1 // Copyright 2021, The Android Open Source Project
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 //! Implements utility functions and types for diced and the dice HAL.
16
17 use android_hardware_security_dice::aidl::android::hardware::security::dice::{
18 Bcc::Bcc, BccHandover::BccHandover, InputValues::InputValues as BinderInputValues,
19 Mode::Mode as BinderMode,
20 };
21 use anyhow::{Context, Result};
22 use dice::ContextImpl;
23 use diced_open_dice_cbor as dice;
24 use keystore2_crypto::ZVec;
25 use std::convert::TryInto;
26
27 /// This new type wraps a reference to BinderInputValues and implements the open dice
28 /// InputValues trait.
29 #[derive(Debug)]
30 pub struct InputValues<'a>(&'a BinderInputValues);
31
32 impl<'a> From<&'a BinderInputValues> for InputValues<'a> {
from(input_values: &'a BinderInputValues) -> InputValues<'a>33 fn from(input_values: &'a BinderInputValues) -> InputValues<'a> {
34 Self(input_values)
35 }
36 }
37
38 impl From<&InputValues<'_>> for BinderInputValues {
from(input_values: &InputValues) -> BinderInputValues39 fn from(input_values: &InputValues) -> BinderInputValues {
40 input_values.0.clone()
41 }
42 }
43 impl From<InputValues<'_>> for BinderInputValues {
from(input_values: InputValues) -> BinderInputValues44 fn from(input_values: InputValues) -> BinderInputValues {
45 input_values.0.clone()
46 }
47 }
48
49 impl dice::InputValues for InputValues<'_> {
code_hash(&self) -> &[u8; dice::HASH_SIZE]50 fn code_hash(&self) -> &[u8; dice::HASH_SIZE] {
51 &self.0.codeHash
52 }
53
config(&self) -> dice::Config54 fn config(&self) -> dice::Config {
55 dice::Config::Descriptor(self.0.config.desc.as_slice())
56 }
57
authority_hash(&self) -> &[u8; dice::HASH_SIZE]58 fn authority_hash(&self) -> &[u8; dice::HASH_SIZE] {
59 &self.0.authorityHash
60 }
61
authority_descriptor(&self) -> Option<&[u8]>62 fn authority_descriptor(&self) -> Option<&[u8]> {
63 self.0.authorityDescriptor.as_deref()
64 }
65
mode(&self) -> dice::Mode66 fn mode(&self) -> dice::Mode {
67 match self.0.mode {
68 BinderMode::NOT_INITIALIZED => dice::Mode::NotConfigured,
69 BinderMode::NORMAL => dice::Mode::Normal,
70 BinderMode::DEBUG => dice::Mode::Debug,
71 BinderMode::RECOVERY => dice::Mode::Recovery,
72 _ => dice::Mode::NotConfigured,
73 }
74 }
75
hidden(&self) -> &[u8; dice::HIDDEN_SIZE]76 fn hidden(&self) -> &[u8; dice::HIDDEN_SIZE] {
77 // If `self` was created using try_from the length was checked and this cannot panic.
78 &self.0.hidden
79 }
80 }
81
82 /// Initializes an aidl defined BccHandover object with the arguments `cdi_attest`, `cdi_seal`,
83 /// and `bcc`.
make_bcc_handover( cdi_attest: &[u8; dice::CDI_SIZE], cdi_seal: &[u8; dice::CDI_SIZE], bcc: &[u8], ) -> Result<BccHandover>84 pub fn make_bcc_handover(
85 cdi_attest: &[u8; dice::CDI_SIZE],
86 cdi_seal: &[u8; dice::CDI_SIZE],
87 bcc: &[u8],
88 ) -> Result<BccHandover> {
89 Ok(BccHandover { cdiAttest: *cdi_attest, cdiSeal: *cdi_seal, bcc: Bcc { data: bcc.to_vec() } })
90 }
91
92 /// ResidentArtifacts stores a set of dice artifacts comprising CDI_ATTEST, CDI_SEAL,
93 /// and the BCC formatted attestation certificate chain. The sensitive secrets are
94 /// stored in zeroing vectors, and it implements functionality to perform DICE
95 /// derivation steps using libopen-dice-cbor.
96 pub struct ResidentArtifacts {
97 cdi_attest: ZVec,
98 cdi_seal: ZVec,
99 bcc: Vec<u8>,
100 }
101
102 impl ResidentArtifacts {
103 /// Create a ResidentArtifacts object. The parameters ensure that the stored secrets
104 /// can only have the appropriate size, so that subsequent casts to array references
105 /// cannot fail.
new( cdi_attest: &[u8; dice::CDI_SIZE], cdi_seal: &[u8; dice::CDI_SIZE], bcc: &[u8], ) -> Result<Self>106 pub fn new(
107 cdi_attest: &[u8; dice::CDI_SIZE],
108 cdi_seal: &[u8; dice::CDI_SIZE],
109 bcc: &[u8],
110 ) -> Result<Self> {
111 Ok(ResidentArtifacts {
112 cdi_attest: cdi_attest[..]
113 .try_into()
114 .context("In ResidentArtifacts::new: Trying to convert cdi_attest to ZVec.")?,
115 cdi_seal: cdi_seal[..]
116 .try_into()
117 .context("In ResidentArtifacts::new: Trying to convert cdi_seal to ZVec.")?,
118 bcc: bcc.to_vec(),
119 })
120 }
121
122 /// Creates a ResidentArtifacts object from another one implementing the DiceArtifacts
123 /// trait. Like `new` this function can only create artifacts of appropriate size
124 /// because DiceArtifacts returns array references of appropriate size.
new_from<T: DiceArtifacts + ?Sized>(artifacts: &T) -> Result<Self>125 pub fn new_from<T: DiceArtifacts + ?Sized>(artifacts: &T) -> Result<Self> {
126 Ok(ResidentArtifacts {
127 cdi_attest: artifacts.cdi_attest()[..].try_into()?,
128 cdi_seal: artifacts.cdi_seal()[..].try_into()?,
129 bcc: artifacts.bcc(),
130 })
131 }
132
133 /// Attempts to clone the artifacts. This operation is fallible due to the fallible
134 /// nature of ZVec.
try_clone(&self) -> Result<Self>135 pub fn try_clone(&self) -> Result<Self> {
136 Ok(ResidentArtifacts {
137 cdi_attest: self
138 .cdi_attest
139 .try_clone()
140 .context("In ResidentArtifacts::new: Trying to clone cdi_attest.")?,
141 cdi_seal: self
142 .cdi_seal
143 .try_clone()
144 .context("In ResidentArtifacts::new: Trying to clone cdi_seal.")?,
145 bcc: self.bcc.clone(),
146 })
147 }
148
149 /// Deconstruct the Artifacts into a tuple.
150 /// (CDI_ATTEST, CDI_SEAL, BCC)
into_tuple(self) -> (ZVec, ZVec, Vec<u8>)151 pub fn into_tuple(self) -> (ZVec, ZVec, Vec<u8>) {
152 let ResidentArtifacts { cdi_attest, cdi_seal, bcc } = self;
153 (cdi_attest, cdi_seal, bcc)
154 }
155
execute_step(self, input_values: &dyn dice::InputValues) -> Result<Self>156 fn execute_step(self, input_values: &dyn dice::InputValues) -> Result<Self> {
157 let ResidentArtifacts { cdi_attest, cdi_seal, bcc } = self;
158
159 let (cdi_attest, cdi_seal, bcc) = dice::OpenDiceCborContext::new()
160 .bcc_main_flow(
161 cdi_attest[..].try_into().with_context(|| {
162 format!("Trying to convert cdi_attest. (length: {})", cdi_attest.len())
163 })?,
164 cdi_seal[..].try_into().with_context(|| {
165 format!("Trying to convert cdi_seal. (length: {})", cdi_seal.len())
166 })?,
167 &bcc,
168 input_values,
169 )
170 .context("In ResidentArtifacts::execute_step:")?;
171 Ok(ResidentArtifacts { cdi_attest, cdi_seal, bcc })
172 }
173
174 /// Iterate through the iterator of dice input values performing one
175 /// BCC main flow step on each element.
execute_steps<'a, Iter>(self, input_values: Iter) -> Result<Self> where Iter: IntoIterator<Item = &'a dyn dice::InputValues>,176 pub fn execute_steps<'a, Iter>(self, input_values: Iter) -> Result<Self>
177 where
178 Iter: IntoIterator<Item = &'a dyn dice::InputValues>,
179 {
180 input_values
181 .into_iter()
182 .try_fold(self, |acc, input_values| acc.execute_step(input_values))
183 .context("In ResidentArtifacts::execute_step:")
184 }
185 }
186
187 /// An object that implements this trait provides the typical DICE artifacts.
188 /// CDI_ATTEST, CDI_SEAL, and a certificate chain up to the public key that
189 /// can be derived from CDI_ATTEST. Implementations should check the length of
190 /// the stored CDI_* secrets on creation so that any valid instance returns the
191 /// correct secrets in an infallible way.
192 pub trait DiceArtifacts {
193 /// Returns CDI_ATTEST.
cdi_attest(&self) -> &[u8; dice::CDI_SIZE]194 fn cdi_attest(&self) -> &[u8; dice::CDI_SIZE];
195 /// Returns CDI_SEAL.
cdi_seal(&self) -> &[u8; dice::CDI_SIZE]196 fn cdi_seal(&self) -> &[u8; dice::CDI_SIZE];
197 /// Returns the attestation certificate chain in BCC format.
bcc(&self) -> Vec<u8>198 fn bcc(&self) -> Vec<u8>;
199 }
200
201 /// Implement this trait to provide read and write access to a secure artifact
202 /// storage that can be used by the ResidentHal implementation.
203 pub trait UpdatableDiceArtifacts {
204 /// With artifacts provides access to the stored artifacts for the duration
205 /// of the function call by means of calling the callback.
with_artifacts<F, T>(&self, f: F) -> Result<T> where F: FnOnce(&dyn DiceArtifacts) -> Result<T>206 fn with_artifacts<F, T>(&self, f: F) -> Result<T>
207 where
208 F: FnOnce(&dyn DiceArtifacts) -> Result<T>;
209
210 /// Consumes the object and returns a an updated version of itself.
update(self, new_artifacts: &impl DiceArtifacts) -> Result<Self> where Self: Sized211 fn update(self, new_artifacts: &impl DiceArtifacts) -> Result<Self>
212 where
213 Self: Sized;
214 }
215
216 impl DiceArtifacts for ResidentArtifacts {
cdi_attest(&self) -> &[u8; dice::CDI_SIZE]217 fn cdi_attest(&self) -> &[u8; dice::CDI_SIZE] {
218 self.cdi_attest[..].try_into().unwrap()
219 }
cdi_seal(&self) -> &[u8; dice::CDI_SIZE]220 fn cdi_seal(&self) -> &[u8; dice::CDI_SIZE] {
221 self.cdi_seal[..].try_into().unwrap()
222 }
bcc(&self) -> Vec<u8>223 fn bcc(&self) -> Vec<u8> {
224 self.bcc.clone()
225 }
226 }
227
228 /// This submodule implements a limited set of CBOR generation functionality. Essentially,
229 /// a cbor header generator and some convenience functions for number and BSTR encoding.
230 pub mod cbor {
231 use anyhow::{anyhow, Context, Result};
232 use std::convert::TryInto;
233 use std::io::Write;
234
235 /// CBOR encodes a positive number.
encode_number(n: u64, buffer: &mut dyn Write) -> Result<()>236 pub fn encode_number(n: u64, buffer: &mut dyn Write) -> Result<()> {
237 encode_header(0, n, buffer)
238 }
239
240 /// CBOR encodes a binary string.
encode_bstr(bstr: &[u8], buffer: &mut dyn Write) -> Result<()>241 pub fn encode_bstr(bstr: &[u8], buffer: &mut dyn Write) -> Result<()> {
242 encode_header(
243 2,
244 bstr.len().try_into().context("In encode_bstr: Failed to convert usize to u64.")?,
245 buffer,
246 )
247 .context("In encode_bstr: While writing header.")?;
248 let written = buffer.write(bstr).context("In encode_bstr: While writing payload.")?;
249 if written != bstr.len() {
250 return Err(anyhow!("In encode_bstr: Buffer too small. ({}, {})", written, bstr.len()));
251 }
252 Ok(())
253 }
254
255 /// Formats a CBOR header. `t` is the type, and n is the header argument.
encode_header(t: u8, n: u64, buffer: &mut dyn Write) -> Result<()>256 pub fn encode_header(t: u8, n: u64, buffer: &mut dyn Write) -> Result<()> {
257 match n {
258 n if n < 24 => {
259 let written = buffer
260 .write(&u8::to_be_bytes(((t as u8) << 5) | (n as u8 & 0x1F)))
261 .with_context(|| {
262 format!("In encode_header: Failed to write header ({}, {})", t, n)
263 })?;
264 if written != 1 {
265 return Err(anyhow!("In encode_header: Buffer to small. ({}, {})", t, n));
266 }
267 }
268 n if n <= 0xFF => {
269 let written =
270 buffer.write(&u8::to_be_bytes(((t as u8) << 5) | (24u8 & 0x1F))).with_context(
271 || format!("In encode_header: Failed to write header ({}, {})", t, n),
272 )?;
273 if written != 1 {
274 return Err(anyhow!("In encode_header: Buffer to small. ({}, {})", t, n));
275 }
276 let written = buffer.write(&u8::to_be_bytes(n as u8)).with_context(|| {
277 format!("In encode_header: Failed to write size ({}, {})", t, n)
278 })?;
279 if written != 1 {
280 return Err(anyhow!(
281 "In encode_header while writing size: Buffer to small. ({}, {})",
282 t,
283 n
284 ));
285 }
286 }
287 n if n <= 0xFFFF => {
288 let written =
289 buffer.write(&u8::to_be_bytes(((t as u8) << 5) | (25u8 & 0x1F))).with_context(
290 || format!("In encode_header: Failed to write header ({}, {})", t, n),
291 )?;
292 if written != 1 {
293 return Err(anyhow!("In encode_header: Buffer to small. ({}, {})", t, n));
294 }
295 let written = buffer.write(&u16::to_be_bytes(n as u16)).with_context(|| {
296 format!("In encode_header: Failed to write size ({}, {})", t, n)
297 })?;
298 if written != 2 {
299 return Err(anyhow!(
300 "In encode_header while writing size: Buffer to small. ({}, {})",
301 t,
302 n
303 ));
304 }
305 }
306 n if n <= 0xFFFFFFFF => {
307 let written =
308 buffer.write(&u8::to_be_bytes(((t as u8) << 5) | (26u8 & 0x1F))).with_context(
309 || format!("In encode_header: Failed to write header ({}, {})", t, n),
310 )?;
311 if written != 1 {
312 return Err(anyhow!("In encode_header: Buffer to small. ({}, {})", t, n));
313 }
314 let written = buffer.write(&u32::to_be_bytes(n as u32)).with_context(|| {
315 format!("In encode_header: Failed to write size ({}, {})", t, n)
316 })?;
317 if written != 4 {
318 return Err(anyhow!(
319 "In encode_header while writing size: Buffer to small. ({}, {})",
320 t,
321 n
322 ));
323 }
324 }
325 n => {
326 let written =
327 buffer.write(&u8::to_be_bytes(((t as u8) << 5) | (27u8 & 0x1F))).with_context(
328 || format!("In encode_header: Failed to write header ({}, {})", t, n),
329 )?;
330 if written != 1 {
331 return Err(anyhow!("In encode_header: Buffer to small. ({}, {})", t, n));
332 }
333 let written = buffer.write(&u64::to_be_bytes(n as u64)).with_context(|| {
334 format!("In encode_header: Failed to write size ({}, {})", t, n)
335 })?;
336 if written != 8 {
337 return Err(anyhow!(
338 "In encode_header while writing size: Buffer to small. ({}, {})",
339 t,
340 n
341 ));
342 }
343 }
344 }
345 Ok(())
346 }
347
348 #[cfg(test)]
349 mod test {
350 use super::*;
351
encode_header_helper(t: u8, n: u64) -> Vec<u8>352 fn encode_header_helper(t: u8, n: u64) -> Vec<u8> {
353 let mut b: Vec<u8> = vec![];
354 encode_header(t, n, &mut b).unwrap();
355 b
356 }
357
358 #[test]
encode_header_test()359 fn encode_header_test() {
360 assert_eq!(&encode_header_helper(0, 0), &[0b000_00000]);
361 assert_eq!(&encode_header_helper(0, 23), &[0b000_10111]);
362 assert_eq!(&encode_header_helper(0, 24), &[0b000_11000, 24]);
363 assert_eq!(&encode_header_helper(0, 0xff), &[0b000_11000, 0xff]);
364 assert_eq!(&encode_header_helper(0, 0x100), &[0b000_11001, 0x01, 0x00]);
365 assert_eq!(&encode_header_helper(0, 0xffff), &[0b000_11001, 0xff, 0xff]);
366 assert_eq!(&encode_header_helper(0, 0x10000), &[0b000_11010, 0x00, 0x01, 0x00, 0x00]);
367 assert_eq!(
368 &encode_header_helper(0, 0xffffffff),
369 &[0b000_11010, 0xff, 0xff, 0xff, 0xff]
370 );
371 assert_eq!(
372 &encode_header_helper(0, 0x100000000),
373 &[0b000_11011, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00]
374 );
375 assert_eq!(
376 &encode_header_helper(0, 0xffffffffffffffff),
377 &[0b000_11011, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff]
378 );
379 }
380 }
381 }
382