• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2018 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "Operations"
18 
19 #include "Elementwise.h"
20 
21 #include <algorithm>
22 #include <cmath>
23 #include <functional>
24 #include <limits>
25 
26 #include "OperationResolver.h"
27 #include "OperationsExecutionUtils.h"
28 #include "Tracing.h"
29 
30 namespace android {
31 namespace nn {
32 namespace elementwise {
33 namespace {
34 
35 template <typename IntermediateType, typename T>
compute(const std::function<IntermediateType (IntermediateType)> & func,const T * input,const Shape & shape,T * output)36 inline bool compute(const std::function<IntermediateType(IntermediateType)>& func, const T* input,
37                     const Shape& shape, T* output) {
38     const auto size = getNumberOfElements(shape);
39     for (uint32_t i = 0; i < size; ++i) {
40         output[i] = static_cast<T>(func(static_cast<IntermediateType>(input[i])));
41     }
42     return true;
43 }
44 
45 template <typename IntermediateType, typename T>
compute(IntermediateType func (IntermediateType),const T * input,const Shape & shape,T * output)46 inline bool compute(IntermediateType func(IntermediateType), const T* input, const Shape& shape,
47                     T* output) {
48     return compute(std::function<IntermediateType(IntermediateType)>(func), input, shape, output);
49 }
50 
51 template <typename IntermediateType, typename T>
makeQuantized(const std::function<IntermediateType (IntermediateType)> & func,float inScale,T inZeroPoint,float outScale,T outZeroPoint)52 auto makeQuantized(const std::function<IntermediateType(IntermediateType)>& func, float inScale,
53                    T inZeroPoint, float outScale, T outZeroPoint) {
54     return [func, inScale, inZeroPoint, outScale, outZeroPoint](T val) -> T {
55         // For dequantization formula, see Dequantize.cpp.
56         using WideT = int32_t;
57         static_assert(sizeof(T) < sizeof(WideT));
58         IntermediateType dequantizedVal =
59                 (static_cast<WideT>(val) - static_cast<WideT>(inZeroPoint)) * inScale;
60 
61         IntermediateType res = func(dequantizedVal);
62 
63         // For quantization formula, see Quantize.cpp.
64         T quantizedRes = static_cast<T>(std::max<float>(
65                 static_cast<IntermediateType>(std::numeric_limits<T>::min()),
66                 std::min<float>(static_cast<IntermediateType>(std::numeric_limits<T>::max()),
67                                 outZeroPoint + std::round(res / outScale))));
68 
69         return quantizedRes;
70     };
71 }
72 
execute(IOperationExecutionContext * context,float func (float))73 bool execute(IOperationExecutionContext* context, float func(float)) {
74     switch (context->getInputType(kInputTensor)) {
75         case OperandType::TENSOR_FLOAT16:
76             return compute<float, _Float16>(func, context->getInputBuffer<_Float16>(kInputTensor),
77                                             context->getInputShape(kInputTensor),
78                                             context->getOutputBuffer<_Float16>(kOutputTensor));
79         case OperandType::TENSOR_FLOAT32:
80             return compute<float, float>(func, context->getInputBuffer<float>(kInputTensor),
81                                          context->getInputShape(kInputTensor),
82                                          context->getOutputBuffer<float>(kOutputTensor));
83         default:
84             NN_RET_CHECK_FAIL() << "Unsupported tensor type for elementwise operation";
85     }
86 }
87 
88 }  // namespace
89 
executeAbs(IOperationExecutionContext * context)90 bool executeAbs(IOperationExecutionContext* context) {
91     switch (context->getInputType(kInputTensor)) {
92         case OperandType::TENSOR_FLOAT16:
93             return compute<float, _Float16>(std::abs,
94                                             context->getInputBuffer<_Float16>(kInputTensor),
95                                             context->getInputShape(kInputTensor),
96                                             context->getOutputBuffer<_Float16>(kOutputTensor));
97         case OperandType::TENSOR_FLOAT32:
98             return compute<float, float>(std::abs, context->getInputBuffer<float>(kInputTensor),
99                                          context->getInputShape(kInputTensor),
100                                          context->getOutputBuffer<float>(kOutputTensor));
101         case OperandType::TENSOR_INT32:
102             return compute<int32_t, int32_t>(std::abs,
103                                              context->getInputBuffer<int32_t>(kInputTensor),
104                                              context->getInputShape(kInputTensor),
105                                              context->getOutputBuffer<int32_t>(kOutputTensor));
106         default:
107             NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation ABS";
108     }
109 }
110 
executeRsqrt(IOperationExecutionContext * context)111 bool executeRsqrt(IOperationExecutionContext* context) {
112     const std::function<float(float)> frsqrt = [](float x) { return 1.f / std::sqrt(x); };
113     const auto tensorType = context->getInputType(kInputTensor);
114     switch (tensorType) {
115         case OperandType::TENSOR_FLOAT16:
116             return compute<float, _Float16>(frsqrt, context->getInputBuffer<_Float16>(kInputTensor),
117                                             context->getInputShape(kInputTensor),
118                                             context->getOutputBuffer<_Float16>(kOutputTensor));
119         case OperandType::TENSOR_FLOAT32:
120             return compute<float, float>(frsqrt, context->getInputBuffer<float>(kInputTensor),
121                                          context->getInputShape(kInputTensor),
122                                          context->getOutputBuffer<float>(kOutputTensor));
123         case OperandType::TENSOR_QUANT8_ASYMM: {
124             const Shape inShape = context->getInputShape(kInputTensor);
125             const Shape outShape = context->getOutputShape(kOutputTensor);
126             return compute<uint8_t, uint8_t>(
127                     makeQuantized(frsqrt, inShape.scale, static_cast<uint8_t>(inShape.offset),
128                                   outShape.scale, static_cast<uint8_t>(outShape.offset)),
129                     context->getInputBuffer<uint8_t>(kInputTensor),
130                     context->getInputShape(kInputTensor),
131                     context->getOutputBuffer<uint8_t>(kOutputTensor));
132         }
133         case OperandType::TENSOR_QUANT8_ASYMM_SIGNED: {
134             const Shape inShape = context->getInputShape(kInputTensor);
135             const Shape outShape = context->getOutputShape(kOutputTensor);
136             return compute<int8_t, int8_t>(
137                     makeQuantized(frsqrt, inShape.scale, static_cast<int8_t>(inShape.offset),
138                                   outShape.scale, static_cast<int8_t>(outShape.offset)),
139                     context->getInputBuffer<int8_t>(kInputTensor),
140                     context->getInputShape(kInputTensor),
141                     context->getOutputBuffer<int8_t>(kOutputTensor));
142         }
143         default:
144             NN_RET_CHECK_FAIL() << "Unsupported tensor type " << tensorType
145                                 << " for operation RSQRT";
146     }
147 }
148 
prepare(IOperationExecutionContext * context)149 bool prepare(IOperationExecutionContext* context) {
150     Shape input = context->getInputShape(kInputTensor);
151     Shape output = context->getOutputShape(kOutputTensor);
152     NN_RET_CHECK(SetShape(input, &output));
153     return context->setOutputShape(kOutputTensor, output);
154 }
155 
prepareFloor(IOperationExecutionContext * context)156 bool prepareFloor(IOperationExecutionContext* context) {
157     Shape input = context->getInputShape(kInputTensor);
158     Shape output = context->getOutputShape(kOutputTensor);
159     NN_RET_CHECK_LE(getNumberOfDimensions(input), 4u);
160     NN_RET_CHECK(SetShape(input, &output));
161     return context->setOutputShape(kOutputTensor, output);
162 }
163 
executeExp(IOperationExecutionContext * context)164 bool executeExp(IOperationExecutionContext* context) {
165     return execute(context, std::exp);
166 }
167 
executeFloor(IOperationExecutionContext * context)168 bool executeFloor(IOperationExecutionContext* context) {
169     return execute(context, std::floor);
170 }
171 
executeLog(IOperationExecutionContext * context)172 bool executeLog(IOperationExecutionContext* context) {
173     return execute(context, std::log);
174 }
175 
executeSin(IOperationExecutionContext * context)176 bool executeSin(IOperationExecutionContext* context) {
177     return execute(context, std::sin);
178 }
179 
executeSqrt(IOperationExecutionContext * context)180 bool executeSqrt(IOperationExecutionContext* context) {
181     return execute(context, std::sqrt);
182 }
183 
184 }  // namespace elementwise
185 
186 NN_REGISTER_OPERATION_DEFAULT_VALIDATION(ABS, elementwise::prepare, elementwise::executeAbs);
187 NN_REGISTER_OPERATION_DEFAULT_VALIDATION(EXP, elementwise::prepare, elementwise::executeExp);
188 NN_REGISTER_OPERATION_DEFAULT_VALIDATION(FLOOR, elementwise::prepareFloor,
189                                          elementwise::executeFloor);
190 NN_REGISTER_OPERATION_DEFAULT_VALIDATION(LOG, elementwise::prepare, elementwise::executeLog);
191 NN_REGISTER_OPERATION_DEFAULT_VALIDATION(RSQRT, elementwise::prepare, elementwise::executeRsqrt);
192 NN_REGISTER_OPERATION_DEFAULT_VALIDATION(SIN, elementwise::prepare, elementwise::executeSin);
193 NN_REGISTER_OPERATION_DEFAULT_VALIDATION(SQRT, elementwise::prepare, elementwise::executeSqrt);
194 
195 }  // namespace nn
196 }  // namespace android
197