jitter to introduce. This amount is added to each element in 133 // the tensors named in `tensor_names. 134 float jitter_amount; 135 136 // The Tensors to add the jitter to. The tensors are named in the TensorId 137 // format of <node name>:<output idx>. 138 std::vector<string> tensor_names; 139 }; 140 141 // Flags for common MLIR configurations. 142 struct MlirCommonFlags { 143 ConfigProto::Experimental::MlirBridgeRollout tf_mlir_enable_mlir_bridge; 144 145 bool tf_mlir_enable_merge_control_flow_pass; 146 }; 147 148 // Return a pointer to the DumpGraphFlags struct; 149 // repeated calls return the same pointer. 150 // This should be called only after Flags::Parse() has returned. 151 152 // Getters for flags structs defined above. The first call to any of these 153 // parses TF_XLA_FLAGS for all of them. Those functions which return a pointer 154 // always return the same pointer. 155 MarkForCompilationPassFlags* GetMarkForCompilationPassFlags(); 156 BuildXlaOpsPassFlags* GetBuildXlaOpsPassFlags(); 157 XlaDeviceFlags* GetXlaDeviceFlags(); 158 const XlaOpsCommonFlags& GetXlaOpsCommonFlags(); 159 160 const IntroduceFloatingPointJitterPassFlags& 161 GetIntroduceFloatingPointJitterPassFlags(); 162 163 MlirCommonFlags* GetMlirCommonFlags(); 164 165 // Returns the effective MLIR bridge rollout state based on the flags and the 166 // optional configuration. 167 ConfigProto::Experimental::MlirBridgeRollout GetMlirBridgeRolloutState( 168 absl::optional<const ConfigProto> config_proto); 169 170 // Appends the flag definitions associated with 171 // MarkForCompilationPassFlags/DumpGraphFlags to `flag_list`. 172 // 173 // Has the side-effect of parsing TF_XLA_FLAGS if that hasn't happened yet. 174 void AppendMarkForCompilationPassFlags( 175 std::vector<tensorflow::Flag>* flag_list); 176 177 // Disables XLA compilation, forces it to return an error message instead. Can 178 // be used by a server to ensure that JIT compilation is opt-in. 179 void DisableXlaCompilation(); 180 181 // Returns `false` unless `DisableXlaCompilation` was called. 182 bool FailOnXlaCompilation(); 183 184 } // namespace tensorflow 185 186 #endif // TENSORFLOW_COMPILER_JIT_FLAGS_H_ 187