• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 The Chromium Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "base/message_loop/message_pump_glib.h"
6 
7 #include <fcntl.h>
8 #include <glib.h>
9 #include <math.h>
10 
11 #include "base/logging.h"
12 #include "base/memory/raw_ptr.h"
13 #include "base/notreached.h"
14 #include "base/numerics/safe_conversions.h"
15 #include "base/posix/eintr_wrapper.h"
16 #include "base/synchronization/lock.h"
17 #include "base/threading/platform_thread.h"
18 
19 namespace base {
20 
21 namespace {
22 
23 // Priorities of event sources are important to let everything be processed.
24 // In particular, GTK event source should have the highest priority (because
25 // UI events come from it), then Wayland events (the ones coming from the FD
26 // watcher), and the lowest priority is GLib events (our base message pump).
27 //
28 // The g_source API uses ints to denote priorities, and the lower is its value,
29 // the higher is the priority (i.e., they are ordered backwards).
30 constexpr int kPriorityWork = G_PRIORITY_DEFAULT_IDLE;
31 constexpr int kPriorityFdWatch = G_PRIORITY_DEFAULT_IDLE - 10;
32 
33 // See the explanation above.
34 static_assert(G_PRIORITY_DEFAULT < kPriorityFdWatch &&
35                   kPriorityFdWatch < kPriorityWork,
36               "Wrong priorities are set for event sources!");
37 
38 // Return a timeout suitable for the glib loop according to |next_task_time|, -1
39 // to block forever, 0 to return right away, or a timeout in milliseconds from
40 // now.
GetTimeIntervalMilliseconds(TimeTicks next_task_time)41 int GetTimeIntervalMilliseconds(TimeTicks next_task_time) {
42   if (next_task_time.is_null())
43     return 0;
44   else if (next_task_time.is_max())
45     return -1;
46 
47   auto timeout_ms =
48       (next_task_time - TimeTicks::Now()).InMillisecondsRoundedUp();
49 
50   return timeout_ms < 0 ? 0 : saturated_cast<int>(timeout_ms);
51 }
52 
RunningOnMainThread()53 bool RunningOnMainThread() {
54   auto pid = getpid();
55   auto tid = PlatformThread::CurrentId();
56   return pid > 0 && tid > 0 && pid == tid;
57 }
58 
59 // A brief refresher on GLib:
60 //     GLib sources have four callbacks: Prepare, Check, Dispatch and Finalize.
61 // On each iteration of the GLib pump, it calls each source's Prepare function.
62 // This function should return TRUE if it wants GLib to call its Dispatch, and
63 // FALSE otherwise.  It can also set a timeout in this case for the next time
64 // Prepare should be called again (it may be called sooner).
65 //     After the Prepare calls, GLib does a poll to check for events from the
66 // system.  File descriptors can be attached to the sources.  The poll may block
67 // if none of the Prepare calls returned TRUE.  It will block indefinitely, or
68 // by the minimum time returned by a source in Prepare.
69 //     After the poll, GLib calls Check for each source that returned FALSE
70 // from Prepare.  The return value of Check has the same meaning as for Prepare,
71 // making Check a second chance to tell GLib we are ready for Dispatch.
72 //     Finally, GLib calls Dispatch for each source that is ready.  If Dispatch
73 // returns FALSE, GLib will destroy the source.  Dispatch calls may be recursive
74 // (i.e., you can call Run from them), but Prepare and Check cannot.
75 //     Finalize is called when the source is destroyed.
76 // NOTE: It is common for subsystems to want to process pending events while
77 // doing intensive work, for example the flash plugin. They usually use the
78 // following pattern (recommended by the GTK docs):
79 // while (gtk_events_pending()) {
80 //   gtk_main_iteration();
81 // }
82 //
83 // gtk_events_pending just calls g_main_context_pending, which does the
84 // following:
85 // - Call prepare on all the sources.
86 // - Do the poll with a timeout of 0 (not blocking).
87 // - Call check on all the sources.
88 // - *Does not* call dispatch on the sources.
89 // - Return true if any of prepare() or check() returned true.
90 //
91 // gtk_main_iteration just calls g_main_context_iteration, which does the whole
92 // thing, respecting the timeout for the poll (and block, although it is to if
93 // gtk_events_pending returned true), and call dispatch.
94 //
95 // Thus it is important to only return true from prepare or check if we
96 // actually have events or work to do. We also need to make sure we keep
97 // internal state consistent so that if prepare/check return true when called
98 // from gtk_events_pending, they will still return true when called right
99 // after, from gtk_main_iteration.
100 //
101 // For the GLib pump we try to follow the Windows UI pump model:
102 // - Whenever we receive a wakeup event or the timer for delayed work expires,
103 // we run DoWork. That part will also run in the other event pumps.
104 // - We also run DoWork, and possibly DoIdleWork, in the main loop,
105 // around event handling.
106 //
107 // ---------------------------------------------------------------------------
108 //
109 // An overview on the way that we track work items:
110 //
111 //     ScopedDoWorkItems are used by this pump to track native work. They are
112 // stored by value in |state_| and are set/cleared as the pump runs. Their
113 // setting and clearing is done in the functions
114 // {Set,Clear,EnsureSet,EnsureCleared}ScopedWorkItem. Control flow in GLib is
115 // quite non-obvious because chrome is not notified when a nested loop is
116 // entered/exited. To detect nested loops, MessagePumpGlib uses
117 // |state_->do_work_depth| which is incremented when DoWork is entered, and a
118 // GLib library function, g_main_depth(), which indicates the current number of
119 // Dispatch() calls on the stack. To react to them, two separate
120 // ScopedDoWorkItems are used (a standard one used for all native work, and a
121 // second one used exclusively for forcing nesting when there is a native loop
122 // spinning).  Note that `ThreadController` flags all nesting as
123 // `Phase::kNested` so separating native and application work while nested isn't
124 // supported nor a goal.
125 //
126 //     It should also be noted that a second GSource has been added to GLib,
127 // referred to as the "observer" source. It is used because in the case where
128 // native work occurs on wakeup that is higher priority than Chrome (all of
129 // GTK), chrome won't even get notified that the pump is awake.
130 //
131 //     There are several cases to consider wrt. nesting level and order. In
132 // order, we have:
133 // A. [root] -> MessagePump::Run() -> native event -> g_main_context_iteration
134 // B. [root] -> MessagePump::Run() -> DoWork -> g_main_context_iteration
135 // C. [root] -> native -> DoWork -> MessagePump -> [...]
136 // The second two cases are identical for our purposes, and the last one turns
137 // out to be handled without any extra headache.
138 //
139 //     Consider nesting case A, where native work is called from
140 // |g_main_context_iteration()| from the pump, and that native work spins up a
141 // loop. For our purposes, this is a nested loop, because control is not
142 // returned to the pump once one iteration of the pump is complete. In this
143 // case, the pump needs to enter nesting without DoWork being involved at
144 // all. This is accomplished using |MessagePumpGlib::NestIfRequired()|, which is
145 // called during the Prepare() phase of GLib. As the pump records state on entry
146 // and exit from GLib using |OnEntryToGlib| and |OnExitFromGlib|, we can compare
147 // |g_main_depth| at |HandlePrepare| with the one before we entered
148 // |g_main_context_iteration|. If it is higher, there is a native loop being
149 // spun, and |RegisterNesting| is called, forcing nesting by initializing two
150 // work items at once. These are destroyed after the exit from
151 // |g_main_context_iteration| using |OnExitFromGlib|.
152 //
153 //     Then, considering nesting case B, |state_->do_work_depth| is incremented
154 // during any Chrome work, to allow the pump to detect re-entrancy during a
155 // chrome work item. This is required because `g_main_depth` is not incremented
156 // in any `DoWork` call not occuring during `Dispatch()` (i.e. during
157 // `MessagePumpGlib::Run()`). In this case, a nested loop is recorded, and the
158 // pump sets-and-clears scoped work items during Prepare, Check, and Dispatch. A
159 // work item can never be active when control flow returns to GLib (i.e. on
160 // return) during a nested loop, because the nested loop could exit at any
161 // point. This is fine because TimeKeeper is only concerned with the fact that a
162 // nested loop is in progress, as opposed to the various phases of the nested
163 // loop.
164 //
165 //     Finally, consider nesting case C, where a native loop is spinning
166 // entirely outside of Chrome, such as inside a signal handler, the pump might
167 // create and destroy DoWorkItems during Prepare() and Check(), but these work
168 // items will always get cleared during Dispatch(), before the pump enters a
169 // DoWork(), leading to the pump showing non-nested native work without the
170 // thread controller being active, the correct situation (which won't occur
171 // outside of startup or shutdown).  Once Dispatch() is called, the pump's
172 // nesting tracking works correctly, as state_->do_work_depth is increased, and
173 // upon re-entrancy we detect the nested loop, which is correct, as this is the
174 // only point at which the loop actually becomes "nested".
175 //
176 // -----------------------------------------------------------------------------
177 //
178 // As an overview of the steps taken by MessagePumpGLib to ensure that nested
179 // loops are detected adequately during each phase of the GLib loop:
180 //
181 // 0: Before entering GLib:
182 // 0.1: Record state about current state of GLib (g_main_depth()) for
183 // case 1.1.2.
184 //
185 // 1: Prepare.
186 // 1.1: Detection of nested loops
187 
188 // 1.1.1: If |state_->do_work_depth| > 0, we are in nesting case B detailed
189 //        above. A work item must be newly created during this function to
190 //        trigger nesting, and is destroyed to ensure proper destruction order
191 //        in the case where GLib quits after Prepare().
192 //
193 // 1.1.2: Otherwise, check if we are in nesting case A above. If yes, trigger
194 //        nesting using ScopedDoWorkItems. The nesting will be cleared at exit
195 //        from GLib.
196 //
197 //        This check occurs only in |HandleObserverPrepare|, not in
198 //        |HandlePrepare|.
199 //
200 //        A third party is running a glib message loop. Since Chrome work is
201 //        registered with GLib at |G_PRIORITY_DEFAULT_IDLE|, a relatively low
202 //        priority, sources of default-or-higher priority will be Dispatch()ed
203 //        first. Since only one source is Dispatched per loop iteration,
204 //        |HandlePrepare| can get called several times in a row in the case that
205 //        there are any other events in the queue. A ScopedDoWorkItem is created
206 //        and destroyed to record this. That work item triggers nesting.
207 //
208 // 1.2: Other considerations
209 // 1.2.1: Sleep occurs between Prepare() and Check(). If Chrome will pass a
210 //        nonzero poll time to GLib, the inner ScopedDoWorkItem is cleared and
211 //        BeforeWait() is called. In nesting case A, the nesting work item will
212 //        not be cleared. A nested loop will typically not block.
213 //
214 //        Since Prepare() is called before Check() in all cases, the bulk of
215 //        nesting detection is done in Prepare().
216 //
217 // 2: Check.
218 // 2.1: Detection of nested loops:
219 // 2.1.1: In nesting case B, |ClearScopedWorkItem()| on exit.  A third party is
220 //        running a glib message loop. It is possible that at any point the
221 //        nested message loop will quit. In this case, we don't want to leave a
222 //        nested DoWorkItem on the stack.
223 //
224 // 2.2: Other considerations
225 // 2.2.1: A ScopedDoWorkItem may be created (if it was not already present) at
226 //        the entry to Check() to record a wakeup in the case that the pump
227 //        slept. It is important to note that this occurs both in
228 //        |HandleObserverCheck| and |HandleCheck| to ensure that at every point
229 //        as the pump enters the Dispatch phase it is awake. In the case it is
230 //        already awake, this is a very cheap operation.
231 //
232 // 3: Dispatch
233 // 3.1 Detection of nested loops
234 // 3.1.1: |state_->do_work_depth| is incremented on entry and decremented on
235 //        exit. This is used to detect nesting case B.
236 //
237 // 3.1.2: Nested loops can be quit at any point, and so ScopedDoWorkItems can't
238 //        be left on the stack for the same reasons as in 1.1.1/2.1.1.
239 //
240 // 3.2 Other considerations
241 // 3.2.1: Since DoWork creates its own work items, ScopedDoWorkItems are not
242 //        used as this would trigger nesting in all cases.
243 //
244 // 4: Post GLib
245 // 4.1: Detection of nested loops
246 // 4.1.1: |state_->do_work_depth| is also increased during the DoWork in Run()
247 //        as nesting in that case [calling glib from third party code] needs to
248 //        clear all work items after return to avoid improper destruction order.
249 //
250 // 4.2: Other considerations:
251 // 4.2.1: DoWork uses its own work item, so no ScopedDoWorkItems are active in
252 //        this case.
253 
254 struct WorkSource : public GSource {
255   raw_ptr<MessagePumpGlib> pump;
256 };
257 
WorkSourcePrepare(GSource * source,gint * timeout_ms)258 gboolean WorkSourcePrepare(GSource* source, gint* timeout_ms) {
259   *timeout_ms = static_cast<WorkSource*>(source)->pump->HandlePrepare();
260   // We always return FALSE, so that our timeout is honored.  If we were
261   // to return TRUE, the timeout would be considered to be 0 and the poll
262   // would never block.  Once the poll is finished, Check will be called.
263   return FALSE;
264 }
265 
WorkSourceCheck(GSource * source)266 gboolean WorkSourceCheck(GSource* source) {
267   // Only return TRUE if Dispatch should be called.
268   return static_cast<WorkSource*>(source)->pump->HandleCheck();
269 }
270 
WorkSourceDispatch(GSource * source,GSourceFunc unused_func,gpointer unused_data)271 gboolean WorkSourceDispatch(GSource* source,
272                             GSourceFunc unused_func,
273                             gpointer unused_data) {
274   static_cast<WorkSource*>(source)->pump->HandleDispatch();
275   // Always return TRUE so our source stays registered.
276   return TRUE;
277 }
278 
279 // I wish these could be const, but g_source_new wants non-const.
280 GSourceFuncs g_work_source_funcs = {WorkSourcePrepare, WorkSourceCheck,
281                                     WorkSourceDispatch, nullptr};
282 
283 struct ObserverSource : public GSource {
284   raw_ptr<MessagePumpGlib> pump;
285 };
286 
ObserverPrepare(GSource * gsource,gint * timeout_ms)287 gboolean ObserverPrepare(GSource* gsource, gint* timeout_ms) {
288   auto* source = static_cast<ObserverSource*>(gsource);
289   source->pump->HandleObserverPrepare();
290   *timeout_ms = -1;
291   // We always want to poll.
292   return FALSE;
293 }
294 
ObserverCheck(GSource * gsource)295 gboolean ObserverCheck(GSource* gsource) {
296   auto* source = static_cast<ObserverSource*>(gsource);
297   return source->pump->HandleObserverCheck();
298 }
299 
300 GSourceFuncs g_observer_funcs = {ObserverPrepare, ObserverCheck, nullptr,
301                                  nullptr};
302 
303 struct FdWatchSource : public GSource {
304   raw_ptr<MessagePumpGlib> pump;
305   raw_ptr<MessagePumpGlib::FdWatchController> controller;
306 };
307 
FdWatchSourcePrepare(GSource * source,gint * timeout_ms)308 gboolean FdWatchSourcePrepare(GSource* source, gint* timeout_ms) {
309   *timeout_ms = -1;
310   return FALSE;
311 }
312 
FdWatchSourceCheck(GSource * gsource)313 gboolean FdWatchSourceCheck(GSource* gsource) {
314   auto* source = static_cast<FdWatchSource*>(gsource);
315   return source->pump->HandleFdWatchCheck(source->controller) ? TRUE : FALSE;
316 }
317 
FdWatchSourceDispatch(GSource * gsource,GSourceFunc unused_func,gpointer unused_data)318 gboolean FdWatchSourceDispatch(GSource* gsource,
319                                GSourceFunc unused_func,
320                                gpointer unused_data) {
321   auto* source = static_cast<FdWatchSource*>(gsource);
322   source->pump->HandleFdWatchDispatch(source->controller);
323   return TRUE;
324 }
325 
326 GSourceFuncs g_fd_watch_source_funcs = {
327     FdWatchSourcePrepare, FdWatchSourceCheck, FdWatchSourceDispatch, nullptr};
328 
329 }  // namespace
330 
331 struct MessagePumpGlib::RunState {
RunStatebase::MessagePumpGlib::RunState332   explicit RunState(Delegate* delegate) : delegate(delegate) {
333     CHECK(delegate);
334   }
335 
336   const raw_ptr<Delegate> delegate;
337 
338   // Used to flag that the current Run() invocation should return ASAP.
339   bool should_quit = false;
340 
341   // Keeps track of the number of calls to DoWork() on the stack for the current
342   // Run() invocation. Used to detect reentrancy from DoWork in order to make
343   // decisions about tracking nested work.
344   int do_work_depth = 0;
345 
346   // Value of g_main_depth() captured before the call to
347   // g_main_context_iteration() in Run(). nullopt if Run() is not calling
348   // g_main_context_iteration(). Used to track whether the pump has forced a
349   // nested state due to a native pump.
350   absl::optional<int> g_depth_on_iteration;
351 
352   // Used to keep track of the native event work items processed by the message
353   // pump.
354   Delegate::ScopedDoWorkItem scoped_do_work_item;
355 
356   // Used to force the pump into a nested state when a native runloop was
357   // dispatched from main.
358   Delegate::ScopedDoWorkItem native_loop_do_work_item;
359 
360   // The information of the next task available at this run-level. Stored in
361   // RunState because different set of tasks can be accessible at various
362   // run-levels (e.g. non-nestable tasks).
363   Delegate::NextWorkInfo next_work_info;
364 };
365 
MessagePumpGlib()366 MessagePumpGlib::MessagePumpGlib()
367     : state_(nullptr), wakeup_gpollfd_(std::make_unique<GPollFD>()) {
368   DCHECK(!g_main_context_get_thread_default());
369   if (RunningOnMainThread()) {
370     context_ = g_main_context_default();
371   } else {
372     owned_context_ = std::unique_ptr<GMainContext, GMainContextDeleter>(
373         g_main_context_new());
374     context_ = owned_context_.get();
375     g_main_context_push_thread_default(context_);
376   }
377 
378   // Create our wakeup pipe, which is used to flag when work was scheduled.
379   int fds[2];
380   [[maybe_unused]] int ret = pipe2(fds, O_CLOEXEC);
381   DCHECK_EQ(ret, 0);
382 
383   wakeup_pipe_read_ = fds[0];
384   wakeup_pipe_write_ = fds[1];
385   wakeup_gpollfd_->fd = wakeup_pipe_read_;
386   wakeup_gpollfd_->events = G_IO_IN;
387 
388   observer_source_ = std::unique_ptr<GSource, GSourceDeleter>(
389       g_source_new(&g_observer_funcs, sizeof(ObserverSource)));
390   static_cast<ObserverSource*>(observer_source_.get())->pump = this;
391   g_source_attach(observer_source_.get(), context_);
392 
393   work_source_ = std::unique_ptr<GSource, GSourceDeleter>(
394       g_source_new(&g_work_source_funcs, sizeof(WorkSource)));
395   static_cast<WorkSource*>(work_source_.get())->pump = this;
396   g_source_add_poll(work_source_.get(), wakeup_gpollfd_.get());
397   g_source_set_priority(work_source_.get(), kPriorityWork);
398   // This is needed to allow Run calls inside Dispatch.
399   g_source_set_can_recurse(work_source_.get(), TRUE);
400   g_source_attach(work_source_.get(), context_);
401 }
402 
~MessagePumpGlib()403 MessagePumpGlib::~MessagePumpGlib() {
404   work_source_.reset();
405   close(wakeup_pipe_read_);
406   close(wakeup_pipe_write_);
407   context_ = nullptr;
408   owned_context_.reset();
409 }
410 
FdWatchController(const Location & location)411 MessagePumpGlib::FdWatchController::FdWatchController(const Location& location)
412     : FdWatchControllerInterface(location) {}
413 
~FdWatchController()414 MessagePumpGlib::FdWatchController::~FdWatchController() {
415   if (IsInitialized()) {
416     CHECK(StopWatchingFileDescriptor());
417   }
418   if (was_destroyed_) {
419     DCHECK(!*was_destroyed_);
420     *was_destroyed_ = true;
421   }
422 }
423 
StopWatchingFileDescriptor()424 bool MessagePumpGlib::FdWatchController::StopWatchingFileDescriptor() {
425   if (!IsInitialized())
426     return false;
427 
428   g_source_destroy(source_);
429   g_source_unref(source_.ExtractAsDangling());
430   watcher_ = nullptr;
431   return true;
432 }
433 
IsInitialized() const434 bool MessagePumpGlib::FdWatchController::IsInitialized() const {
435   return !!source_;
436 }
437 
InitOrUpdate(int fd,int mode,FdWatcher * watcher)438 bool MessagePumpGlib::FdWatchController::InitOrUpdate(int fd,
439                                                       int mode,
440                                                       FdWatcher* watcher) {
441   gushort event_flags = 0;
442   if (mode & WATCH_READ) {
443     event_flags |= G_IO_IN;
444   }
445   if (mode & WATCH_WRITE) {
446     event_flags |= G_IO_OUT;
447   }
448 
449   if (!IsInitialized()) {
450     poll_fd_ = std::make_unique<GPollFD>();
451     poll_fd_->fd = fd;
452   } else {
453     if (poll_fd_->fd != fd)
454       return false;
455     // Combine old/new event masks.
456     event_flags |= poll_fd_->events;
457     // Destroy previous source
458     bool stopped = StopWatchingFileDescriptor();
459     DCHECK(stopped);
460   }
461   poll_fd_->events = event_flags;
462   poll_fd_->revents = 0;
463 
464   source_ = g_source_new(&g_fd_watch_source_funcs, sizeof(FdWatchSource));
465   DCHECK(source_);
466   g_source_add_poll(source_, poll_fd_.get());
467   g_source_set_can_recurse(source_, TRUE);
468   g_source_set_callback(source_, nullptr, nullptr, nullptr);
469   g_source_set_priority(source_, kPriorityFdWatch);
470 
471   watcher_ = watcher;
472   return true;
473 }
474 
Attach(MessagePumpGlib * pump)475 bool MessagePumpGlib::FdWatchController::Attach(MessagePumpGlib* pump) {
476   DCHECK(pump);
477   if (!IsInitialized()) {
478     return false;
479   }
480   auto* source = static_cast<FdWatchSource*>(source_);
481   source->controller = this;
482   source->pump = pump;
483   g_source_attach(source_, pump->context_);
484   return true;
485 }
486 
NotifyCanRead()487 void MessagePumpGlib::FdWatchController::NotifyCanRead() {
488   if (!watcher_)
489     return;
490   DCHECK(poll_fd_);
491   watcher_->OnFileCanReadWithoutBlocking(poll_fd_->fd);
492 }
493 
NotifyCanWrite()494 void MessagePumpGlib::FdWatchController::NotifyCanWrite() {
495   if (!watcher_)
496     return;
497   DCHECK(poll_fd_);
498   watcher_->OnFileCanWriteWithoutBlocking(poll_fd_->fd);
499 }
500 
WatchFileDescriptor(int fd,bool persistent,int mode,FdWatchController * controller,FdWatcher * watcher)501 bool MessagePumpGlib::WatchFileDescriptor(int fd,
502                                           bool persistent,
503                                           int mode,
504                                           FdWatchController* controller,
505                                           FdWatcher* watcher) {
506   DCHECK_GE(fd, 0);
507   DCHECK(controller);
508   DCHECK(watcher);
509   DCHECK(mode == WATCH_READ || mode == WATCH_WRITE || mode == WATCH_READ_WRITE);
510   // WatchFileDescriptor should be called on the pump thread. It is not
511   // threadsafe, so the watcher may never be registered.
512   DCHECK_CALLED_ON_VALID_THREAD(watch_fd_caller_checker_);
513 
514   if (!controller->InitOrUpdate(fd, mode, watcher)) {
515     DPLOG(ERROR) << "FdWatchController init failed (fd=" << fd << ")";
516     return false;
517   }
518   return controller->Attach(this);
519 }
520 
HandleObserverPrepare()521 void MessagePumpGlib::HandleObserverPrepare() {
522   // |state_| may be null during tests.
523   if (!state_) {
524     return;
525   }
526 
527   if (state_->do_work_depth > 0) {
528     // Contingency 1.1.1 detailed above
529     SetScopedWorkItem();
530     ClearScopedWorkItem();
531   } else {
532     // Contingency 1.1.2 detailed above
533     NestIfRequired();
534   }
535 
536   return;
537 }
538 
HandleObserverCheck()539 bool MessagePumpGlib::HandleObserverCheck() {
540   // |state_| may be null in tests.
541   if (!state_) {
542     return FALSE;
543   }
544 
545   // Make sure we record the fact that we're awake. Chrome won't get Check()ed
546   // if a higher priority work item returns TRUE from Check().
547   EnsureSetScopedWorkItem();
548   if (state_->do_work_depth > 0) {
549     // Contingency 2.1.1
550     ClearScopedWorkItem();
551   }
552 
553   // The observer never needs to run anything.
554   return FALSE;
555 }
556 
557 // Return the timeout we want passed to poll.
HandlePrepare()558 int MessagePumpGlib::HandlePrepare() {
559   // |state_| may be null during tests.
560   if (!state_)
561     return 0;
562 
563   const int next_wakeup_millis =
564       GetTimeIntervalMilliseconds(state_->next_work_info.delayed_run_time);
565   if (next_wakeup_millis != 0) {
566     // When this is called, it is not possible to know for sure if a
567     // ScopedWorkItem is on the stack, because HandleObserverCheck may have set
568     // it during an iteration of the pump where a high priority native work item
569     // executed.
570     EnsureClearedScopedWorkItem();
571     state_->delegate->BeforeWait();
572   }
573 
574   return next_wakeup_millis;
575 }
576 
HandleCheck()577 bool MessagePumpGlib::HandleCheck() {
578   if (!state_)  // state_ may be null during tests.
579     return false;
580 
581   // Ensure pump is awake.
582   EnsureSetScopedWorkItem();
583 
584   if (state_->do_work_depth > 0) {
585     // Contingency 2.1.1
586     ClearScopedWorkItem();
587   }
588 
589   // We usually have a single message on the wakeup pipe, since we are only
590   // signaled when the queue went from empty to non-empty, but there can be
591   // two messages if a task posted a task, hence we read at most two bytes.
592   // The glib poll will tell us whether there was data, so this read
593   // shouldn't block.
594   if (wakeup_gpollfd_->revents & G_IO_IN) {
595     char msg[2];
596     const long num_bytes = HANDLE_EINTR(read(wakeup_pipe_read_, msg, 2));
597     if (num_bytes < 1) {
598       NOTREACHED() << "Error reading from the wakeup pipe.";
599     }
600     DCHECK((num_bytes == 1 && msg[0] == '!') ||
601            (num_bytes == 2 && msg[0] == '!' && msg[1] == '!'));
602     // Since we ate the message, we need to record that we have immediate work,
603     // because HandleCheck() may be called without HandleDispatch being called
604     // afterwards.
605     state_->next_work_info = {TimeTicks()};
606     return true;
607   }
608 
609   // As described in the summary at the top : Check is a second-chance to
610   // Prepare, verify whether we have work ready again.
611   if (GetTimeIntervalMilliseconds(state_->next_work_info.delayed_run_time) ==
612       0) {
613     return true;
614   }
615 
616   return false;
617 }
618 
HandleDispatch()619 void MessagePumpGlib::HandleDispatch() {
620   // Contingency 3.2.1
621   EnsureClearedScopedWorkItem();
622 
623   // Contingency 3.1.1
624   ++state_->do_work_depth;
625   state_->next_work_info = state_->delegate->DoWork();
626   --state_->do_work_depth;
627 
628   if (state_ && state_->do_work_depth > 0) {
629     // Contingency 3.1.2
630     EnsureClearedScopedWorkItem();
631   }
632 }
633 
Run(Delegate * delegate)634 void MessagePumpGlib::Run(Delegate* delegate) {
635   RunState state(delegate);
636 
637   RunState* previous_state = state_;
638   state_ = &state;
639 
640   // We really only do a single task for each iteration of the loop.  If we
641   // have done something, assume there is likely something more to do.  This
642   // will mean that we don't block on the message pump until there was nothing
643   // more to do.  We also set this to true to make sure not to block on the
644   // first iteration of the loop, so RunUntilIdle() works correctly.
645   bool more_work_is_plausible = true;
646 
647   // We run our own loop instead of using g_main_loop_quit in one of the
648   // callbacks.  This is so we only quit our own loops, and we don't quit
649   // nested loops run by others.  TODO(deanm): Is this what we want?
650   for (;;) {
651     // ScopedWorkItem to account for any native work until the runloop starts
652     // running chrome work.
653     SetScopedWorkItem();
654 
655     // Don't block if we think we have more work to do.
656     bool block = !more_work_is_plausible;
657 
658     OnEntryToGlib();
659     more_work_is_plausible = g_main_context_iteration(context_, block);
660     OnExitFromGlib();
661 
662     if (state_->should_quit)
663       break;
664 
665     // Contingency 4.2.1
666     EnsureClearedScopedWorkItem();
667 
668     // Contingency 4.1.1
669     ++state_->do_work_depth;
670     state_->next_work_info = state_->delegate->DoWork();
671     --state_->do_work_depth;
672 
673     more_work_is_plausible |= state_->next_work_info.is_immediate();
674     if (state_->should_quit)
675       break;
676 
677     if (more_work_is_plausible)
678       continue;
679 
680     more_work_is_plausible = state_->delegate->DoIdleWork();
681     if (state_->should_quit)
682       break;
683   }
684 
685   state_ = previous_state;
686 }
687 
Quit()688 void MessagePumpGlib::Quit() {
689   if (state_) {
690     state_->should_quit = true;
691   } else {
692     NOTREACHED() << "Quit called outside Run!";
693   }
694 }
695 
ScheduleWork()696 void MessagePumpGlib::ScheduleWork() {
697   // This can be called on any thread, so we don't want to touch any state
698   // variables as we would then need locks all over.  This ensures that if
699   // we are sleeping in a poll that we will wake up.
700   char msg = '!';
701   if (HANDLE_EINTR(write(wakeup_pipe_write_, &msg, 1)) != 1) {
702     NOTREACHED() << "Could not write to the UI message loop wakeup pipe!";
703   }
704 }
705 
ScheduleDelayedWork(const Delegate::NextWorkInfo & next_work_info)706 void MessagePumpGlib::ScheduleDelayedWork(
707     const Delegate::NextWorkInfo& next_work_info) {
708   // We need to wake up the loop in case the poll timeout needs to be
709   // adjusted.  This will cause us to try to do work, but that's OK.
710   ScheduleWork();
711 }
712 
HandleFdWatchCheck(FdWatchController * controller)713 bool MessagePumpGlib::HandleFdWatchCheck(FdWatchController* controller) {
714   DCHECK(controller);
715   gushort flags = controller->poll_fd_->revents;
716   return (flags & G_IO_IN) || (flags & G_IO_OUT);
717 }
718 
HandleFdWatchDispatch(FdWatchController * controller)719 void MessagePumpGlib::HandleFdWatchDispatch(FdWatchController* controller) {
720   DCHECK(controller);
721   DCHECK(controller->poll_fd_);
722   gushort flags = controller->poll_fd_->revents;
723   if ((flags & G_IO_IN) && (flags & G_IO_OUT)) {
724     // Both callbacks will be called. It is necessary to check that
725     // |controller| is not destroyed.
726     bool controller_was_destroyed = false;
727     controller->was_destroyed_ = &controller_was_destroyed;
728     controller->NotifyCanWrite();
729     if (!controller_was_destroyed)
730       controller->NotifyCanRead();
731     if (!controller_was_destroyed)
732       controller->was_destroyed_ = nullptr;
733   } else if (flags & G_IO_IN) {
734     controller->NotifyCanRead();
735   } else if (flags & G_IO_OUT) {
736     controller->NotifyCanWrite();
737   }
738 }
739 
ShouldQuit() const740 bool MessagePumpGlib::ShouldQuit() const {
741   CHECK(state_);
742   return state_->should_quit;
743 }
744 
SetScopedWorkItem()745 void MessagePumpGlib::SetScopedWorkItem() {
746   // |state_| can be null during tests
747   if (!state_) {
748     return;
749   }
750   // If there exists a ScopedDoWorkItem in the current RunState, it cannot be
751   // overwritten.
752   CHECK(state_->scoped_do_work_item.IsNull());
753 
754   // In the case that we're more than two work items deep, don't bother tracking
755   // individual native events anymore. Note that this won't cause out-of-order
756   // end work items, because the work item is cleared before entering the second
757   // DoWork().
758   if (state_->do_work_depth < 2) {
759     state_->scoped_do_work_item = state_->delegate->BeginWorkItem();
760   }
761 }
762 
ClearScopedWorkItem()763 void MessagePumpGlib::ClearScopedWorkItem() {
764   // |state_| can be null during tests
765   if (!state_) {
766     return;
767   }
768 
769   CHECK(!state_->scoped_do_work_item.IsNull());
770   // See identical check in SetScopedWorkItem
771   if (state_->do_work_depth < 2) {
772     state_->scoped_do_work_item = Delegate::ScopedDoWorkItem();
773   }
774 }
775 
EnsureSetScopedWorkItem()776 void MessagePumpGlib::EnsureSetScopedWorkItem() {
777   // |state_| can be null during tests
778   if (!state_) {
779     return;
780   }
781   if (state_->scoped_do_work_item.IsNull()) {
782     SetScopedWorkItem();
783   }
784 }
785 
EnsureClearedScopedWorkItem()786 void MessagePumpGlib::EnsureClearedScopedWorkItem() {
787   // |state_| can be null during tests
788   if (!state_) {
789     return;
790   }
791   if (!state_->scoped_do_work_item.IsNull()) {
792     ClearScopedWorkItem();
793   }
794 }
795 
RegisterNested()796 void MessagePumpGlib::RegisterNested() {
797   // |state_| can be null during tests
798   if (!state_) {
799     return;
800   }
801   CHECK(state_->native_loop_do_work_item.IsNull());
802 
803   // Transfer `scoped_do_work_item` to `native_do_work_item`, and so the
804   // ephemeral `scoped_do_work_item` will be coming in and out of existence on
805   // top of `native_do_work_item`, whose state hasn't been deleted.
806 
807   if (state_->scoped_do_work_item.IsNull()) {
808     state_->native_loop_do_work_item = state_->delegate->BeginWorkItem();
809   } else {
810     // This clears state_->scoped_do_work_item.
811     state_->native_loop_do_work_item = std::move(state_->scoped_do_work_item);
812   }
813   SetScopedWorkItem();
814   ClearScopedWorkItem();
815 }
816 
UnregisterNested()817 void MessagePumpGlib::UnregisterNested() {
818   // |state_| can be null during tests
819   if (!state_) {
820     return;
821   }
822   CHECK(!state_->native_loop_do_work_item.IsNull());
823 
824   EnsureClearedScopedWorkItem();
825   // Nesting exits here.
826   state_->native_loop_do_work_item = Delegate::ScopedDoWorkItem();
827 }
828 
NestIfRequired()829 void MessagePumpGlib::NestIfRequired() {
830   // |state_| can be null during tests
831   if (!state_) {
832     return;
833   }
834   if (state_->native_loop_do_work_item.IsNull() &&
835       state_->g_depth_on_iteration.has_value() &&
836       g_main_depth() != state_->g_depth_on_iteration.value()) {
837     RegisterNested();
838   }
839 }
840 
UnnestIfRequired()841 void MessagePumpGlib::UnnestIfRequired() {
842   // |state_| can be null during tests
843   if (!state_) {
844     return;
845   }
846   if (!state_->native_loop_do_work_item.IsNull()) {
847     UnregisterNested();
848   }
849 }
850 
OnEntryToGlib()851 void MessagePumpGlib::OnEntryToGlib() {
852   // |state_| can be null during tests
853   if (!state_) {
854     return;
855   }
856   CHECK(!state_->g_depth_on_iteration.has_value());
857   state_->g_depth_on_iteration.emplace(g_main_depth());
858 }
859 
OnExitFromGlib()860 void MessagePumpGlib::OnExitFromGlib() {
861   // |state_| can be null during tests
862   if (!state_) {
863     return;
864   }
865   state_->g_depth_on_iteration.reset();
866   UnnestIfRequired();
867 }
868 
869 }  // namespace base
870