• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2018 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "Operations"
18 
19 #include "LogSoftmax.h"
20 
21 #include <algorithm>
22 #include <cmath>
23 #include <vector>
24 
25 #include "OperationResolver.h"
26 #include "OperationsExecutionUtils.h"
27 #include "Tracing.h"
28 
29 namespace android {
30 namespace nn {
31 namespace log_softmax {
32 
33 template <typename T>
compute(const T * input,const Shape & shape,T beta,uint32_t axis,T * output)34 inline bool compute(const T* input, const Shape& shape, T beta, uint32_t axis, T* output) {
35     const uint32_t outerSize = getNumberOfElements(shape, 0, axis);
36     const uint32_t axisSize = getSizeOfDimension(shape, axis);
37     const uint32_t innerSize = getNumberOfElements(shape, axis + 1, getNumberOfDimensions(shape));
38     for (uint32_t outer = 0; outer < outerSize; ++outer) {
39         for (uint32_t inner = 0; inner < innerSize; ++inner) {
40             // We subtract the maximum value from each element to ensure
41             // numerical stability, taking advantage of the following equality:
42             // exp(x[i])/sum(exp(x[i])) == exp(x[i]+C)/sum(exp(x[i]+C))
43             T maxValue = input[outer * axisSize * innerSize + inner];
44             for (uint32_t i = 1; i < axisSize; ++i) {
45                 maxValue = std::max(maxValue, input[(outer * axisSize + i) * innerSize + inner]);
46             }
47 
48             T sum = 0;
49             for (uint32_t i = 0; i < axisSize; ++i) {
50                 sum += std::exp(static_cast<double>(
51                         (input[(outer * axisSize + i) * innerSize + inner] - maxValue) * beta));
52             }
53 
54             const T logSum = std::log(static_cast<double>(sum));
55             for (uint32_t i = 0; i < axisSize; ++i) {
56                 output[(outer * axisSize + i) * innerSize + inner] =
57                         (input[(outer * axisSize + i) * innerSize + inner] - maxValue) * beta -
58                         logSum;
59             }
60         }
61     }
62     return true;
63 }
64 
prepare(IOperationExecutionContext * context)65 bool prepare(IOperationExecutionContext* context) {
66     return context->setOutputShape(kOutputTensor, context->getInputShape(kInputTensor));
67 }
68 
execute(IOperationExecutionContext * context)69 bool execute(IOperationExecutionContext* context) {
70     int32_t axis = context->getInputValue<int32_t>(kInputAxis);
71     NN_RET_CHECK(handleNegativeAxis(context->getInputShape(kInputTensor), &axis));
72     switch (context->getInputType(kInputTensor)) {
73         case OperandType::TENSOR_FLOAT16:
74             return compute(context->getInputBuffer<_Float16>(kInputTensor),
75                            context->getInputShape(kInputTensor),
76                            context->getInputValue<_Float16>(kInputBeta), axis,
77                            context->getOutputBuffer<_Float16>(kOutputTensor));
78         case OperandType::TENSOR_FLOAT32:
79             return compute(context->getInputBuffer<float>(kInputTensor),
80                            context->getInputShape(kInputTensor),
81                            context->getInputValue<float>(kInputBeta), axis,
82                            context->getOutputBuffer<float>(kOutputTensor));
83         default:
84             NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
85     }
86 }
87 
88 }  // namespace log_softmax
89 
90 NN_REGISTER_OPERATION_DEFAULT_VALIDATION(LOG_SOFTMAX, log_softmax::prepare, log_softmax::execute);
91 
92 }  // namespace nn
93 }  // namespace android
94