1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include <stdint.h>
16
17 #include <algorithm>
18 #include <functional>
19 #include <map>
20 #include <numeric>
21 #include <random>
22 #include <set>
23 #include <string>
24 #include <type_traits>
25 #include <unordered_map>
26 #include <unordered_set>
27 #include <vector>
28
29 #include "benchmark/benchmark.h"
30 #include "absl/base/internal/raw_logging.h"
31 #include "absl/container/btree_map.h"
32 #include "absl/container/btree_set.h"
33 #include "absl/container/btree_test.h"
34 #include "absl/container/flat_hash_map.h"
35 #include "absl/container/flat_hash_set.h"
36 #include "absl/container/internal/hashtable_debug.h"
37 #include "absl/flags/flag.h"
38 #include "absl/hash/hash.h"
39 #include "absl/memory/memory.h"
40 #include "absl/strings/cord.h"
41 #include "absl/strings/str_format.h"
42 #include "absl/time/time.h"
43
44 namespace absl {
45 ABSL_NAMESPACE_BEGIN
46 namespace container_internal {
47 namespace {
48
49 constexpr size_t kBenchmarkValues = 1 << 20;
50
51 // How many times we add and remove sub-batches in one batch of *AddRem
52 // benchmarks.
53 constexpr size_t kAddRemBatchSize = 1 << 2;
54
55 // Generates n values in the range [0, 4 * n].
56 template <typename V>
GenerateValues(int n)57 std::vector<V> GenerateValues(int n) {
58 constexpr int kSeed = 23;
59 return GenerateValuesWithSeed<V>(n, 4 * n, kSeed);
60 }
61
62 // Benchmark insertion of values into a container.
63 template <typename T>
BM_InsertImpl(benchmark::State & state,bool sorted)64 void BM_InsertImpl(benchmark::State& state, bool sorted) {
65 using V = typename remove_pair_const<typename T::value_type>::type;
66 typename KeyOfValue<typename T::key_type, V>::type key_of_value;
67
68 std::vector<V> values = GenerateValues<V>(kBenchmarkValues);
69 if (sorted) {
70 std::sort(values.begin(), values.end());
71 }
72 T container(values.begin(), values.end());
73
74 // Remove and re-insert 10% of the keys per batch.
75 const int batch_size = (kBenchmarkValues + 9) / 10;
76 while (state.KeepRunningBatch(batch_size)) {
77 state.PauseTiming();
78 const auto i = static_cast<int>(state.iterations());
79
80 for (int j = i; j < i + batch_size; j++) {
81 int x = j % kBenchmarkValues;
82 container.erase(key_of_value(values[x]));
83 }
84
85 state.ResumeTiming();
86
87 for (int j = i; j < i + batch_size; j++) {
88 int x = j % kBenchmarkValues;
89 container.insert(values[x]);
90 }
91 }
92 }
93
94 template <typename T>
BM_Insert(benchmark::State & state)95 void BM_Insert(benchmark::State& state) {
96 BM_InsertImpl<T>(state, false);
97 }
98
99 template <typename T>
BM_InsertSorted(benchmark::State & state)100 void BM_InsertSorted(benchmark::State& state) {
101 BM_InsertImpl<T>(state, true);
102 }
103
104 // Benchmark inserting the first few elements in a container. In b-tree, this is
105 // when the root node grows.
106 template <typename T>
BM_InsertSmall(benchmark::State & state)107 void BM_InsertSmall(benchmark::State& state) {
108 using V = typename remove_pair_const<typename T::value_type>::type;
109
110 const int kSize = 8;
111 std::vector<V> values = GenerateValues<V>(kSize);
112 T container;
113
114 while (state.KeepRunningBatch(kSize)) {
115 for (int i = 0; i < kSize; ++i) {
116 benchmark::DoNotOptimize(container.insert(values[i]));
117 }
118 state.PauseTiming();
119 // Do not measure the time it takes to clear the container.
120 container.clear();
121 state.ResumeTiming();
122 }
123 }
124
125 template <typename T>
BM_LookupImpl(benchmark::State & state,bool sorted)126 void BM_LookupImpl(benchmark::State& state, bool sorted) {
127 using V = typename remove_pair_const<typename T::value_type>::type;
128 typename KeyOfValue<typename T::key_type, V>::type key_of_value;
129
130 std::vector<V> values = GenerateValues<V>(kBenchmarkValues);
131 if (sorted) {
132 std::sort(values.begin(), values.end());
133 }
134 T container(values.begin(), values.end());
135
136 while (state.KeepRunning()) {
137 int idx = state.iterations() % kBenchmarkValues;
138 benchmark::DoNotOptimize(container.find(key_of_value(values[idx])));
139 }
140 }
141
142 // Benchmark lookup of values in a container.
143 template <typename T>
BM_Lookup(benchmark::State & state)144 void BM_Lookup(benchmark::State& state) {
145 BM_LookupImpl<T>(state, false);
146 }
147
148 // Benchmark lookup of values in a full container, meaning that values
149 // are inserted in-order to take advantage of biased insertion, which
150 // yields a full tree.
151 template <typename T>
BM_FullLookup(benchmark::State & state)152 void BM_FullLookup(benchmark::State& state) {
153 BM_LookupImpl<T>(state, true);
154 }
155
156 // Benchmark deletion of values from a container.
157 template <typename T>
BM_Delete(benchmark::State & state)158 void BM_Delete(benchmark::State& state) {
159 using V = typename remove_pair_const<typename T::value_type>::type;
160 typename KeyOfValue<typename T::key_type, V>::type key_of_value;
161 std::vector<V> values = GenerateValues<V>(kBenchmarkValues);
162 T container(values.begin(), values.end());
163
164 // Remove and re-insert 10% of the keys per batch.
165 const int batch_size = (kBenchmarkValues + 9) / 10;
166 while (state.KeepRunningBatch(batch_size)) {
167 const int i = state.iterations();
168
169 for (int j = i; j < i + batch_size; j++) {
170 int x = j % kBenchmarkValues;
171 container.erase(key_of_value(values[x]));
172 }
173
174 state.PauseTiming();
175 for (int j = i; j < i + batch_size; j++) {
176 int x = j % kBenchmarkValues;
177 container.insert(values[x]);
178 }
179 state.ResumeTiming();
180 }
181 }
182
183 // Benchmark deletion of multiple values from a container.
184 template <typename T>
BM_DeleteRange(benchmark::State & state)185 void BM_DeleteRange(benchmark::State& state) {
186 using V = typename remove_pair_const<typename T::value_type>::type;
187 typename KeyOfValue<typename T::key_type, V>::type key_of_value;
188 std::vector<V> values = GenerateValues<V>(kBenchmarkValues);
189 T container(values.begin(), values.end());
190
191 // Remove and re-insert 10% of the keys per batch.
192 const int batch_size = (kBenchmarkValues + 9) / 10;
193 while (state.KeepRunningBatch(batch_size)) {
194 const int i = state.iterations();
195
196 const int start_index = i % kBenchmarkValues;
197
198 state.PauseTiming();
199 {
200 std::vector<V> removed;
201 removed.reserve(batch_size);
202 auto itr = container.find(key_of_value(values[start_index]));
203 auto start = itr;
204 for (int j = 0; j < batch_size; j++) {
205 if (itr == container.end()) {
206 state.ResumeTiming();
207 container.erase(start, itr);
208 state.PauseTiming();
209 itr = container.begin();
210 start = itr;
211 }
212 removed.push_back(*itr++);
213 }
214
215 state.ResumeTiming();
216 container.erase(start, itr);
217 state.PauseTiming();
218
219 container.insert(removed.begin(), removed.end());
220 }
221 state.ResumeTiming();
222 }
223 }
224
225 // Benchmark steady-state insert (into first half of range) and remove (from
226 // second half of range), treating the container approximately like a queue with
227 // log-time access for all elements. This benchmark does not test the case where
228 // insertion and removal happen in the same region of the tree. This benchmark
229 // counts two value constructors.
230 template <typename T>
BM_QueueAddRem(benchmark::State & state)231 void BM_QueueAddRem(benchmark::State& state) {
232 using V = typename remove_pair_const<typename T::value_type>::type;
233 typename KeyOfValue<typename T::key_type, V>::type key_of_value;
234
235 ABSL_RAW_CHECK(kBenchmarkValues % 2 == 0, "for performance");
236
237 T container;
238
239 const size_t half = kBenchmarkValues / 2;
240 std::vector<int> remove_keys(half);
241 std::vector<int> add_keys(half);
242
243 // We want to do the exact same work repeatedly, and the benchmark can end
244 // after a different number of iterations depending on the speed of the
245 // individual run so we use a large batch size here and ensure that we do
246 // deterministic work every batch.
247 while (state.KeepRunningBatch(half * kAddRemBatchSize)) {
248 state.PauseTiming();
249
250 container.clear();
251
252 for (size_t i = 0; i < half; ++i) {
253 remove_keys[i] = i;
254 add_keys[i] = i;
255 }
256 constexpr int kSeed = 5;
257 std::mt19937_64 rand(kSeed);
258 std::shuffle(remove_keys.begin(), remove_keys.end(), rand);
259 std::shuffle(add_keys.begin(), add_keys.end(), rand);
260
261 // Note needs lazy generation of values.
262 Generator<V> g(kBenchmarkValues * kAddRemBatchSize);
263
264 for (size_t i = 0; i < half; ++i) {
265 container.insert(g(add_keys[i]));
266 container.insert(g(half + remove_keys[i]));
267 }
268
269 // There are three parts each of size "half":
270 // 1 is being deleted from [offset - half, offset)
271 // 2 is standing [offset, offset + half)
272 // 3 is being inserted into [offset + half, offset + 2 * half)
273 size_t offset = 0;
274
275 for (size_t i = 0; i < kAddRemBatchSize; ++i) {
276 std::shuffle(remove_keys.begin(), remove_keys.end(), rand);
277 std::shuffle(add_keys.begin(), add_keys.end(), rand);
278 offset += half;
279
280 state.ResumeTiming();
281 for (size_t idx = 0; idx < half; ++idx) {
282 container.erase(key_of_value(g(offset - half + remove_keys[idx])));
283 container.insert(g(offset + half + add_keys[idx]));
284 }
285 state.PauseTiming();
286 }
287 state.ResumeTiming();
288 }
289 }
290
291 // Mixed insertion and deletion in the same range using pre-constructed values.
292 template <typename T>
BM_MixedAddRem(benchmark::State & state)293 void BM_MixedAddRem(benchmark::State& state) {
294 using V = typename remove_pair_const<typename T::value_type>::type;
295 typename KeyOfValue<typename T::key_type, V>::type key_of_value;
296
297 ABSL_RAW_CHECK(kBenchmarkValues % 2 == 0, "for performance");
298
299 T container;
300
301 // Create two random shuffles
302 std::vector<int> remove_keys(kBenchmarkValues);
303 std::vector<int> add_keys(kBenchmarkValues);
304
305 // We want to do the exact same work repeatedly, and the benchmark can end
306 // after a different number of iterations depending on the speed of the
307 // individual run so we use a large batch size here and ensure that we do
308 // deterministic work every batch.
309 while (state.KeepRunningBatch(kBenchmarkValues * kAddRemBatchSize)) {
310 state.PauseTiming();
311
312 container.clear();
313
314 constexpr int kSeed = 7;
315 std::mt19937_64 rand(kSeed);
316
317 std::vector<V> values = GenerateValues<V>(kBenchmarkValues * 2);
318
319 // Insert the first half of the values (already in random order)
320 container.insert(values.begin(), values.begin() + kBenchmarkValues);
321
322 // Insert the first half of the values (already in random order)
323 for (size_t i = 0; i < kBenchmarkValues; ++i) {
324 // remove_keys and add_keys will be swapped before each round,
325 // therefore fill add_keys here w/ the keys being inserted, so
326 // they'll be the first to be removed.
327 remove_keys[i] = i + kBenchmarkValues;
328 add_keys[i] = i;
329 }
330
331 for (size_t i = 0; i < kAddRemBatchSize; ++i) {
332 remove_keys.swap(add_keys);
333 std::shuffle(remove_keys.begin(), remove_keys.end(), rand);
334 std::shuffle(add_keys.begin(), add_keys.end(), rand);
335
336 state.ResumeTiming();
337 for (size_t idx = 0; idx < kBenchmarkValues; ++idx) {
338 container.erase(key_of_value(values[remove_keys[idx]]));
339 container.insert(values[add_keys[idx]]);
340 }
341 state.PauseTiming();
342 }
343 state.ResumeTiming();
344 }
345 }
346
347 // Insertion at end, removal from the beginning. This benchmark
348 // counts two value constructors.
349 // TODO(ezb): we could add a GenerateNext version of generator that could reduce
350 // noise for string-like types.
351 template <typename T>
BM_Fifo(benchmark::State & state)352 void BM_Fifo(benchmark::State& state) {
353 using V = typename remove_pair_const<typename T::value_type>::type;
354
355 T container;
356 // Need lazy generation of values as state.max_iterations is large.
357 Generator<V> g(kBenchmarkValues + state.max_iterations);
358
359 for (int i = 0; i < kBenchmarkValues; i++) {
360 container.insert(g(i));
361 }
362
363 while (state.KeepRunning()) {
364 container.erase(container.begin());
365 container.insert(container.end(), g(state.iterations() + kBenchmarkValues));
366 }
367 }
368
369 // Iteration (forward) through the tree
370 template <typename T>
BM_FwdIter(benchmark::State & state)371 void BM_FwdIter(benchmark::State& state) {
372 using V = typename remove_pair_const<typename T::value_type>::type;
373 using R = typename T::value_type const*;
374
375 std::vector<V> values = GenerateValues<V>(kBenchmarkValues);
376 T container(values.begin(), values.end());
377
378 auto iter = container.end();
379
380 R r = nullptr;
381
382 while (state.KeepRunning()) {
383 if (iter == container.end()) iter = container.begin();
384 r = &(*iter);
385 ++iter;
386 }
387
388 benchmark::DoNotOptimize(r);
389 }
390
391 // Benchmark random range-construction of a container.
392 template <typename T>
BM_RangeConstructionImpl(benchmark::State & state,bool sorted)393 void BM_RangeConstructionImpl(benchmark::State& state, bool sorted) {
394 using V = typename remove_pair_const<typename T::value_type>::type;
395
396 std::vector<V> values = GenerateValues<V>(kBenchmarkValues);
397 if (sorted) {
398 std::sort(values.begin(), values.end());
399 }
400 {
401 T container(values.begin(), values.end());
402 }
403
404 while (state.KeepRunning()) {
405 T container(values.begin(), values.end());
406 benchmark::DoNotOptimize(container);
407 }
408 }
409
410 template <typename T>
BM_InsertRangeRandom(benchmark::State & state)411 void BM_InsertRangeRandom(benchmark::State& state) {
412 BM_RangeConstructionImpl<T>(state, false);
413 }
414
415 template <typename T>
BM_InsertRangeSorted(benchmark::State & state)416 void BM_InsertRangeSorted(benchmark::State& state) {
417 BM_RangeConstructionImpl<T>(state, true);
418 }
419
420 #define STL_ORDERED_TYPES(value) \
421 using stl_set_##value = std::set<value>; \
422 using stl_map_##value = std::map<value, intptr_t>; \
423 using stl_multiset_##value = std::multiset<value>; \
424 using stl_multimap_##value = std::multimap<value, intptr_t>
425
426 using StdString = std::string;
427 STL_ORDERED_TYPES(int32_t);
428 STL_ORDERED_TYPES(int64_t);
429 STL_ORDERED_TYPES(StdString);
430 STL_ORDERED_TYPES(Cord);
431 STL_ORDERED_TYPES(Time);
432
433 #define STL_UNORDERED_TYPES(value) \
434 using stl_unordered_set_##value = std::unordered_set<value>; \
435 using stl_unordered_map_##value = std::unordered_map<value, intptr_t>; \
436 using flat_hash_set_##value = flat_hash_set<value>; \
437 using flat_hash_map_##value = flat_hash_map<value, intptr_t>; \
438 using stl_unordered_multiset_##value = std::unordered_multiset<value>; \
439 using stl_unordered_multimap_##value = \
440 std::unordered_multimap<value, intptr_t>
441
442 #define STL_UNORDERED_TYPES_CUSTOM_HASH(value, hash) \
443 using stl_unordered_set_##value = std::unordered_set<value, hash>; \
444 using stl_unordered_map_##value = std::unordered_map<value, intptr_t, hash>; \
445 using flat_hash_set_##value = flat_hash_set<value, hash>; \
446 using flat_hash_map_##value = flat_hash_map<value, intptr_t, hash>; \
447 using stl_unordered_multiset_##value = std::unordered_multiset<value, hash>; \
448 using stl_unordered_multimap_##value = \
449 std::unordered_multimap<value, intptr_t, hash>
450
451 STL_UNORDERED_TYPES_CUSTOM_HASH(Cord, absl::Hash<absl::Cord>);
452
453 STL_UNORDERED_TYPES(int32_t);
454 STL_UNORDERED_TYPES(int64_t);
455 STL_UNORDERED_TYPES(StdString);
456 STL_UNORDERED_TYPES_CUSTOM_HASH(Time, absl::Hash<absl::Time>);
457
458 #define BTREE_TYPES(value) \
459 using btree_256_set_##value = \
460 btree_set<value, std::less<value>, std::allocator<value>>; \
461 using btree_256_map_##value = \
462 btree_map<value, intptr_t, std::less<value>, \
463 std::allocator<std::pair<const value, intptr_t>>>; \
464 using btree_256_multiset_##value = \
465 btree_multiset<value, std::less<value>, std::allocator<value>>; \
466 using btree_256_multimap_##value = \
467 btree_multimap<value, intptr_t, std::less<value>, \
468 std::allocator<std::pair<const value, intptr_t>>>
469
470 BTREE_TYPES(int32_t);
471 BTREE_TYPES(int64_t);
472 BTREE_TYPES(StdString);
473 BTREE_TYPES(Cord);
474 BTREE_TYPES(Time);
475
476 #define MY_BENCHMARK4(type, func) \
477 void BM_##type##_##func(benchmark::State& state) { BM_##func<type>(state); } \
478 BENCHMARK(BM_##type##_##func)
479
480 #define MY_BENCHMARK3(type) \
481 MY_BENCHMARK4(type, Insert); \
482 MY_BENCHMARK4(type, InsertSorted); \
483 MY_BENCHMARK4(type, InsertSmall); \
484 MY_BENCHMARK4(type, Lookup); \
485 MY_BENCHMARK4(type, FullLookup); \
486 MY_BENCHMARK4(type, Delete); \
487 MY_BENCHMARK4(type, DeleteRange); \
488 MY_BENCHMARK4(type, QueueAddRem); \
489 MY_BENCHMARK4(type, MixedAddRem); \
490 MY_BENCHMARK4(type, Fifo); \
491 MY_BENCHMARK4(type, FwdIter); \
492 MY_BENCHMARK4(type, InsertRangeRandom); \
493 MY_BENCHMARK4(type, InsertRangeSorted)
494
495 #define MY_BENCHMARK2_SUPPORTS_MULTI_ONLY(type) \
496 MY_BENCHMARK3(stl_##type); \
497 MY_BENCHMARK3(stl_unordered_##type); \
498 MY_BENCHMARK3(btree_256_##type)
499
500 #define MY_BENCHMARK2(type) \
501 MY_BENCHMARK2_SUPPORTS_MULTI_ONLY(type); \
502 MY_BENCHMARK3(flat_hash_##type)
503
504 // Define MULTI_TESTING to see benchmarks for multi-containers also.
505 //
506 // You can use --copt=-DMULTI_TESTING.
507 #ifdef MULTI_TESTING
508 #define MY_BENCHMARK(type) \
509 MY_BENCHMARK2(set_##type); \
510 MY_BENCHMARK2(map_##type); \
511 MY_BENCHMARK2_SUPPORTS_MULTI_ONLY(multiset_##type); \
512 MY_BENCHMARK2_SUPPORTS_MULTI_ONLY(multimap_##type)
513 #else
514 #define MY_BENCHMARK(type) \
515 MY_BENCHMARK2(set_##type); \
516 MY_BENCHMARK2(map_##type)
517 #endif
518
519 MY_BENCHMARK(int32_t);
520 MY_BENCHMARK(int64_t);
521 MY_BENCHMARK(StdString);
522 MY_BENCHMARK(Cord);
523 MY_BENCHMARK(Time);
524
525 // Define a type whose size and cost of moving are independently customizable.
526 // When sizeof(value_type) increases, we expect btree to no longer have as much
527 // cache-locality advantage over STL. When cost of moving increases, we expect
528 // btree to actually do more work than STL because it has to move values around
529 // and STL doesn't have to.
530 template <int Size, int Copies>
531 struct BigType {
BigTypeabsl::container_internal::__anon63c1ac2e0111::BigType532 BigType() : BigType(0) {}
BigTypeabsl::container_internal::__anon63c1ac2e0111::BigType533 explicit BigType(int x) { std::iota(values.begin(), values.end(), x); }
534
Copyabsl::container_internal::__anon63c1ac2e0111::BigType535 void Copy(const BigType& other) {
536 for (int i = 0; i < Size && i < Copies; ++i) values[i] = other.values[i];
537 // If Copies > Size, do extra copies.
538 for (int i = Size, idx = 0; i < Copies; ++i) {
539 int64_t tmp = other.values[idx];
540 benchmark::DoNotOptimize(tmp);
541 idx = idx + 1 == Size ? 0 : idx + 1;
542 }
543 }
544
BigTypeabsl::container_internal::__anon63c1ac2e0111::BigType545 BigType(const BigType& other) { Copy(other); }
operator =absl::container_internal::__anon63c1ac2e0111::BigType546 BigType& operator=(const BigType& other) {
547 Copy(other);
548 return *this;
549 }
550
551 // Compare only the first Copies elements if Copies is less than Size.
operator <absl::container_internal::__anon63c1ac2e0111::BigType552 bool operator<(const BigType& other) const {
553 return std::lexicographical_compare(
554 values.begin(), values.begin() + std::min(Size, Copies),
555 other.values.begin(), other.values.begin() + std::min(Size, Copies));
556 }
operator ==absl::container_internal::__anon63c1ac2e0111::BigType557 bool operator==(const BigType& other) const {
558 return std::equal(values.begin(), values.begin() + std::min(Size, Copies),
559 other.values.begin());
560 }
561
562 // Support absl::Hash.
563 template <typename State>
AbslHashValue(State h,const BigType & b)564 friend State AbslHashValue(State h, const BigType& b) {
565 for (int i = 0; i < Size && i < Copies; ++i)
566 h = State::combine(std::move(h), b.values[i]);
567 return h;
568 }
569
570 std::array<int64_t, Size> values;
571 };
572
573 #define BIG_TYPE_BENCHMARKS(SIZE, COPIES) \
574 using stl_set_size##SIZE##copies##COPIES = std::set<BigType<SIZE, COPIES>>; \
575 using stl_map_size##SIZE##copies##COPIES = \
576 std::map<BigType<SIZE, COPIES>, intptr_t>; \
577 using stl_multiset_size##SIZE##copies##COPIES = \
578 std::multiset<BigType<SIZE, COPIES>>; \
579 using stl_multimap_size##SIZE##copies##COPIES = \
580 std::multimap<BigType<SIZE, COPIES>, intptr_t>; \
581 using stl_unordered_set_size##SIZE##copies##COPIES = \
582 std::unordered_set<BigType<SIZE, COPIES>, \
583 absl::Hash<BigType<SIZE, COPIES>>>; \
584 using stl_unordered_map_size##SIZE##copies##COPIES = \
585 std::unordered_map<BigType<SIZE, COPIES>, intptr_t, \
586 absl::Hash<BigType<SIZE, COPIES>>>; \
587 using flat_hash_set_size##SIZE##copies##COPIES = \
588 flat_hash_set<BigType<SIZE, COPIES>>; \
589 using flat_hash_map_size##SIZE##copies##COPIES = \
590 flat_hash_map<BigType<SIZE, COPIES>, intptr_t>; \
591 using stl_unordered_multiset_size##SIZE##copies##COPIES = \
592 std::unordered_multiset<BigType<SIZE, COPIES>, \
593 absl::Hash<BigType<SIZE, COPIES>>>; \
594 using stl_unordered_multimap_size##SIZE##copies##COPIES = \
595 std::unordered_multimap<BigType<SIZE, COPIES>, intptr_t, \
596 absl::Hash<BigType<SIZE, COPIES>>>; \
597 using btree_256_set_size##SIZE##copies##COPIES = \
598 btree_set<BigType<SIZE, COPIES>>; \
599 using btree_256_map_size##SIZE##copies##COPIES = \
600 btree_map<BigType<SIZE, COPIES>, intptr_t>; \
601 using btree_256_multiset_size##SIZE##copies##COPIES = \
602 btree_multiset<BigType<SIZE, COPIES>>; \
603 using btree_256_multimap_size##SIZE##copies##COPIES = \
604 btree_multimap<BigType<SIZE, COPIES>, intptr_t>; \
605 MY_BENCHMARK(size##SIZE##copies##COPIES)
606
607 // Define BIG_TYPE_TESTING to see benchmarks for more big types.
608 //
609 // You can use --copt=-DBIG_TYPE_TESTING.
610 #ifndef NODESIZE_TESTING
611 #ifdef BIG_TYPE_TESTING
612 BIG_TYPE_BENCHMARKS(1, 4);
613 BIG_TYPE_BENCHMARKS(4, 1);
614 BIG_TYPE_BENCHMARKS(4, 4);
615 BIG_TYPE_BENCHMARKS(1, 8);
616 BIG_TYPE_BENCHMARKS(8, 1);
617 BIG_TYPE_BENCHMARKS(8, 8);
618 BIG_TYPE_BENCHMARKS(1, 16);
619 BIG_TYPE_BENCHMARKS(16, 1);
620 BIG_TYPE_BENCHMARKS(16, 16);
621 BIG_TYPE_BENCHMARKS(1, 32);
622 BIG_TYPE_BENCHMARKS(32, 1);
623 BIG_TYPE_BENCHMARKS(32, 32);
624 #else
625 BIG_TYPE_BENCHMARKS(32, 32);
626 #endif
627 #endif
628
629 // Benchmark using unique_ptrs to large value types. In order to be able to use
630 // the same benchmark code as the other types, use a type that holds a
631 // unique_ptr and has a copy constructor.
632 template <int Size>
633 struct BigTypePtr {
BigTypePtrabsl::container_internal::__anon63c1ac2e0111::BigTypePtr634 BigTypePtr() : BigTypePtr(0) {}
BigTypePtrabsl::container_internal::__anon63c1ac2e0111::BigTypePtr635 explicit BigTypePtr(int x) {
636 ptr = absl::make_unique<BigType<Size, Size>>(x);
637 }
BigTypePtrabsl::container_internal::__anon63c1ac2e0111::BigTypePtr638 BigTypePtr(const BigTypePtr& other) {
639 ptr = absl::make_unique<BigType<Size, Size>>(*other.ptr);
640 }
641 BigTypePtr(BigTypePtr&& other) noexcept = default;
operator =absl::container_internal::__anon63c1ac2e0111::BigTypePtr642 BigTypePtr& operator=(const BigTypePtr& other) {
643 ptr = absl::make_unique<BigType<Size, Size>>(*other.ptr);
644 }
645 BigTypePtr& operator=(BigTypePtr&& other) noexcept = default;
646
operator <absl::container_internal::__anon63c1ac2e0111::BigTypePtr647 bool operator<(const BigTypePtr& other) const { return *ptr < *other.ptr; }
operator ==absl::container_internal::__anon63c1ac2e0111::BigTypePtr648 bool operator==(const BigTypePtr& other) const { return *ptr == *other.ptr; }
649
650 std::unique_ptr<BigType<Size, Size>> ptr;
651 };
652
653 template <int Size>
ContainerInfo(const btree_set<BigTypePtr<Size>> & b)654 double ContainerInfo(const btree_set<BigTypePtr<Size>>& b) {
655 const double bytes_used =
656 b.bytes_used() + b.size() * sizeof(BigType<Size, Size>);
657 const double bytes_per_value = bytes_used / b.size();
658 BtreeContainerInfoLog(b, bytes_used, bytes_per_value);
659 return bytes_per_value;
660 }
661 template <int Size>
ContainerInfo(const btree_map<int,BigTypePtr<Size>> & b)662 double ContainerInfo(const btree_map<int, BigTypePtr<Size>>& b) {
663 const double bytes_used =
664 b.bytes_used() + b.size() * sizeof(BigType<Size, Size>);
665 const double bytes_per_value = bytes_used / b.size();
666 BtreeContainerInfoLog(b, bytes_used, bytes_per_value);
667 return bytes_per_value;
668 }
669
670 #define BIG_TYPE_PTR_BENCHMARKS(SIZE) \
671 using stl_set_size##SIZE##copies##SIZE##ptr = std::set<BigType<SIZE, SIZE>>; \
672 using stl_map_size##SIZE##copies##SIZE##ptr = \
673 std::map<int, BigType<SIZE, SIZE>>; \
674 using stl_unordered_set_size##SIZE##copies##SIZE##ptr = \
675 std::unordered_set<BigType<SIZE, SIZE>, \
676 absl::Hash<BigType<SIZE, SIZE>>>; \
677 using stl_unordered_map_size##SIZE##copies##SIZE##ptr = \
678 std::unordered_map<int, BigType<SIZE, SIZE>>; \
679 using flat_hash_set_size##SIZE##copies##SIZE##ptr = \
680 flat_hash_set<BigType<SIZE, SIZE>>; \
681 using flat_hash_map_size##SIZE##copies##SIZE##ptr = \
682 flat_hash_map<int, BigTypePtr<SIZE>>; \
683 using btree_256_set_size##SIZE##copies##SIZE##ptr = \
684 btree_set<BigTypePtr<SIZE>>; \
685 using btree_256_map_size##SIZE##copies##SIZE##ptr = \
686 btree_map<int, BigTypePtr<SIZE>>; \
687 MY_BENCHMARK3(stl_set_size##SIZE##copies##SIZE##ptr); \
688 MY_BENCHMARK3(stl_unordered_set_size##SIZE##copies##SIZE##ptr); \
689 MY_BENCHMARK3(flat_hash_set_size##SIZE##copies##SIZE##ptr); \
690 MY_BENCHMARK3(btree_256_set_size##SIZE##copies##SIZE##ptr); \
691 MY_BENCHMARK3(stl_map_size##SIZE##copies##SIZE##ptr); \
692 MY_BENCHMARK3(stl_unordered_map_size##SIZE##copies##SIZE##ptr); \
693 MY_BENCHMARK3(flat_hash_map_size##SIZE##copies##SIZE##ptr); \
694 MY_BENCHMARK3(btree_256_map_size##SIZE##copies##SIZE##ptr)
695
696 BIG_TYPE_PTR_BENCHMARKS(32);
697
698 } // namespace
699 } // namespace container_internal
700 ABSL_NAMESPACE_END
701 } // namespace absl
702