1 /*
2 * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "modules/audio_processing/aec3/erle_estimator.h"
12
13 #include <cmath>
14
15 #include "api/array_view.h"
16 #include "modules/audio_processing/aec3/render_delay_buffer.h"
17 #include "modules/audio_processing/aec3/spectrum_buffer.h"
18 #include "rtc_base/random.h"
19 #include "rtc_base/strings/string_builder.h"
20 #include "test/gtest.h"
21
22 namespace webrtc {
23
24 namespace {
25 constexpr int kLowFrequencyLimit = kFftLengthBy2 / 2;
26 constexpr float kTrueErle = 10.f;
27 constexpr float kTrueErleOnsets = 1.0f;
28 constexpr float kEchoPathGain = 3.f;
29
VerifyErleBands(rtc::ArrayView<const std::array<float,kFftLengthBy2Plus1>> erle,float reference_lf,float reference_hf)30 void VerifyErleBands(
31 rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> erle,
32 float reference_lf,
33 float reference_hf) {
34 for (size_t ch = 0; ch < erle.size(); ++ch) {
35 std::for_each(
36 erle[ch].begin(), erle[ch].begin() + kLowFrequencyLimit,
37 [reference_lf](float a) { EXPECT_NEAR(reference_lf, a, 0.001); });
38 std::for_each(
39 erle[ch].begin() + kLowFrequencyLimit, erle[ch].end(),
40 [reference_hf](float a) { EXPECT_NEAR(reference_hf, a, 0.001); });
41 }
42 }
43
VerifyErle(rtc::ArrayView<const std::array<float,kFftLengthBy2Plus1>> erle,float erle_time_domain,float reference_lf,float reference_hf)44 void VerifyErle(
45 rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> erle,
46 float erle_time_domain,
47 float reference_lf,
48 float reference_hf) {
49 VerifyErleBands(erle, reference_lf, reference_hf);
50 EXPECT_NEAR(reference_lf, erle_time_domain, 0.5);
51 }
52
FormFarendTimeFrame(std::vector<std::vector<std::vector<float>>> * x)53 void FormFarendTimeFrame(std::vector<std::vector<std::vector<float>>>* x) {
54 const std::array<float, kBlockSize> frame = {
55 7459.88, 17209.6, 17383, 20768.9, 16816.7, 18386.3, 4492.83, 9675.85,
56 6665.52, 14808.6, 9342.3, 7483.28, 19261.7, 4145.98, 1622.18, 13475.2,
57 7166.32, 6856.61, 21937, 7263.14, 9569.07, 14919, 8413.32, 7551.89,
58 7848.65, 6011.27, 13080.6, 15865.2, 12656, 17459.6, 4263.93, 4503.03,
59 9311.79, 21095.8, 12657.9, 13906.6, 19267.2, 11338.1, 16828.9, 11501.6,
60 11405, 15031.4, 14541.6, 19765.5, 18346.3, 19350.2, 3157.47, 18095.8,
61 1743.68, 21328.2, 19727.5, 7295.16, 10332.4, 11055.5, 20107.4, 14708.4,
62 12416.2, 16434, 2454.69, 9840.8, 6867.23, 1615.75, 6059.9, 8394.19};
63 for (size_t band = 0; band < x->size(); ++band) {
64 for (size_t channel = 0; channel < (*x)[band].size(); ++channel) {
65 RTC_DCHECK_GE((*x)[band][channel].size(), frame.size());
66 std::copy(frame.begin(), frame.end(), (*x)[band][channel].begin());
67 }
68 }
69 }
70
FormFarendFrame(const RenderBuffer & render_buffer,float erle,std::array<float,kFftLengthBy2Plus1> * X2,rtc::ArrayView<std::array<float,kFftLengthBy2Plus1>> E2,rtc::ArrayView<std::array<float,kFftLengthBy2Plus1>> Y2)71 void FormFarendFrame(const RenderBuffer& render_buffer,
72 float erle,
73 std::array<float, kFftLengthBy2Plus1>* X2,
74 rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>> E2,
75 rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>> Y2) {
76 const auto& spectrum_buffer = render_buffer.GetSpectrumBuffer();
77 const int num_render_channels = spectrum_buffer.buffer[0].size();
78 const int num_capture_channels = Y2.size();
79
80 X2->fill(0.f);
81 for (int ch = 0; ch < num_render_channels; ++ch) {
82 for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) {
83 (*X2)[k] += spectrum_buffer.buffer[spectrum_buffer.write][ch][k] /
84 num_render_channels;
85 }
86 }
87
88 for (int ch = 0; ch < num_capture_channels; ++ch) {
89 std::transform(X2->begin(), X2->end(), Y2[ch].begin(),
90 [](float a) { return a * kEchoPathGain * kEchoPathGain; });
91 std::transform(Y2[ch].begin(), Y2[ch].end(), E2[ch].begin(),
92 [erle](float a) { return a / erle; });
93 }
94 }
95
FormNearendFrame(std::vector<std::vector<std::vector<float>>> * x,std::array<float,kFftLengthBy2Plus1> * X2,rtc::ArrayView<std::array<float,kFftLengthBy2Plus1>> E2,rtc::ArrayView<std::array<float,kFftLengthBy2Plus1>> Y2)96 void FormNearendFrame(
97 std::vector<std::vector<std::vector<float>>>* x,
98 std::array<float, kFftLengthBy2Plus1>* X2,
99 rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>> E2,
100 rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>> Y2) {
101 for (size_t band = 0; band < x->size(); ++band) {
102 for (size_t ch = 0; ch < (*x)[band].size(); ++ch) {
103 std::fill((*x)[band][ch].begin(), (*x)[band][ch].end(), 0.f);
104 }
105 }
106
107 X2->fill(0.f);
108 for (size_t ch = 0; ch < Y2.size(); ++ch) {
109 Y2[ch].fill(500.f * 1000.f * 1000.f);
110 E2[ch].fill(Y2[ch][0]);
111 }
112 }
113
GetFilterFreq(size_t delay_headroom_samples,rtc::ArrayView<std::vector<std::array<float,kFftLengthBy2Plus1>>> filter_frequency_response)114 void GetFilterFreq(
115 size_t delay_headroom_samples,
116 rtc::ArrayView<std::vector<std::array<float, kFftLengthBy2Plus1>>>
117 filter_frequency_response) {
118 const size_t delay_headroom_blocks = delay_headroom_samples / kBlockSize;
119 for (size_t ch = 0; ch < filter_frequency_response[0].size(); ++ch) {
120 for (auto& block_freq_resp : filter_frequency_response) {
121 block_freq_resp[ch].fill(0.f);
122 }
123
124 for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) {
125 filter_frequency_response[delay_headroom_blocks][ch][k] = kEchoPathGain;
126 }
127 }
128 }
129
130 } // namespace
131
132 class ErleEstimatorMultiChannel
133 : public ::testing::Test,
134 public ::testing::WithParamInterface<std::tuple<size_t, size_t>> {};
135
136 INSTANTIATE_TEST_SUITE_P(MultiChannel,
137 ErleEstimatorMultiChannel,
138 ::testing::Combine(::testing::Values(1, 2, 4, 8),
139 ::testing::Values(1, 2, 8)));
140
TEST_P(ErleEstimatorMultiChannel,VerifyErleIncreaseAndHold)141 TEST_P(ErleEstimatorMultiChannel, VerifyErleIncreaseAndHold) {
142 const size_t num_render_channels = std::get<0>(GetParam());
143 const size_t num_capture_channels = std::get<1>(GetParam());
144 constexpr int kSampleRateHz = 48000;
145 constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz);
146
147 std::array<float, kFftLengthBy2Plus1> X2;
148 std::vector<std::array<float, kFftLengthBy2Plus1>> E2(num_capture_channels);
149 std::vector<std::array<float, kFftLengthBy2Plus1>> Y2(num_capture_channels);
150 std::vector<bool> converged_filters(num_capture_channels, true);
151
152 EchoCanceller3Config config;
153 config.erle.onset_detection = true;
154
155 std::vector<std::vector<std::vector<float>>> x(
156 kNumBands, std::vector<std::vector<float>>(
157 num_render_channels, std::vector<float>(kBlockSize, 0.f)));
158 std::vector<std::vector<std::array<float, kFftLengthBy2Plus1>>>
159 filter_frequency_response(
160 config.filter.refined.length_blocks,
161 std::vector<std::array<float, kFftLengthBy2Plus1>>(num_capture_channels));
162 std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
163 RenderDelayBuffer::Create(config, kSampleRateHz, num_render_channels));
164
165 GetFilterFreq(config.delay.delay_headroom_samples, filter_frequency_response);
166
167 ErleEstimator estimator(0, config, num_capture_channels);
168
169 FormFarendTimeFrame(&x);
170 render_delay_buffer->Insert(x);
171 render_delay_buffer->PrepareCaptureProcessing();
172 // Verifies that the ERLE estimate is properly increased to higher values.
173 FormFarendFrame(*render_delay_buffer->GetRenderBuffer(), kTrueErle, &X2, E2,
174 Y2);
175 for (size_t k = 0; k < 200; ++k) {
176 render_delay_buffer->Insert(x);
177 render_delay_buffer->PrepareCaptureProcessing();
178 estimator.Update(*render_delay_buffer->GetRenderBuffer(),
179 filter_frequency_response, X2, Y2, E2, converged_filters);
180 }
181 VerifyErle(estimator.Erle(), std::pow(2.f, estimator.FullbandErleLog2()),
182 config.erle.max_l, config.erle.max_h);
183
184 FormNearendFrame(&x, &X2, E2, Y2);
185 // Verifies that the ERLE is not immediately decreased during nearend
186 // activity.
187 for (size_t k = 0; k < 50; ++k) {
188 render_delay_buffer->Insert(x);
189 render_delay_buffer->PrepareCaptureProcessing();
190 estimator.Update(*render_delay_buffer->GetRenderBuffer(),
191 filter_frequency_response, X2, Y2, E2, converged_filters);
192 }
193 VerifyErle(estimator.Erle(), std::pow(2.f, estimator.FullbandErleLog2()),
194 config.erle.max_l, config.erle.max_h);
195 }
196
TEST_P(ErleEstimatorMultiChannel,VerifyErleTrackingOnOnsets)197 TEST_P(ErleEstimatorMultiChannel, VerifyErleTrackingOnOnsets) {
198 const size_t num_render_channels = std::get<0>(GetParam());
199 const size_t num_capture_channels = std::get<1>(GetParam());
200 constexpr int kSampleRateHz = 48000;
201 constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz);
202
203 std::array<float, kFftLengthBy2Plus1> X2;
204 std::vector<std::array<float, kFftLengthBy2Plus1>> E2(num_capture_channels);
205 std::vector<std::array<float, kFftLengthBy2Plus1>> Y2(num_capture_channels);
206 std::vector<bool> converged_filters(num_capture_channels, true);
207 EchoCanceller3Config config;
208 config.erle.onset_detection = true;
209 std::vector<std::vector<std::vector<float>>> x(
210 kNumBands, std::vector<std::vector<float>>(
211 num_render_channels, std::vector<float>(kBlockSize, 0.f)));
212 std::vector<std::vector<std::array<float, kFftLengthBy2Plus1>>>
213 filter_frequency_response(
214 config.filter.refined.length_blocks,
215 std::vector<std::array<float, kFftLengthBy2Plus1>>(num_capture_channels));
216 std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
217 RenderDelayBuffer::Create(config, kSampleRateHz, num_render_channels));
218
219 GetFilterFreq(config.delay.delay_headroom_samples, filter_frequency_response);
220
221 ErleEstimator estimator(/*startup_phase_length_blocks=*/0, config,
222 num_capture_channels);
223
224 FormFarendTimeFrame(&x);
225 render_delay_buffer->Insert(x);
226 render_delay_buffer->PrepareCaptureProcessing();
227
228 for (size_t burst = 0; burst < 20; ++burst) {
229 FormFarendFrame(*render_delay_buffer->GetRenderBuffer(), kTrueErleOnsets,
230 &X2, E2, Y2);
231 for (size_t k = 0; k < 10; ++k) {
232 render_delay_buffer->Insert(x);
233 render_delay_buffer->PrepareCaptureProcessing();
234 estimator.Update(*render_delay_buffer->GetRenderBuffer(),
235 filter_frequency_response, X2, Y2, E2,
236 converged_filters);
237 }
238 FormFarendFrame(*render_delay_buffer->GetRenderBuffer(), kTrueErle, &X2, E2,
239 Y2);
240 for (size_t k = 0; k < 200; ++k) {
241 render_delay_buffer->Insert(x);
242 render_delay_buffer->PrepareCaptureProcessing();
243 estimator.Update(*render_delay_buffer->GetRenderBuffer(),
244 filter_frequency_response, X2, Y2, E2,
245 converged_filters);
246 }
247 FormNearendFrame(&x, &X2, E2, Y2);
248 for (size_t k = 0; k < 300; ++k) {
249 render_delay_buffer->Insert(x);
250 render_delay_buffer->PrepareCaptureProcessing();
251 estimator.Update(*render_delay_buffer->GetRenderBuffer(),
252 filter_frequency_response, X2, Y2, E2,
253 converged_filters);
254 }
255 }
256 VerifyErleBands(estimator.ErleOnsets(), config.erle.min, config.erle.min);
257 FormNearendFrame(&x, &X2, E2, Y2);
258 for (size_t k = 0; k < 1000; k++) {
259 estimator.Update(*render_delay_buffer->GetRenderBuffer(),
260 filter_frequency_response, X2, Y2, E2, converged_filters);
261 }
262 // Verifies that during ne activity, Erle converges to the Erle for
263 // onsets.
264 VerifyErle(estimator.Erle(), std::pow(2.f, estimator.FullbandErleLog2()),
265 config.erle.min, config.erle.min);
266 }
267
268 } // namespace webrtc
269