• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "IsochronousClockModel"
18 //#define LOG_NDEBUG 0
19 #include <log/log.h>
20 
21 #define __STDC_FORMAT_MACROS
22 #include <inttypes.h>
23 #include <stdint.h>
24 #include <algorithm>
25 
26 #include "utility/AudioClock.h"
27 #include "utility/AAudioUtilities.h"
28 #include "IsochronousClockModel.h"
29 
30 using namespace aaudio;
31 
32 using namespace android::audio_utils;
33 
34 #ifndef ICM_LOG_DRIFT
35 #define ICM_LOG_DRIFT   0
36 #endif // ICM_LOG_DRIFT
37 
38 // To enable the timestamp histogram, enter this before opening the stream:
39 //    adb root
40 //    adb shell setprop aaudio.log_mask 1
41 // A histogram of the lateness of the timestamps will be cleared when the stream is started.
42 // It will be updated when the model is stable and receives a timestamp,
43 // and dumped to the log when the stream is stopped.
44 
IsochronousClockModel()45 IsochronousClockModel::IsochronousClockModel()
46         : mLatenessForDriftNanos(kInitialLatenessForDriftNanos)
47 {
48     if ((AAudioProperty_getLogMask() & AAUDIO_LOG_CLOCK_MODEL_HISTOGRAM) != 0) {
49         mHistogramMicros = std::make_unique<Histogram>(kHistogramBinCount,
50                 kHistogramBinWidthMicros);
51     }
52 }
53 
setPositionAndTime(int64_t framePosition,int64_t nanoTime)54 void IsochronousClockModel::setPositionAndTime(int64_t framePosition, int64_t nanoTime) {
55     ALOGV("setPositionAndTime, %lld, %lld", (long long) framePosition, (long long) nanoTime);
56     mMarkerFramePosition = framePosition;
57     mMarkerNanoTime = nanoTime;
58 }
59 
start(int64_t nanoTime)60 void IsochronousClockModel::start(int64_t nanoTime) {
61     ALOGV("start(nanos = %lld)\n", (long long) nanoTime);
62     mMarkerNanoTime = nanoTime;
63     mState = STATE_STARTING;
64     if (mHistogramMicros) {
65         mHistogramMicros->clear();
66     }
67 }
68 
stop(int64_t nanoTime)69 void IsochronousClockModel::stop(int64_t nanoTime) {
70     ALOGD("stop(nanos = %lld) max lateness = %d micros\n",
71         (long long) nanoTime,
72         (int) (mMaxMeasuredLatenessNanos / 1000));
73     setPositionAndTime(convertTimeToPosition(nanoTime), nanoTime);
74     // TODO should we set position?
75     mState = STATE_STOPPED;
76     if (mHistogramMicros) {
77         dumpHistogram();
78     }
79 }
80 
isStarting() const81 bool IsochronousClockModel::isStarting() const {
82     return mState == STATE_STARTING;
83 }
84 
isRunning() const85 bool IsochronousClockModel::isRunning() const {
86     return mState == STATE_RUNNING;
87 }
88 
processTimestamp(int64_t framePosition,int64_t nanoTime)89 void IsochronousClockModel::processTimestamp(int64_t framePosition, int64_t nanoTime) {
90     mTimestampCount++;
91 // Log position and time in CSV format so we can import it easily into spreadsheets.
92     //ALOGD("%s() CSV, %d, %lld, %lld", __func__,
93           //mTimestampCount, (long long)framePosition, (long long)nanoTime);
94     int64_t framesDelta = framePosition - mMarkerFramePosition;
95     int64_t nanosDelta = nanoTime - mMarkerNanoTime;
96     if (nanosDelta < 1000) {
97         return;
98     }
99 
100 //    ALOGD("processTimestamp() - mMarkerFramePosition = %lld at mMarkerNanoTime %llu",
101 //         (long long)mMarkerFramePosition,
102 //         (long long)mMarkerNanoTime);
103 
104     int64_t expectedNanosDelta = convertDeltaPositionToTime(framesDelta);
105 //    ALOGD("processTimestamp() - expectedNanosDelta = %lld, nanosDelta = %llu",
106 //         (long long)expectedNanosDelta,
107 //         (long long)nanosDelta);
108 
109 //    ALOGD("processTimestamp() - mSampleRate = %d", mSampleRate);
110 //    ALOGD("processTimestamp() - mState = %d", mState);
111     int64_t latenessNanos = nanosDelta - expectedNanosDelta;
112     switch (mState) {
113     case STATE_STOPPED:
114         break;
115     case STATE_STARTING:
116         setPositionAndTime(framePosition, nanoTime);
117         mState = STATE_SYNCING;
118         break;
119     case STATE_SYNCING:
120         // This will handle a burst of rapid transfer at the beginning.
121         if (latenessNanos < 0) {
122             setPositionAndTime(framePosition, nanoTime);
123         } else {
124 //            ALOGD("processTimestamp() - advance to STATE_RUNNING");
125             mState = STATE_RUNNING;
126         }
127         break;
128     case STATE_RUNNING:
129         if (mHistogramMicros) {
130             mHistogramMicros->add(latenessNanos / AAUDIO_NANOS_PER_MICROSECOND);
131         }
132         // Modify estimated position based on lateness.
133         // This affects the "early" side of the window, which controls output glitches.
134         if (latenessNanos < 0) {
135             // Earlier than expected timestamp.
136             // This data is probably more accurate, so use it.
137             // Or we may be drifting due to a fast HW clock.
138             setPositionAndTime(framePosition, nanoTime);
139 #if ICM_LOG_DRIFT
140             int earlyDeltaMicros = (int) ((expectedNanosDelta - nanosDelta)/ 1000);
141             ALOGD("%s() - STATE_RUNNING - #%d, %4d micros EARLY",
142                 __func__, mTimestampCount, earlyDeltaMicros);
143 #endif
144         } else if (latenessNanos > mLatenessForDriftNanos) {
145             // When we are on the late side, it may be because of preemption in the kernel,
146             // or timing jitter caused by resampling in the DSP,
147             // or we may be drifting due to a slow HW clock.
148             // We add slight drift value just in case there is actual long term drift
149             // forward caused by a slower clock.
150             // If the clock is faster than the model will get pushed earlier
151             // by the code in the earlier branch.
152             // The two opposing forces should allow the model to track the real clock
153             // over a long time.
154             int64_t driftingTime = mMarkerNanoTime + expectedNanosDelta + kDriftNanos;
155             setPositionAndTime(framePosition,  driftingTime);
156 #if ICM_LOG_DRIFT
157             ALOGD("%s() - STATE_RUNNING - #%d, DRIFT, lateness = %d micros",
158                   __func__,
159                   mTimestampCount,
160                   (int) (latenessNanos / 1000));
161 #endif
162         }
163 
164         // Modify mMaxMeasuredLatenessNanos.
165         // This affects the "late" side of the window, which controls input glitches.
166         if (latenessNanos > mMaxMeasuredLatenessNanos) { // increase
167 #if ICM_LOG_DRIFT
168             ALOGD("%s() - STATE_RUNNING - #%d, newmax %d - oldmax %d = %4d micros LATE",
169                     __func__,
170                     mTimestampCount,
171                     (int) (latenessNanos / 1000),
172                     mMaxMeasuredLatenessNanos / 1000,
173                     (int) ((latenessNanos - mMaxMeasuredLatenessNanos) / 1000)
174                     );
175 #endif
176             mMaxMeasuredLatenessNanos = (int32_t) latenessNanos;
177             // Calculate upper region that will trigger a drift forwards.
178             mLatenessForDriftNanos = mMaxMeasuredLatenessNanos - (mMaxMeasuredLatenessNanos >> 4);
179         } else { // decrease
180             // If this is an outlier in lateness then mMaxMeasuredLatenessNanos can go high
181             // and stay there. So we slowly reduce mMaxMeasuredLatenessNanos for better
182             // long term stability. The two opposing forces will keep mMaxMeasuredLatenessNanos
183             // within a reasonable range.
184             mMaxMeasuredLatenessNanos -= kDriftNanos;
185         }
186         break;
187     default:
188         break;
189     }
190 }
191 
setSampleRate(int32_t sampleRate)192 void IsochronousClockModel::setSampleRate(int32_t sampleRate) {
193     mSampleRate = sampleRate;
194     update();
195 }
196 
setFramesPerBurst(int32_t framesPerBurst)197 void IsochronousClockModel::setFramesPerBurst(int32_t framesPerBurst) {
198     mFramesPerBurst = framesPerBurst;
199     update();
200 }
201 
202 // Update expected lateness based on sampleRate and framesPerBurst
update()203 void IsochronousClockModel::update() {
204     mBurstPeriodNanos = convertDeltaPositionToTime(mFramesPerBurst); // uses mSampleRate
205 }
206 
convertDeltaPositionToTime(int64_t framesDelta) const207 int64_t IsochronousClockModel::convertDeltaPositionToTime(int64_t framesDelta) const {
208     return (AAUDIO_NANOS_PER_SECOND * framesDelta) / mSampleRate;
209 }
210 
convertDeltaTimeToPosition(int64_t nanosDelta) const211 int64_t IsochronousClockModel::convertDeltaTimeToPosition(int64_t nanosDelta) const {
212     return (mSampleRate * nanosDelta) / AAUDIO_NANOS_PER_SECOND;
213 }
214 
convertPositionToTime(int64_t framePosition) const215 int64_t IsochronousClockModel::convertPositionToTime(int64_t framePosition) const {
216     if (mState == STATE_STOPPED) {
217         return mMarkerNanoTime;
218     }
219     int64_t nextBurstIndex = (framePosition + mFramesPerBurst - 1) / mFramesPerBurst;
220     int64_t nextBurstPosition = mFramesPerBurst * nextBurstIndex;
221     int64_t framesDelta = nextBurstPosition - mMarkerFramePosition;
222     int64_t nanosDelta = convertDeltaPositionToTime(framesDelta);
223     int64_t time = mMarkerNanoTime + nanosDelta;
224 //    ALOGD("convertPositionToTime: pos = %llu --> time = %llu",
225 //         (unsigned long long)framePosition,
226 //         (unsigned long long)time);
227     return time;
228 }
229 
convertTimeToPosition(int64_t nanoTime) const230 int64_t IsochronousClockModel::convertTimeToPosition(int64_t nanoTime) const {
231     if (mState == STATE_STOPPED) {
232         return mMarkerFramePosition;
233     }
234     int64_t nanosDelta = nanoTime - mMarkerNanoTime;
235     int64_t framesDelta = convertDeltaTimeToPosition(nanosDelta);
236     int64_t nextBurstPosition = mMarkerFramePosition + framesDelta;
237     int64_t nextBurstIndex = nextBurstPosition / mFramesPerBurst;
238     int64_t position = nextBurstIndex * mFramesPerBurst;
239 //    ALOGD("convertTimeToPosition: time = %llu --> pos = %llu",
240 //         (unsigned long long)nanoTime,
241 //         (unsigned long long)position);
242 //    ALOGD("convertTimeToPosition: framesDelta = %llu, mFramesPerBurst = %d",
243 //         (long long) framesDelta, mFramesPerBurst);
244     return position;
245 }
246 
getLateTimeOffsetNanos() const247 int32_t IsochronousClockModel::getLateTimeOffsetNanos() const {
248     return mMaxMeasuredLatenessNanos + kExtraLatenessNanos;
249 }
250 
convertPositionToLatestTime(int64_t framePosition) const251 int64_t IsochronousClockModel::convertPositionToLatestTime(int64_t framePosition) const {
252     return convertPositionToTime(framePosition) + getLateTimeOffsetNanos();
253 }
254 
convertLatestTimeToPosition(int64_t nanoTime) const255 int64_t IsochronousClockModel::convertLatestTimeToPosition(int64_t nanoTime) const {
256     return convertTimeToPosition(nanoTime - getLateTimeOffsetNanos());
257 }
258 
dump() const259 void IsochronousClockModel::dump() const {
260     ALOGD("mMarkerFramePosition = %" PRIu64, mMarkerFramePosition);
261     ALOGD("mMarkerNanoTime      = %" PRIu64, mMarkerNanoTime);
262     ALOGD("mSampleRate          = %6d", mSampleRate);
263     ALOGD("mFramesPerBurst      = %6d", mFramesPerBurst);
264     ALOGD("mMaxMeasuredLatenessNanos = %6d", mMaxMeasuredLatenessNanos);
265     ALOGD("mState               = %6d", mState);
266 }
267 
dumpHistogram() const268 void IsochronousClockModel::dumpHistogram() const {
269     if (!mHistogramMicros) return;
270     std::istringstream istr(mHistogramMicros->dump());
271     std::string line;
272     while (std::getline(istr, line)) {
273         ALOGD("lateness, %s", line.c_str());
274     }
275 }
276