• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <math.h>
18 
19 #include <cstdint>
20 
21 #include "RenderScriptToolkit.h"
22 #include "TaskProcessor.h"
23 #include "Utils.h"
24 
25 namespace android {
26 namespace renderscript {
27 
28 #define LOG_TAG "renderscript.toolkit.Blur"
29 
30 /**
31  * Blurs an image or a section of an image.
32  *
33  * Our algorithm does two passes: a vertical blur followed by an horizontal blur.
34  */
35 class BlurTask : public Task {
36     // The image we're blurring.
37     const uchar* mIn;
38     // Where we store the blurred image.
39     uchar* outArray;
40     // The size of the kernel radius is limited to 25 in ScriptIntrinsicBlur.java.
41     // So, the max kernel size is 51 (= 2 * 25 + 1).
42     // Considering SSSE3 case, which requires the size is multiple of 4,
43     // at least 52 words are necessary. Values outside of the kernel should be 0.
44     float mFp[104];
45     uint16_t mIp[104];
46 
47     // Working area to store the result of the vertical blur, to be used by the horizontal pass.
48     // There's one area per thread. Since the needed working area may be too large to put on the
49     // stack, we are allocating it from the heap. To avoid paying the allocation cost for each
50     // tile, we cache the scratch area here.
51     std::vector<void*> mScratch;       // Pointers to the scratch areas, one per thread.
52     std::vector<size_t> mScratchSize;  // The size in bytes of the scratch areas, one per thread.
53 
54     // The radius of the blur, in floating point and integer format.
55     float mRadius;
56     int mIradius;
57 
58     void kernelU4(void* outPtr, uint32_t xstart, uint32_t xend, uint32_t currentY,
59                   uint32_t threadIndex);
60     void kernelU1(void* outPtr, uint32_t xstart, uint32_t xend, uint32_t currentY);
61     void ComputeGaussianWeights();
62 
63     // Process a 2D tile of the overall work. threadIndex identifies which thread does the work.
64     virtual void processData(int threadIndex, size_t startX, size_t startY, size_t endX,
65                              size_t endY) override;
66 
67    public:
BlurTask(const uint8_t * in,uint8_t * out,size_t sizeX,size_t sizeY,size_t vectorSize,uint32_t threadCount,float radius,const Restriction * restriction)68     BlurTask(const uint8_t* in, uint8_t* out, size_t sizeX, size_t sizeY, size_t vectorSize,
69              uint32_t threadCount, float radius, const Restriction* restriction)
70         : Task{sizeX, sizeY, vectorSize, false, restriction},
71           mIn{in},
72           outArray{out},
73           mScratch{threadCount},
74           mScratchSize{threadCount},
75           mRadius{std::min(25.0f, radius)} {
76         ComputeGaussianWeights();
77     }
78 
~BlurTask()79     ~BlurTask() {
80         for (size_t i = 0; i < mScratch.size(); i++) {
81             if (mScratch[i]) {
82                 free(mScratch[i]);
83             }
84         }
85     }
86 };
87 
ComputeGaussianWeights()88 void BlurTask::ComputeGaussianWeights() {
89     memset(mFp, 0, sizeof(mFp));
90     memset(mIp, 0, sizeof(mIp));
91 
92     // Compute gaussian weights for the blur
93     // e is the euler's number
94     float e = 2.718281828459045f;
95     float pi = 3.1415926535897932f;
96     // g(x) = (1 / (sqrt(2 * pi) * sigma)) * e ^ (-x^2 / (2 * sigma^2))
97     // x is of the form [-radius .. 0 .. radius]
98     // and sigma varies with the radius.
99     // Based on some experimental radius values and sigmas,
100     // we approximately fit sigma = f(radius) as
101     // sigma = radius * 0.4  + 0.6
102     // The larger the radius gets, the more our gaussian blur
103     // will resemble a box blur since with large sigma
104     // the gaussian curve begins to lose its shape
105     float sigma = 0.4f * mRadius + 0.6f;
106 
107     // Now compute the coefficients. We will store some redundant values to save
108     // some math during the blur calculations precompute some values
109     float coeff1 = 1.0f / (sqrtf(2.0f * pi) * sigma);
110     float coeff2 = - 1.0f / (2.0f * sigma * sigma);
111 
112     float normalizeFactor = 0.0f;
113     float floatR = 0.0f;
114     int r;
115     mIradius = (float)ceil(mRadius) + 0.5f;
116     for (r = -mIradius; r <= mIradius; r ++) {
117         floatR = (float)r;
118         mFp[r + mIradius] = coeff1 * powf(e, floatR * floatR * coeff2);
119         normalizeFactor += mFp[r + mIradius];
120     }
121 
122     // Now we need to normalize the weights because all our coefficients need to add up to one
123     normalizeFactor = 1.0f / normalizeFactor;
124     for (r = -mIradius; r <= mIradius; r ++) {
125         mFp[r + mIradius] *= normalizeFactor;
126         mIp[r + mIradius] = (uint16_t)(mFp[r + mIradius] * 65536.0f + 0.5f);
127     }
128 }
129 
130 /**
131  * Vertical blur of a uchar4 line.
132  *
133  * @param sizeY Number of cells of the input array in the vertical direction.
134  * @param out Where to place the computed value.
135  * @param x Coordinate of the point we're blurring.
136  * @param y Coordinate of the point we're blurring.
137  * @param ptrIn Start of the input array.
138  * @param iStride The size in byte of a row of the input array.
139  * @param gPtr The gaussian coefficients.
140  * @param iradius The radius of the blur.
141  */
OneVU4(uint32_t sizeY,float4 * out,int32_t x,int32_t y,const uchar * ptrIn,int iStride,const float * gPtr,int iradius)142 static void OneVU4(uint32_t sizeY, float4* out, int32_t x, int32_t y, const uchar* ptrIn,
143                    int iStride, const float* gPtr, int iradius) {
144     const uchar *pi = ptrIn + x*4;
145 
146     float4 blurredPixel = 0;
147     for (int r = -iradius; r <= iradius; r ++) {
148         int validY = std::max((y + r), 0);
149         validY = std::min(validY, (int)(sizeY - 1));
150         const uchar4 *pvy = (const uchar4 *)&pi[validY * iStride];
151         float4 pf = convert<float4>(pvy[0]);
152         blurredPixel += pf * gPtr[0];
153         gPtr++;
154     }
155 
156     out[0] = blurredPixel;
157 }
158 
159 /**
160  * Vertical blur of a uchar1 line.
161  *
162  * @param sizeY Number of cells of the input array in the vertical direction.
163  * @param out Where to place the computed value.
164  * @param x Coordinate of the point we're blurring.
165  * @param y Coordinate of the point we're blurring.
166  * @param ptrIn Start of the input array.
167  * @param iStride The size in byte of a row of the input array.
168  * @param gPtr The gaussian coefficients.
169  * @param iradius The radius of the blur.
170  */
OneVU1(uint32_t sizeY,float * out,int32_t x,int32_t y,const uchar * ptrIn,int iStride,const float * gPtr,int iradius)171 static void OneVU1(uint32_t sizeY, float *out, int32_t x, int32_t y,
172                    const uchar *ptrIn, int iStride, const float* gPtr, int iradius) {
173 
174     const uchar *pi = ptrIn + x;
175 
176     float blurredPixel = 0;
177     for (int r = -iradius; r <= iradius; r ++) {
178         int validY = std::max((y + r), 0);
179         validY = std::min(validY, (int)(sizeY - 1));
180         float pf = (float)pi[validY * iStride];
181         blurredPixel += pf * gPtr[0];
182         gPtr++;
183     }
184 
185     out[0] = blurredPixel;
186 }
187 
188 
189 extern "C" void rsdIntrinsicBlurU1_K(uchar *out, uchar const *in, size_t w, size_t h,
190                  size_t p, size_t x, size_t y, size_t count, size_t r, uint16_t const *tab);
191 extern "C" void rsdIntrinsicBlurU4_K(uchar4 *out, uchar4 const *in, size_t w, size_t h,
192                  size_t p, size_t x, size_t y, size_t count, size_t r, uint16_t const *tab);
193 
194 #if defined(ARCH_X86_HAVE_SSSE3)
195 extern void rsdIntrinsicBlurVFU4_K(void *dst, const void *pin, int stride, const void *gptr,
196                                    int rct, int x1, int ct);
197 extern void rsdIntrinsicBlurHFU4_K(void *dst, const void *pin, const void *gptr, int rct, int x1,
198                                    int ct);
199 extern void rsdIntrinsicBlurHFU1_K(void *dst, const void *pin, const void *gptr, int rct, int x1,
200                                    int ct);
201 #endif
202 
203 /**
204  * Vertical blur of a line of RGBA, knowing that there's enough rows above and below us to avoid
205  * dealing with boundary conditions.
206  *
207  * @param out Where to store the results. This is the input to the horizontal blur.
208  * @param ptrIn The input data for this line.
209  * @param iStride The width of the input.
210  * @param gPtr The gaussian coefficients.
211  * @param ct The diameter of the blur.
212  * @param len How many cells to blur.
213  * @param usesSimd Whether this processor supports SIMD.
214  */
OneVFU4(float4 * out,const uchar * ptrIn,int iStride,const float * gPtr,int ct,int x2,bool usesSimd)215 static void OneVFU4(float4 *out, const uchar *ptrIn, int iStride, const float* gPtr, int ct,
216                     int x2, bool usesSimd) {
217     int x1 = 0;
218 #if defined(ARCH_X86_HAVE_SSSE3)
219     if (usesSimd) {
220         int t = (x2 - x1);
221         t &= ~1;
222         if (t) {
223             rsdIntrinsicBlurVFU4_K(out, ptrIn, iStride, gPtr, ct, x1, x1 + t);
224         }
225         x1 += t;
226         out += t;
227         ptrIn += t << 2;
228     }
229 #else
230     (void) usesSimd; // Avoid unused parameter warning.
231 #endif
232     while(x2 > x1) {
233         const uchar *pi = ptrIn;
234         float4 blurredPixel = 0;
235         const float* gp = gPtr;
236 
237         for (int r = 0; r < ct; r++) {
238             float4 pf = convert<float4>(((const uchar4 *)pi)[0]);
239             blurredPixel += pf * gp[0];
240             pi += iStride;
241             gp++;
242         }
243         out->xyzw = blurredPixel;
244         x1++;
245         out++;
246         ptrIn+=4;
247     }
248 }
249 
250 /**
251  * Vertical blur of a line of U_8, knowing that there's enough rows above and below us to avoid
252  * dealing with boundary conditions.
253  *
254  * @param out Where to store the results. This is the input to the horizontal blur.
255  * @param ptrIn The input data for this line.
256  * @param iStride The width of the input.
257  * @param gPtr The gaussian coefficients.
258  * @param ct The diameter of the blur.
259  * @param len How many cells to blur.
260  * @param usesSimd Whether this processor supports SIMD.
261  */
OneVFU1(float * out,const uchar * ptrIn,int iStride,const float * gPtr,int ct,int len,bool usesSimd)262 static void OneVFU1(float* out, const uchar* ptrIn, int iStride, const float* gPtr, int ct, int len,
263                     bool usesSimd) {
264     int x1 = 0;
265 
266     while((len > x1) && (((uintptr_t)ptrIn) & 0x3)) {
267         const uchar *pi = ptrIn;
268         float blurredPixel = 0;
269         const float* gp = gPtr;
270 
271         for (int r = 0; r < ct; r++) {
272             float pf = (float)pi[0];
273             blurredPixel += pf * gp[0];
274             pi += iStride;
275             gp++;
276         }
277         out[0] = blurredPixel;
278         x1++;
279         out++;
280         ptrIn++;
281         len--;
282     }
283 #if defined(ARCH_X86_HAVE_SSSE3)
284     if (usesSimd && (len > x1)) {
285         int t = (len - x1) >> 2;
286         t &= ~1;
287         if (t) {
288             rsdIntrinsicBlurVFU4_K(out, ptrIn, iStride, gPtr, ct, 0, t );
289             len -= t << 2;
290             ptrIn += t << 2;
291             out += t << 2;
292         }
293     }
294 #else
295     (void) usesSimd; // Avoid unused parameter warning.
296 #endif
297     while(len > 0) {
298         const uchar *pi = ptrIn;
299         float blurredPixel = 0;
300         const float* gp = gPtr;
301 
302         for (int r = 0; r < ct; r++) {
303             float pf = (float)pi[0];
304             blurredPixel += pf * gp[0];
305             pi += iStride;
306             gp++;
307         }
308         out[0] = blurredPixel;
309         len--;
310         out++;
311         ptrIn++;
312     }
313 }
314 
315 /**
316  * Horizontal blur of a uchar4 line.
317  *
318  * @param sizeX Number of cells of the input array in the horizontal direction.
319  * @param out Where to place the computed value.
320  * @param x Coordinate of the point we're blurring.
321  * @param ptrIn The start of the input row from which we're indexing x.
322  * @param gPtr The gaussian coefficients.
323  * @param iradius The radius of the blur.
324  */
OneHU4(uint32_t sizeX,uchar4 * out,int32_t x,const float4 * ptrIn,const float * gPtr,int iradius)325 static void OneHU4(uint32_t sizeX, uchar4* out, int32_t x, const float4* ptrIn, const float* gPtr,
326                    int iradius) {
327     float4 blurredPixel = 0;
328     for (int r = -iradius; r <= iradius; r ++) {
329         int validX = std::max((x + r), 0);
330         validX = std::min(validX, (int)(sizeX - 1));
331         float4 pf = ptrIn[validX];
332         blurredPixel += pf * gPtr[0];
333         gPtr++;
334     }
335 
336     out->xyzw = convert<uchar4>(blurredPixel);
337 }
338 
339 /**
340  * Horizontal blur of a uchar line.
341  *
342  * @param sizeX Number of cells of the input array in the horizontal direction.
343  * @param out Where to place the computed value.
344  * @param x Coordinate of the point we're blurring.
345  * @param ptrIn The start of the input row from which we're indexing x.
346  * @param gPtr The gaussian coefficients.
347  * @param iradius The radius of the blur.
348  */
OneHU1(uint32_t sizeX,uchar * out,int32_t x,const float * ptrIn,const float * gPtr,int iradius)349 static void OneHU1(uint32_t sizeX, uchar* out, int32_t x, const float* ptrIn, const float* gPtr,
350                    int iradius) {
351     float blurredPixel = 0;
352     for (int r = -iradius; r <= iradius; r ++) {
353         int validX = std::max((x + r), 0);
354         validX = std::min(validX, (int)(sizeX - 1));
355         float pf = ptrIn[validX];
356         blurredPixel += pf * gPtr[0];
357         gPtr++;
358     }
359 
360     out[0] = (uchar)blurredPixel;
361 }
362 
363 /**
364  * Full blur of a line of RGBA data.
365  *
366  * @param outPtr Where to store the results
367  * @param xstart The index of the section we're starting to blur.
368  * @param xend  The end index of the section.
369  * @param currentY The index of the line we're blurring.
370  * @param usesSimd Whether this processor supports SIMD.
371  */
kernelU4(void * outPtr,uint32_t xstart,uint32_t xend,uint32_t currentY,uint32_t threadIndex)372 void BlurTask::kernelU4(void *outPtr, uint32_t xstart, uint32_t xend, uint32_t currentY,
373                         uint32_t threadIndex) {
374     float4 stackbuf[2048];
375     float4 *buf = &stackbuf[0];
376     const uint32_t stride = mSizeX * mVectorSize;
377 
378     uchar4 *out = (uchar4 *)outPtr;
379     uint32_t x1 = xstart;
380     uint32_t x2 = xend;
381 
382 #if defined(ARCH_ARM_USE_INTRINSICS)
383     if (mUsesSimd && mSizeX >= 4) {
384       rsdIntrinsicBlurU4_K(out, (uchar4 const *)(mIn + stride * currentY),
385                  mSizeX, mSizeY,
386                  stride, x1, currentY, x2 - x1, mIradius, mIp + mIradius);
387         return;
388     }
389 #endif
390 
391     if (mSizeX > 2048) {
392         if ((mSizeX > mScratchSize[threadIndex]) || !mScratch[threadIndex]) {
393             // Pad the side of the allocation by one unit to allow alignment later
394             mScratch[threadIndex] = realloc(mScratch[threadIndex], (mSizeX + 1) * 16);
395             mScratchSize[threadIndex] = mSizeX;
396         }
397         // realloc only aligns to 8 bytes so we manually align to 16.
398         buf = (float4 *) ((((intptr_t)mScratch[threadIndex]) + 15) & ~0xf);
399     }
400     float4 *fout = (float4 *)buf;
401     int y = currentY;
402     if ((y > mIradius) && (y < ((int)mSizeY - mIradius))) {
403         const uchar *pi = mIn + (y - mIradius) * stride;
404         OneVFU4(fout, pi, stride, mFp, mIradius * 2 + 1, mSizeX, mUsesSimd);
405     } else {
406         x1 = 0;
407         while(mSizeX > x1) {
408             OneVU4(mSizeY, fout, x1, y, mIn, stride, mFp, mIradius);
409             fout++;
410             x1++;
411         }
412     }
413 
414     x1 = xstart;
415     while ((x1 < (uint32_t)mIradius) && (x1 < x2)) {
416         OneHU4(mSizeX, out, x1, buf, mFp, mIradius);
417         out++;
418         x1++;
419     }
420 #if defined(ARCH_X86_HAVE_SSSE3)
421     if (mUsesSimd) {
422         if ((x1 + mIradius) < x2) {
423             rsdIntrinsicBlurHFU4_K(out, buf - mIradius, mFp,
424                                    mIradius * 2 + 1, x1, x2 - mIradius);
425             out += (x2 - mIradius) - x1;
426             x1 = x2 - mIradius;
427         }
428     }
429 #endif
430     while(x2 > x1) {
431         OneHU4(mSizeX, out, x1, buf, mFp, mIradius);
432         out++;
433         x1++;
434     }
435 }
436 
437 /**
438  * Full blur of a line of U_8 data.
439  *
440  * @param outPtr Where to store the results
441  * @param xstart The index of the section we're starting to blur.
442  * @param xend  The end index of the section.
443  * @param currentY The index of the line we're blurring.
444  */
kernelU1(void * outPtr,uint32_t xstart,uint32_t xend,uint32_t currentY)445 void BlurTask::kernelU1(void *outPtr, uint32_t xstart, uint32_t xend, uint32_t currentY) {
446     float buf[4 * 2048];
447     const uint32_t stride = mSizeX * mVectorSize;
448 
449     uchar *out = (uchar *)outPtr;
450     uint32_t x1 = xstart;
451     uint32_t x2 = xend;
452 
453 #if defined(ARCH_ARM_USE_INTRINSICS)
454     if (mUsesSimd && mSizeX >= 16) {
455         // The specialisation for r<=8 has an awkward prefill case, which is
456         // fiddly to resolve, where starting close to the right edge can cause
457         // a read beyond the end of input.  So avoid that case here.
458         if (mIradius > 8 || (mSizeX - std::max(0, (int32_t)x1 - 8)) >= 16) {
459             rsdIntrinsicBlurU1_K(out, mIn + stride * currentY, mSizeX, mSizeY,
460                      stride, x1, currentY, x2 - x1, mIradius, mIp + mIradius);
461             return;
462         }
463     }
464 #endif
465 
466     float *fout = (float *)buf;
467     int y = currentY;
468     if ((y > mIradius) && (y < ((int)mSizeY - mIradius -1))) {
469         const uchar *pi = mIn + (y - mIradius) * stride;
470         OneVFU1(fout, pi, stride, mFp, mIradius * 2 + 1, mSizeX, mUsesSimd);
471     } else {
472         x1 = 0;
473         while(mSizeX > x1) {
474             OneVU1(mSizeY, fout, x1, y, mIn, stride, mFp, mIradius);
475             fout++;
476             x1++;
477         }
478     }
479 
480     x1 = xstart;
481     while ((x1 < x2) &&
482            ((x1 < (uint32_t)mIradius) || (((uintptr_t)out) & 0x3))) {
483         OneHU1(mSizeX, out, x1, buf, mFp, mIradius);
484         out++;
485         x1++;
486     }
487 #if defined(ARCH_X86_HAVE_SSSE3)
488     if (mUsesSimd) {
489         if ((x1 + mIradius) < x2) {
490             uint32_t len = x2 - (x1 + mIradius);
491             len &= ~3;
492 
493             // rsdIntrinsicBlurHFU1_K() processes each four float values in |buf| at once, so it
494             // nees to ensure four more values can be accessed in order to avoid accessing
495             // uninitialized buffer.
496             if (len > 4) {
497                 len -= 4;
498                 rsdIntrinsicBlurHFU1_K(out, ((float *)buf) - mIradius, mFp,
499                                        mIradius * 2 + 1, x1, x1 + len);
500                 out += len;
501                 x1 += len;
502             }
503         }
504     }
505 #endif
506     while(x2 > x1) {
507         OneHU1(mSizeX, out, x1, buf, mFp, mIradius);
508         out++;
509         x1++;
510     }
511 }
512 
processData(int threadIndex,size_t startX,size_t startY,size_t endX,size_t endY)513 void BlurTask::processData(int threadIndex, size_t startX, size_t startY, size_t endX,
514                            size_t endY) {
515     for (size_t y = startY; y < endY; y++) {
516         void* outPtr = outArray + (mSizeX * y + startX) * mVectorSize;
517         if (mVectorSize == 4) {
518             kernelU4(outPtr, startX, endX, y, threadIndex);
519         } else {
520             kernelU1(outPtr, startX, endX, y);
521         }
522     }
523 }
524 
blur(const uint8_t * in,uint8_t * out,size_t sizeX,size_t sizeY,size_t vectorSize,int radius,const Restriction * restriction)525 void RenderScriptToolkit::blur(const uint8_t* in, uint8_t* out, size_t sizeX, size_t sizeY,
526                                size_t vectorSize, int radius, const Restriction* restriction) {
527 #ifdef ANDROID_RENDERSCRIPT_TOOLKIT_VALIDATE
528     if (!validRestriction(LOG_TAG, sizeX, sizeY, restriction)) {
529         return;
530     }
531     if (radius <= 0 || radius > 25) {
532         ALOGE("The radius should be between 1 and 25. %d provided.", radius);
533     }
534     if (vectorSize != 1 && vectorSize != 4) {
535         ALOGE("The vectorSize should be 1 or 4. %zu provided.", vectorSize);
536     }
537 #endif
538 
539     BlurTask task(in, out, sizeX, sizeY, vectorSize, processor->getNumberOfThreads(), radius,
540                   restriction);
541     processor->doTask(&task);
542 }
543 
544 }  // namespace renderscript
545 }  // namespace android
546