• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2020, The Android Open Source Project
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 //! This crate implements the `IKeystoreOperation` AIDL interface, which represents
16 //! an ongoing key operation, as well as the operation database, which is mainly
17 //! required for tracking operations for the purpose of pruning.
18 //! This crate also implements an operation pruning strategy.
19 //!
20 //! Operations implement the API calls update, finish, and abort.
21 //! Additionally, an operation can be dropped and pruned. The former
22 //! happens if the client deletes a binder to the operation object.
23 //! An existing operation may get pruned when running out of operation
24 //! slots and a new operation takes precedence.
25 //!
26 //! ## Operation Lifecycle
27 //! An operation gets created when the client calls `IKeystoreSecurityLevel::create`.
28 //! It may receive zero or more update request. The lifecycle ends when:
29 //!  * `update` yields an error.
30 //!  * `finish` is called.
31 //!  * `abort` is called.
32 //!  * The operation gets dropped.
33 //!  * The operation gets pruned.
34 //! `Operation` has an `Outcome` member. While the outcome is `Outcome::Unknown`,
35 //! the operation is active and in a good state. Any of the above conditions may
36 //! change the outcome to one of the defined outcomes Success, Abort, Dropped,
37 //! Pruned, or ErrorCode. The latter is chosen in the case of an unexpected error, during
38 //! `update` or `finish`. `Success` is chosen iff `finish` completes without error.
39 //! Note that all operations get dropped eventually in the sense that they lose
40 //! their last reference and get destroyed. At that point, the fate of the operation
41 //! gets logged. However, an operation will transition to `Outcome::Dropped` iff
42 //! the operation was still active (`Outcome::Unknown`) at that time.
43 //!
44 //! ## Operation Dropping
45 //! To observe the dropping of an operation, we have to make sure that there
46 //! are no strong references to the IBinder representing this operation.
47 //! This would be simple enough if the operation object would need to be accessed
48 //! only by transactions. But to perform pruning, we have to retain a reference to the
49 //! original operation object.
50 //!
51 //! ## Operation Pruning
52 //! Pruning an operation happens during the creation of a new operation.
53 //! We have to iterate through the operation database to find a suitable
54 //! candidate. Then we abort and finalize this operation setting its outcome to
55 //! `Outcome::Pruned`. The corresponding KeyMint operation slot will have been freed
56 //! up at this point, but the `Operation` object lingers. When the client
57 //! attempts to use the operation again they will receive
58 //! ErrorCode::INVALID_OPERATION_HANDLE indicating that the operation no longer
59 //! exits. This should be the cue for the client to destroy its binder.
60 //! At that point the operation gets dropped.
61 //!
62 //! ## Architecture
63 //! The `IKeystoreOperation` trait is implemented by `KeystoreOperation`.
64 //! This acts as a proxy object holding a strong reference to actual operation
65 //! implementation `Operation`.
66 //!
67 //! ```
68 //! struct KeystoreOperation {
69 //!     operation: Mutex<Option<Arc<Operation>>>,
70 //! }
71 //! ```
72 //!
73 //! The `Mutex` serves two purposes. It provides interior mutability allowing
74 //! us to set the Option to None. We do this when the life cycle ends during
75 //! a call to `update`, `finish`, or `abort`. As a result most of the Operation
76 //! related resources are freed. The `KeystoreOperation` proxy object still
77 //! lingers until dropped by the client.
78 //! The second purpose is to protect operations against concurrent usage.
79 //! Failing to lock this mutex yields `ResponseCode::OPERATION_BUSY` and indicates
80 //! a programming error in the client.
81 //!
82 //! Note that the Mutex only protects the operation against concurrent client calls.
83 //! We still retain weak references to the operation in the operation database:
84 //!
85 //! ```
86 //! struct OperationDb {
87 //!     operations: Mutex<Vec<Weak<Operation>>>
88 //! }
89 //! ```
90 //!
91 //! This allows us to access the operations for the purpose of pruning.
92 //! We do this in three phases.
93 //!  1. We gather the pruning information. Besides non mutable information,
94 //!     we access `last_usage` which is protected by a mutex.
95 //!     We only lock this mutex for single statements at a time. During
96 //!     this phase we hold the operation db lock.
97 //!  2. We choose a pruning candidate by computing the pruning resistance
98 //!     of each operation. We do this entirely with information we now
99 //!     have on the stack without holding any locks.
100 //!     (See `OperationDb::prune` for more details on the pruning strategy.)
101 //!  3. During pruning we briefly lock the operation database again to get the
102 //!     the pruning candidate by index. We then attempt to abort the candidate.
103 //!     If the candidate was touched in the meantime or is currently fulfilling
104 //!     a request (i.e., the client calls update, finish, or abort),
105 //!     we go back to 1 and try again.
106 //!
107 //! So the outer Mutex in `KeystoreOperation::operation` only protects
108 //! operations against concurrent client calls but not against concurrent
109 //! pruning attempts. This is what the `Operation::outcome` mutex is used for.
110 //!
111 //! ```
112 //! struct Operation {
113 //!     ...
114 //!     outcome: Mutex<Outcome>,
115 //!     ...
116 //! }
117 //! ```
118 //!
119 //! Any request that can change the outcome, i.e., `update`, `finish`, `abort`,
120 //! `drop`, and `prune` has to take the outcome lock and check if the outcome
121 //! is still `Outcome::Unknown` before entering. `prune` is special in that
122 //! it will `try_lock`, because we don't want to be blocked on a potentially
123 //! long running request at another operation. If it fails to get the lock
124 //! the operation is either being touched, which changes its pruning resistance,
125 //! or it transitions to its end-of-life, which means we may get a free slot.
126 //! Either way, we have to revaluate the pruning scores.
127 
128 use crate::enforcements::AuthInfo;
129 use crate::error::{map_err_with, map_km_error, map_or_log_err, Error, ErrorCode, ResponseCode};
130 use crate::metrics_store::log_key_operation_event_stats;
131 use crate::utils::watchdog as wd;
132 use android_hardware_security_keymint::aidl::android::hardware::security::keymint::{
133     IKeyMintOperation::IKeyMintOperation, KeyParameter::KeyParameter, KeyPurpose::KeyPurpose,
134     SecurityLevel::SecurityLevel,
135 };
136 use android_hardware_security_keymint::binder::{BinderFeatures, Strong};
137 use android_system_keystore2::aidl::android::system::keystore2::{
138     IKeystoreOperation::BnKeystoreOperation, IKeystoreOperation::IKeystoreOperation,
139 };
140 use anyhow::{anyhow, Context, Result};
141 use std::{
142     collections::HashMap,
143     sync::{Arc, Mutex, MutexGuard, Weak},
144     time::Duration,
145     time::Instant,
146 };
147 
148 /// Operations have `Outcome::Unknown` as long as they are active. They transition
149 /// to one of the other variants exactly once. The distinction in outcome is mainly
150 /// for the statistic.
151 #[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd)]
152 pub enum Outcome {
153     /// Operations have `Outcome::Unknown` as long as they are active.
154     Unknown,
155     /// Operation is successful.
156     Success,
157     /// Operation is aborted.
158     Abort,
159     /// Operation is dropped.
160     Dropped,
161     /// Operation is pruned.
162     Pruned,
163     /// Operation is failed with the error code.
164     ErrorCode(ErrorCode),
165 }
166 
167 /// Operation bundles all of the operation related resources and tracks the operation's
168 /// outcome.
169 #[derive(Debug)]
170 pub struct Operation {
171     // The index of this operation in the OperationDb.
172     index: usize,
173     km_op: Strong<dyn IKeyMintOperation>,
174     last_usage: Mutex<Instant>,
175     outcome: Mutex<Outcome>,
176     owner: u32, // Uid of the operation's owner.
177     auth_info: Mutex<AuthInfo>,
178     forced: bool,
179     logging_info: LoggingInfo,
180 }
181 
182 /// Keeps track of the information required for logging operations.
183 #[derive(Debug)]
184 pub struct LoggingInfo {
185     sec_level: SecurityLevel,
186     purpose: KeyPurpose,
187     op_params: Vec<KeyParameter>,
188     key_upgraded: bool,
189 }
190 
191 impl LoggingInfo {
192     /// Constructor
new( sec_level: SecurityLevel, purpose: KeyPurpose, op_params: Vec<KeyParameter>, key_upgraded: bool, ) -> LoggingInfo193     pub fn new(
194         sec_level: SecurityLevel,
195         purpose: KeyPurpose,
196         op_params: Vec<KeyParameter>,
197         key_upgraded: bool,
198     ) -> LoggingInfo {
199         Self { sec_level, purpose, op_params, key_upgraded }
200     }
201 }
202 
203 struct PruningInfo {
204     last_usage: Instant,
205     owner: u32,
206     index: usize,
207     forced: bool,
208 }
209 
210 // We don't except more than 32KiB of data in `update`, `updateAad`, and `finish`.
211 const MAX_RECEIVE_DATA: usize = 0x8000;
212 
213 impl Operation {
214     /// Constructor
new( index: usize, km_op: binder::Strong<dyn IKeyMintOperation>, owner: u32, auth_info: AuthInfo, forced: bool, logging_info: LoggingInfo, ) -> Self215     pub fn new(
216         index: usize,
217         km_op: binder::Strong<dyn IKeyMintOperation>,
218         owner: u32,
219         auth_info: AuthInfo,
220         forced: bool,
221         logging_info: LoggingInfo,
222     ) -> Self {
223         Self {
224             index,
225             km_op,
226             last_usage: Mutex::new(Instant::now()),
227             outcome: Mutex::new(Outcome::Unknown),
228             owner,
229             auth_info: Mutex::new(auth_info),
230             forced,
231             logging_info,
232         }
233     }
234 
get_pruning_info(&self) -> Option<PruningInfo>235     fn get_pruning_info(&self) -> Option<PruningInfo> {
236         // An operation may be finalized.
237         if let Ok(guard) = self.outcome.try_lock() {
238             match *guard {
239                 Outcome::Unknown => {}
240                 // If the outcome is any other than unknown, it has been finalized,
241                 // and we can no longer consider it for pruning.
242                 _ => return None,
243             }
244         }
245         // Else: If we could not grab the lock, this means that the operation is currently
246         //       being used and it may be transitioning to finalized or it was simply updated.
247         //       In any case it is fair game to consider it for pruning. If the operation
248         //       transitioned to a final state, we will notice when we attempt to prune, and
249         //       a subsequent attempt to create a new operation will succeed.
250         Some(PruningInfo {
251             // Expect safety:
252             // `last_usage` is locked only for primitive single line statements.
253             // There is no chance to panic and poison the mutex.
254             last_usage: *self.last_usage.lock().expect("In get_pruning_info."),
255             owner: self.owner,
256             index: self.index,
257             forced: self.forced,
258         })
259     }
260 
prune(&self, last_usage: Instant) -> Result<(), Error>261     fn prune(&self, last_usage: Instant) -> Result<(), Error> {
262         let mut locked_outcome = match self.outcome.try_lock() {
263             Ok(guard) => match *guard {
264                 Outcome::Unknown => guard,
265                 _ => return Err(Error::Km(ErrorCode::INVALID_OPERATION_HANDLE)),
266             },
267             Err(_) => return Err(Error::Rc(ResponseCode::OPERATION_BUSY)),
268         };
269 
270         // In `OperationDb::prune`, which is our caller, we first gather the pruning
271         // information including the last usage. When we select a candidate
272         // we call `prune` on that candidate passing the last_usage
273         // that we gathered earlier. If the actual last usage
274         // has changed since than, it means the operation was busy in the
275         // meantime, which means that we have to reevaluate the pruning score.
276         //
277         // Expect safety:
278         // `last_usage` is locked only for primitive single line statements.
279         // There is no chance to panic and poison the mutex.
280         if *self.last_usage.lock().expect("In Operation::prune()") != last_usage {
281             return Err(Error::Rc(ResponseCode::OPERATION_BUSY));
282         }
283         *locked_outcome = Outcome::Pruned;
284 
285         let _wp = wd::watch_millis("In Operation::prune: calling abort()", 500);
286 
287         // We abort the operation. If there was an error we log it but ignore it.
288         if let Err(e) = map_km_error(self.km_op.abort()) {
289             log::error!("In prune: KeyMint::abort failed with {:?}.", e);
290         }
291 
292         Ok(())
293     }
294 
295     // This function takes a Result from a KeyMint call and inspects it for errors.
296     // If an error was found it updates the given `locked_outcome` accordingly.
297     // It forwards the Result unmodified.
298     // The precondition to this call must be *locked_outcome == Outcome::Unknown.
299     // Ideally the `locked_outcome` came from a successful call to `check_active`
300     // see below.
update_outcome<T>( &self, locked_outcome: &mut Outcome, err: Result<T, Error>, ) -> Result<T, Error>301     fn update_outcome<T>(
302         &self,
303         locked_outcome: &mut Outcome,
304         err: Result<T, Error>,
305     ) -> Result<T, Error> {
306         match &err {
307             Err(Error::Km(e)) => *locked_outcome = Outcome::ErrorCode(*e),
308             Err(_) => *locked_outcome = Outcome::ErrorCode(ErrorCode::UNKNOWN_ERROR),
309             Ok(_) => (),
310         }
311         err
312     }
313 
314     // This function grabs the outcome lock and checks the current outcome state.
315     // If the outcome is still `Outcome::Unknown`, this function returns
316     // the locked outcome for further updates. In any other case it returns
317     // ErrorCode::INVALID_OPERATION_HANDLE indicating that this operation has
318     // been finalized and is no longer active.
check_active(&self) -> Result<MutexGuard<Outcome>>319     fn check_active(&self) -> Result<MutexGuard<Outcome>> {
320         let guard = self.outcome.lock().expect("In check_active.");
321         match *guard {
322             Outcome::Unknown => Ok(guard),
323             _ => Err(Error::Km(ErrorCode::INVALID_OPERATION_HANDLE)).context(format!(
324                 "In check_active: Call on finalized operation with outcome: {:?}.",
325                 *guard
326             )),
327         }
328     }
329 
330     // This function checks the amount of input data sent to us. We reject any buffer
331     // exceeding MAX_RECEIVE_DATA bytes as input to `update`, `update_aad`, and `finish`
332     // in order to force clients into using reasonable limits.
check_input_length(data: &[u8]) -> Result<()>333     fn check_input_length(data: &[u8]) -> Result<()> {
334         if data.len() > MAX_RECEIVE_DATA {
335             // This error code is unique, no context required here.
336             return Err(anyhow!(Error::Rc(ResponseCode::TOO_MUCH_DATA)));
337         }
338         Ok(())
339     }
340 
341     // Update the last usage to now.
touch(&self)342     fn touch(&self) {
343         // Expect safety:
344         // `last_usage` is locked only for primitive single line statements.
345         // There is no chance to panic and poison the mutex.
346         *self.last_usage.lock().expect("In touch.") = Instant::now();
347     }
348 
349     /// Implementation of `IKeystoreOperation::updateAad`.
350     /// Refer to the AIDL spec at system/hardware/interfaces/keystore2 for details.
update_aad(&self, aad_input: &[u8]) -> Result<()>351     fn update_aad(&self, aad_input: &[u8]) -> Result<()> {
352         let mut outcome = self.check_active().context("In update_aad")?;
353         Self::check_input_length(aad_input).context("In update_aad")?;
354         self.touch();
355 
356         let (hat, tst) = self
357             .auth_info
358             .lock()
359             .unwrap()
360             .before_update()
361             .context("In update_aad: Trying to get auth tokens.")?;
362 
363         self.update_outcome(&mut *outcome, {
364             let _wp = wd::watch_millis("Operation::update_aad: calling updateAad", 500);
365             map_km_error(self.km_op.updateAad(aad_input, hat.as_ref(), tst.as_ref()))
366         })
367         .context("In update_aad: KeyMint::update failed.")?;
368 
369         Ok(())
370     }
371 
372     /// Implementation of `IKeystoreOperation::update`.
373     /// Refer to the AIDL spec at system/hardware/interfaces/keystore2 for details.
update(&self, input: &[u8]) -> Result<Option<Vec<u8>>>374     fn update(&self, input: &[u8]) -> Result<Option<Vec<u8>>> {
375         let mut outcome = self.check_active().context("In update")?;
376         Self::check_input_length(input).context("In update")?;
377         self.touch();
378 
379         let (hat, tst) = self
380             .auth_info
381             .lock()
382             .unwrap()
383             .before_update()
384             .context("In update: Trying to get auth tokens.")?;
385 
386         let output = self
387             .update_outcome(&mut *outcome, {
388                 let _wp = wd::watch_millis("Operation::update: calling update", 500);
389                 map_km_error(self.km_op.update(input, hat.as_ref(), tst.as_ref()))
390             })
391             .context("In update: KeyMint::update failed.")?;
392 
393         if output.is_empty() {
394             Ok(None)
395         } else {
396             Ok(Some(output))
397         }
398     }
399 
400     /// Implementation of `IKeystoreOperation::finish`.
401     /// Refer to the AIDL spec at system/hardware/interfaces/keystore2 for details.
finish(&self, input: Option<&[u8]>, signature: Option<&[u8]>) -> Result<Option<Vec<u8>>>402     fn finish(&self, input: Option<&[u8]>, signature: Option<&[u8]>) -> Result<Option<Vec<u8>>> {
403         let mut outcome = self.check_active().context("In finish")?;
404         if let Some(input) = input {
405             Self::check_input_length(input).context("In finish")?;
406         }
407         self.touch();
408 
409         let (hat, tst, confirmation_token) = self
410             .auth_info
411             .lock()
412             .unwrap()
413             .before_finish()
414             .context("In finish: Trying to get auth tokens.")?;
415 
416         let output = self
417             .update_outcome(&mut *outcome, {
418                 let _wp = wd::watch_millis("Operation::finish: calling finish", 500);
419                 map_km_error(self.km_op.finish(
420                     input,
421                     signature,
422                     hat.as_ref(),
423                     tst.as_ref(),
424                     confirmation_token.as_deref(),
425                 ))
426             })
427             .context("In finish: KeyMint::finish failed.")?;
428 
429         self.auth_info.lock().unwrap().after_finish().context("In finish.")?;
430 
431         // At this point the operation concluded successfully.
432         *outcome = Outcome::Success;
433 
434         if output.is_empty() {
435             Ok(None)
436         } else {
437             Ok(Some(output))
438         }
439     }
440 
441     /// Aborts the operation if it is active. IFF the operation is aborted the outcome is
442     /// set to `outcome`. `outcome` must reflect the reason for the abort. Since the operation
443     /// gets aborted `outcome` must not be `Operation::Success` or `Operation::Unknown`.
abort(&self, outcome: Outcome) -> Result<()>444     fn abort(&self, outcome: Outcome) -> Result<()> {
445         let mut locked_outcome = self.check_active().context("In abort")?;
446         *locked_outcome = outcome;
447 
448         {
449             let _wp = wd::watch_millis("Operation::abort: calling abort", 500);
450             map_km_error(self.km_op.abort()).context("In abort: KeyMint::abort failed.")
451         }
452     }
453 }
454 
455 impl Drop for Operation {
drop(&mut self)456     fn drop(&mut self) {
457         let guard = self.outcome.lock().expect("In drop.");
458         log_key_operation_event_stats(
459             self.logging_info.sec_level,
460             self.logging_info.purpose,
461             &(self.logging_info.op_params),
462             &guard,
463             self.logging_info.key_upgraded,
464         );
465         if let Outcome::Unknown = *guard {
466             drop(guard);
467             // If the operation was still active we call abort, setting
468             // the outcome to `Outcome::Dropped`
469             if let Err(e) = self.abort(Outcome::Dropped) {
470                 log::error!("While dropping Operation: abort failed:\n    {:?}", e);
471             }
472         }
473     }
474 }
475 
476 /// The OperationDb holds weak references to all ongoing operations.
477 /// Its main purpose is to facilitate operation pruning.
478 #[derive(Debug, Default)]
479 pub struct OperationDb {
480     // TODO replace Vec with WeakTable when the weak_table crate becomes
481     // available.
482     operations: Mutex<Vec<Weak<Operation>>>,
483 }
484 
485 impl OperationDb {
486     /// Creates a new OperationDb.
new() -> Self487     pub fn new() -> Self {
488         Self { operations: Mutex::new(Vec::new()) }
489     }
490 
491     /// Creates a new operation.
492     /// This function takes a KeyMint operation and an associated
493     /// owner uid and returns a new Operation wrapped in a `std::sync::Arc`.
create_operation( &self, km_op: binder::Strong<dyn IKeyMintOperation>, owner: u32, auth_info: AuthInfo, forced: bool, logging_info: LoggingInfo, ) -> Arc<Operation>494     pub fn create_operation(
495         &self,
496         km_op: binder::Strong<dyn IKeyMintOperation>,
497         owner: u32,
498         auth_info: AuthInfo,
499         forced: bool,
500         logging_info: LoggingInfo,
501     ) -> Arc<Operation> {
502         // We use unwrap because we don't allow code that can panic while locked.
503         let mut operations = self.operations.lock().expect("In create_operation.");
504 
505         let mut index: usize = 0;
506         // First we iterate through the operation slots to try and find an unused
507         // slot. If we don't find one, we append the new entry instead.
508         match (*operations).iter_mut().find(|s| {
509             index += 1;
510             s.upgrade().is_none()
511         }) {
512             Some(free_slot) => {
513                 let new_op = Arc::new(Operation::new(
514                     index - 1,
515                     km_op,
516                     owner,
517                     auth_info,
518                     forced,
519                     logging_info,
520                 ));
521                 *free_slot = Arc::downgrade(&new_op);
522                 new_op
523             }
524             None => {
525                 let new_op = Arc::new(Operation::new(
526                     operations.len(),
527                     km_op,
528                     owner,
529                     auth_info,
530                     forced,
531                     logging_info,
532                 ));
533                 operations.push(Arc::downgrade(&new_op));
534                 new_op
535             }
536         }
537     }
538 
get(&self, index: usize) -> Option<Arc<Operation>>539     fn get(&self, index: usize) -> Option<Arc<Operation>> {
540         self.operations.lock().expect("In OperationDb::get.").get(index).and_then(|op| op.upgrade())
541     }
542 
543     /// Attempts to prune an operation.
544     ///
545     /// This function is used during operation creation, i.e., by
546     /// `KeystoreSecurityLevel::create_operation`, to try and free up an operation slot
547     /// if it got `ErrorCode::TOO_MANY_OPERATIONS` from the KeyMint backend. It is not
548     /// guaranteed that an operation slot is available after this call successfully
549     /// returned for various reasons. E.g., another thread may have snatched up the newly
550     /// available slot. Callers may have to call prune multiple times before they get a
551     /// free operation slot. Prune may also return `Err(Error::Rc(ResponseCode::BACKEND_BUSY))`
552     /// which indicates that no prunable operation was found.
553     ///
554     /// To find a suitable candidate we compute the malus for the caller and each existing
555     /// operation. The malus is the inverse of the pruning power (caller) or pruning
556     /// resistance (existing operation).
557     ///
558     /// The malus is based on the number of sibling operations and age. Sibling
559     /// operations are operations that have the same owner (UID).
560     ///
561     /// Every operation, existing or new, starts with a malus of 1. Every sibling
562     /// increases the malus by one. The age is the time since an operation was last touched.
563     /// It increases the malus by log6(<age in seconds> + 1) rounded down to the next
564     /// integer. So the malus increases stepwise after 5s, 35s, 215s, ...
565     /// Of two operations with the same malus the least recently used one is considered
566     /// weaker.
567     ///
568     /// For the caller to be able to prune an operation it must find an operation
569     /// with a malus higher than its own.
570     ///
571     /// The malus can be expressed as
572     /// ```
573     /// malus = 1 + no_of_siblings + floor(log6(age_in_seconds + 1))
574     /// ```
575     /// where the constant `1` accounts for the operation under consideration.
576     /// In reality we compute it as
577     /// ```
578     /// caller_malus = 1 + running_siblings
579     /// ```
580     /// because the new operation has no age and is not included in the `running_siblings`,
581     /// and
582     /// ```
583     /// running_malus = running_siblings + floor(log6(age_in_seconds + 1))
584     /// ```
585     /// because a running operation is included in the `running_siblings` and it has
586     /// an age.
587     ///
588     /// ## Example
589     /// A caller with no running operations has a malus of 1. Young (age < 5s) operations
590     /// also with no siblings have a malus of one and cannot be pruned by the caller.
591     /// We have to find an operation that has at least one sibling or is older than 5s.
592     ///
593     /// A caller with one running operation has a malus of 2. Now even young siblings
594     /// or single child aging (5s <= age < 35s) operations are off limit. An aging
595     /// sibling of two, however, would have a malus of 3 and would be fair game.
596     ///
597     /// ## Rationale
598     /// Due to the limitation of KeyMint operation slots, we cannot get around pruning or
599     /// a single app could easily DoS KeyMint.
600     /// Keystore 1.0 used to always prune the least recently used operation. This at least
601     /// guaranteed that new operations can always be started. With the increased usage
602     /// of Keystore we saw increased pruning activity which can lead to a livelock
603     /// situation in the worst case.
604     ///
605     /// With the new pruning strategy we want to provide well behaved clients with
606     /// progress assurances while punishing DoS attempts. As a result of this
607     /// strategy we can be in the situation where no operation can be pruned and the
608     /// creation of a new operation fails. This allows single child operations which
609     /// are frequently updated to complete, thereby breaking up livelock situations
610     /// and facilitating system wide progress.
611     ///
612     /// ## Update
613     /// We also allow callers to cannibalize their own sibling operations if no other
614     /// slot can be found. In this case the least recently used sibling is pruned.
prune(&self, caller: u32, forced: bool) -> Result<(), Error>615     pub fn prune(&self, caller: u32, forced: bool) -> Result<(), Error> {
616         loop {
617             // Maps the uid of the owner to the number of operations that owner has
618             // (running_siblings). More operations per owner lowers the pruning
619             // resistance of the operations of that owner. Whereas the number of
620             // ongoing operations of the caller lowers the pruning power of the caller.
621             let mut owners: HashMap<u32, u64> = HashMap::new();
622             let mut pruning_info: Vec<PruningInfo> = Vec::new();
623 
624             let now = Instant::now();
625             self.operations
626                 .lock()
627                 .expect("In OperationDb::prune: Trying to lock self.operations.")
628                 .iter()
629                 .for_each(|op| {
630                     if let Some(op) = op.upgrade() {
631                         if let Some(p_info) = op.get_pruning_info() {
632                             let owner = p_info.owner;
633                             pruning_info.push(p_info);
634                             // Count operations per owner.
635                             *owners.entry(owner).or_insert(0) += 1;
636                         }
637                     }
638                 });
639 
640             // If the operation is forced, the caller has a malus of 0.
641             let caller_malus = if forced { 0 } else { 1u64 + *owners.entry(caller).or_default() };
642 
643             // We iterate through all operations computing the malus and finding
644             // the candidate with the highest malus which must also be higher
645             // than the caller_malus.
646             struct CandidateInfo {
647                 index: usize,
648                 malus: u64,
649                 last_usage: Instant,
650                 age: Duration,
651             }
652             let mut oldest_caller_op: Option<CandidateInfo> = None;
653             let candidate = pruning_info.iter().fold(
654                 None,
655                 |acc: Option<CandidateInfo>, &PruningInfo { last_usage, owner, index, forced }| {
656                     // Compute the age of the current operation.
657                     let age = now
658                         .checked_duration_since(last_usage)
659                         .unwrap_or_else(|| Duration::new(0, 0));
660 
661                     // Find the least recently used sibling as an alternative pruning candidate.
662                     if owner == caller {
663                         if let Some(CandidateInfo { age: a, .. }) = oldest_caller_op {
664                             if age > a {
665                                 oldest_caller_op =
666                                     Some(CandidateInfo { index, malus: 0, last_usage, age });
667                             }
668                         } else {
669                             oldest_caller_op =
670                                 Some(CandidateInfo { index, malus: 0, last_usage, age });
671                         }
672                     }
673 
674                     // Compute the malus of the current operation.
675                     let malus = if forced {
676                         // Forced operations have a malus of 0. And cannot even be pruned
677                         // by other forced operations.
678                         0
679                     } else {
680                         // Expect safety: Every owner in pruning_info was counted in
681                         // the owners map. So this unwrap cannot panic.
682                         *owners.get(&owner).expect(
683                             "This is odd. We should have counted every owner in pruning_info.",
684                         ) + ((age.as_secs() + 1) as f64).log(6.0).floor() as u64
685                     };
686 
687                     // Now check if the current operation is a viable/better candidate
688                     // the one currently stored in the accumulator.
689                     match acc {
690                         // First we have to find any operation that is prunable by the caller.
691                         None => {
692                             if caller_malus < malus {
693                                 Some(CandidateInfo { index, malus, last_usage, age })
694                             } else {
695                                 None
696                             }
697                         }
698                         // If we have found one we look for the operation with the worst score.
699                         // If there is a tie, the older operation is considered weaker.
700                         Some(CandidateInfo { index: i, malus: m, last_usage: l, age: a }) => {
701                             if malus > m || (malus == m && age > a) {
702                                 Some(CandidateInfo { index, malus, last_usage, age })
703                             } else {
704                                 Some(CandidateInfo { index: i, malus: m, last_usage: l, age: a })
705                             }
706                         }
707                     }
708                 },
709             );
710 
711             // If we did not find a suitable candidate we may cannibalize our oldest sibling.
712             let candidate = candidate.or(oldest_caller_op);
713 
714             match candidate {
715                 Some(CandidateInfo { index, malus: _, last_usage, age: _ }) => {
716                     match self.get(index) {
717                         Some(op) => {
718                             match op.prune(last_usage) {
719                                 // We successfully freed up a slot.
720                                 Ok(()) => break Ok(()),
721                                 // This means the operation we tried to prune was on its way
722                                 // out. It also means that the slot it had occupied was freed up.
723                                 Err(Error::Km(ErrorCode::INVALID_OPERATION_HANDLE)) => break Ok(()),
724                                 // This means the operation we tried to prune was currently
725                                 // servicing a request. There are two options.
726                                 // * Assume that it was touched, which means that its
727                                 //   pruning resistance increased. In that case we have
728                                 //   to start over and find another candidate.
729                                 // * Assume that the operation is transitioning to end-of-life.
730                                 //   which means that we got a free slot for free.
731                                 // If we assume the first but the second is true, we prune
732                                 // a good operation without need (aggressive approach).
733                                 // If we assume the second but the first is true, our
734                                 // caller will attempt to create a new KeyMint operation,
735                                 // fail with `ErrorCode::TOO_MANY_OPERATIONS`, and call
736                                 // us again (conservative approach).
737                                 Err(Error::Rc(ResponseCode::OPERATION_BUSY)) => {
738                                     // We choose the conservative approach, because
739                                     // every needlessly pruned operation can impact
740                                     // the user experience.
741                                     // To switch to the aggressive approach replace
742                                     // the following line with `continue`.
743                                     break Ok(());
744                                 }
745 
746                                 // The candidate may have been touched so the score
747                                 // has changed since our evaluation.
748                                 _ => continue,
749                             }
750                         }
751                         // This index does not exist any more. The operation
752                         // in this slot was dropped. Good news, a slot
753                         // has freed up.
754                         None => break Ok(()),
755                     }
756                 }
757                 // We did not get a pruning candidate.
758                 None => break Err(Error::Rc(ResponseCode::BACKEND_BUSY)),
759             }
760         }
761     }
762 }
763 
764 /// Implementation of IKeystoreOperation.
765 pub struct KeystoreOperation {
766     operation: Mutex<Option<Arc<Operation>>>,
767 }
768 
769 impl KeystoreOperation {
770     /// Creates a new operation instance wrapped in a
771     /// BnKeystoreOperation proxy object. It also enables
772     /// `BinderFeatures::set_requesting_sid` on the new interface, because
773     /// we need it for checking Keystore permissions.
new_native_binder(operation: Arc<Operation>) -> binder::Strong<dyn IKeystoreOperation>774     pub fn new_native_binder(operation: Arc<Operation>) -> binder::Strong<dyn IKeystoreOperation> {
775         BnKeystoreOperation::new_binder(
776             Self { operation: Mutex::new(Some(operation)) },
777             BinderFeatures { set_requesting_sid: true, ..BinderFeatures::default() },
778         )
779     }
780 
781     /// Grabs the outer operation mutex and calls `f` on the locked operation.
782     /// The function also deletes the operation if it returns with an error or if
783     /// `delete_op` is true.
with_locked_operation<T, F>(&self, f: F, delete_op: bool) -> Result<T> where for<'a> F: FnOnce(&'a Operation) -> Result<T>,784     fn with_locked_operation<T, F>(&self, f: F, delete_op: bool) -> Result<T>
785     where
786         for<'a> F: FnOnce(&'a Operation) -> Result<T>,
787     {
788         let mut delete_op: bool = delete_op;
789         match self.operation.try_lock() {
790             Ok(mut mutex_guard) => {
791                 let result = match &*mutex_guard {
792                     Some(op) => {
793                         let result = f(&*op);
794                         // Any error here means we can discard the operation.
795                         if result.is_err() {
796                             delete_op = true;
797                         }
798                         result
799                     }
800                     None => Err(Error::Km(ErrorCode::INVALID_OPERATION_HANDLE))
801                         .context("In KeystoreOperation::with_locked_operation"),
802                 };
803 
804                 if delete_op {
805                     // We give up our reference to the Operation, thereby freeing up our
806                     // internal resources and ending the wrapped KeyMint operation.
807                     // This KeystoreOperation object will still be owned by an SpIBinder
808                     // until the client drops its remote reference.
809                     *mutex_guard = None;
810                 }
811                 result
812             }
813             Err(_) => Err(Error::Rc(ResponseCode::OPERATION_BUSY))
814                 .context("In KeystoreOperation::with_locked_operation"),
815         }
816     }
817 }
818 
819 impl binder::Interface for KeystoreOperation {}
820 
821 impl IKeystoreOperation for KeystoreOperation {
updateAad(&self, aad_input: &[u8]) -> binder::Result<()>822     fn updateAad(&self, aad_input: &[u8]) -> binder::Result<()> {
823         let _wp = wd::watch_millis("IKeystoreOperation::updateAad", 500);
824         map_or_log_err(
825             self.with_locked_operation(
826                 |op| op.update_aad(aad_input).context("In KeystoreOperation::updateAad"),
827                 false,
828             ),
829             Ok,
830         )
831     }
832 
update(&self, input: &[u8]) -> binder::Result<Option<Vec<u8>>>833     fn update(&self, input: &[u8]) -> binder::Result<Option<Vec<u8>>> {
834         let _wp = wd::watch_millis("IKeystoreOperation::update", 500);
835         map_or_log_err(
836             self.with_locked_operation(
837                 |op| op.update(input).context("In KeystoreOperation::update"),
838                 false,
839             ),
840             Ok,
841         )
842     }
finish( &self, input: Option<&[u8]>, signature: Option<&[u8]>, ) -> binder::Result<Option<Vec<u8>>>843     fn finish(
844         &self,
845         input: Option<&[u8]>,
846         signature: Option<&[u8]>,
847     ) -> binder::Result<Option<Vec<u8>>> {
848         let _wp = wd::watch_millis("IKeystoreOperation::finish", 500);
849         map_or_log_err(
850             self.with_locked_operation(
851                 |op| op.finish(input, signature).context("In KeystoreOperation::finish"),
852                 true,
853             ),
854             Ok,
855         )
856     }
857 
abort(&self) -> binder::Result<()>858     fn abort(&self) -> binder::Result<()> {
859         let _wp = wd::watch_millis("IKeystoreOperation::abort", 500);
860         map_err_with(
861             self.with_locked_operation(
862                 |op| op.abort(Outcome::Abort).context("In KeystoreOperation::abort"),
863                 true,
864             ),
865             |e| {
866                 match e.root_cause().downcast_ref::<Error>() {
867                     // Calling abort on expired operations is something very common.
868                     // There is no reason to clutter the log with it. It is never the cause
869                     // for a true problem.
870                     Some(Error::Km(ErrorCode::INVALID_OPERATION_HANDLE)) => {}
871                     _ => log::error!("{:?}", e),
872                 };
873                 e
874             },
875             Ok,
876         )
877     }
878 }
879