• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * aidl interface for wpa_hostapd daemon
3  * Copyright (c) 2004-2018, Jouni Malinen <j@w1.fi>
4  * Copyright (c) 2004-2018, Roshan Pius <rpius@google.com>
5  *
6  * This software may be distributed under the terms of the BSD license.
7  * See README for more details.
8  */
9 #include <iomanip>
10 #include <sstream>
11 #include <string>
12 #include <vector>
13 #include <net/if.h>
14 #include <sys/socket.h>
15 #include <linux/if_bridge.h>
16 
17 #include <android-base/file.h>
18 #include <android-base/stringprintf.h>
19 #include <android-base/unique_fd.h>
20 
21 #include "hostapd.h"
22 #include <aidl/android/hardware/wifi/hostapd/ApInfo.h>
23 #include <aidl/android/hardware/wifi/hostapd/BandMask.h>
24 #include <aidl/android/hardware/wifi/hostapd/ChannelParams.h>
25 #include <aidl/android/hardware/wifi/hostapd/ClientInfo.h>
26 #include <aidl/android/hardware/wifi/hostapd/EncryptionType.h>
27 #include <aidl/android/hardware/wifi/hostapd/HostapdStatusCode.h>
28 #include <aidl/android/hardware/wifi/hostapd/IfaceParams.h>
29 #include <aidl/android/hardware/wifi/hostapd/NetworkParams.h>
30 #include <aidl/android/hardware/wifi/hostapd/ParamSizeLimits.h>
31 
32 extern "C"
33 {
34 #include "common/wpa_ctrl.h"
35 #include "drivers/linux_ioctl.h"
36 }
37 
38 // The AIDL implementation for hostapd creates a hostapd.conf dynamically for
39 // each interface. This file can then be used to hook onto the normal config
40 // file parsing logic in hostapd code.  Helps us to avoid duplication of code
41 // in the AIDL interface.
42 // TOOD(b/71872409): Add unit tests for this.
43 namespace {
44 constexpr char kConfFileNameFmt[] = "/data/vendor/wifi/hostapd/hostapd_%s.conf";
45 
46 using android::base::RemoveFileIfExists;
47 using android::base::StringPrintf;
48 using android::base::WriteStringToFile;
49 using aidl::android::hardware::wifi::hostapd::BandMask;
50 using aidl::android::hardware::wifi::hostapd::ChannelBandwidth;
51 using aidl::android::hardware::wifi::hostapd::ChannelParams;
52 using aidl::android::hardware::wifi::hostapd::EncryptionType;
53 using aidl::android::hardware::wifi::hostapd::Generation;
54 using aidl::android::hardware::wifi::hostapd::HostapdStatusCode;
55 using aidl::android::hardware::wifi::hostapd::IfaceParams;
56 using aidl::android::hardware::wifi::hostapd::NetworkParams;
57 using aidl::android::hardware::wifi::hostapd::ParamSizeLimits;
58 
59 int band2Ghz = (int)BandMask::BAND_2_GHZ;
60 int band5Ghz = (int)BandMask::BAND_5_GHZ;
61 int band6Ghz = (int)BandMask::BAND_6_GHZ;
62 int band60Ghz = (int)BandMask::BAND_60_GHZ;
63 
64 #define MAX_PORTS 1024
GetInterfacesInBridge(std::string br_name,std::vector<std::string> * interfaces)65 bool GetInterfacesInBridge(std::string br_name,
66                            std::vector<std::string>* interfaces) {
67 	android::base::unique_fd sock(socket(PF_INET, SOCK_DGRAM | SOCK_CLOEXEC, 0));
68 	if (sock.get() < 0) {
69 		wpa_printf(MSG_ERROR, "Failed to create sock (%s) in %s",
70 			strerror(errno), __FUNCTION__);
71 		return false;
72 	}
73 
74 	struct ifreq request;
75 	int i, ifindices[MAX_PORTS];
76 	char if_name[IFNAMSIZ];
77 	unsigned long args[3];
78 
79 	memset(ifindices, 0, MAX_PORTS * sizeof(int));
80 
81 	args[0] = BRCTL_GET_PORT_LIST;
82 	args[1] = (unsigned long) ifindices;
83 	args[2] = MAX_PORTS;
84 
85 	strlcpy(request.ifr_name, br_name.c_str(), IFNAMSIZ);
86 	request.ifr_data = (char *)args;
87 
88 	if (ioctl(sock.get(), SIOCDEVPRIVATE, &request) < 0) {
89 		wpa_printf(MSG_ERROR, "Failed to ioctl SIOCDEVPRIVATE in %s",
90 			__FUNCTION__);
91 		return false;
92 	}
93 
94 	for (i = 0; i < MAX_PORTS; i ++) {
95 		memset(if_name, 0, IFNAMSIZ);
96 		if (ifindices[i] == 0 || !if_indextoname(ifindices[i], if_name)) {
97 			continue;
98 		}
99 		interfaces->push_back(if_name);
100 	}
101 	return true;
102 }
103 
WriteHostapdConfig(const std::string & interface_name,const std::string & config)104 std::string WriteHostapdConfig(
105     const std::string& interface_name, const std::string& config)
106 {
107 	const std::string file_path =
108 	    StringPrintf(kConfFileNameFmt, interface_name.c_str());
109 	if (WriteStringToFile(
110 		config, file_path, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP,
111 		getuid(), getgid())) {
112 		return file_path;
113 	}
114 	// Diagnose failure
115 	int error = errno;
116 	wpa_printf(
117 		MSG_ERROR, "Cannot write hostapd config to %s, error: %s",
118 		file_path.c_str(), strerror(error));
119 	struct stat st;
120 	int result = stat(file_path.c_str(), &st);
121 	if (result == 0) {
122 		wpa_printf(
123 			MSG_ERROR, "hostapd config file uid: %d, gid: %d, mode: %d",
124 			st.st_uid, st.st_gid, st.st_mode);
125 	} else {
126 		wpa_printf(
127 			MSG_ERROR,
128 			"Error calling stat() on hostapd config file: %s",
129 			strerror(errno));
130 	}
131 	return "";
132 }
133 
134 /*
135  * Get the op_class for a channel/band
136  * The logic here is based on Table E-4 in the 802.11 Specification
137  */
getOpClassForChannel(int channel,int band,bool support11n,bool support11ac)138 int getOpClassForChannel(int channel, int band, bool support11n, bool support11ac) {
139 	// 2GHz Band
140 	if ((band & band2Ghz) != 0) {
141 		if (channel == 14) {
142 			return 82;
143 		}
144 		if (channel >= 1 && channel <= 13) {
145 			if (!support11n) {
146 				//20MHz channel
147 				return 81;
148 			}
149 			if (channel <= 9) {
150 				// HT40 with secondary channel above primary
151 				return 83;
152 			}
153 			// HT40 with secondary channel below primary
154 			return 84;
155 		}
156 		// Error
157 		return 0;
158 	}
159 
160 	// 5GHz Band
161 	if ((band & band5Ghz) != 0) {
162 		if (support11ac) {
163 			switch (channel) {
164 				case 42:
165 				case 58:
166 				case 106:
167 				case 122:
168 				case 138:
169 				case 155:
170 					// 80MHz channel
171 					return 128;
172 				case 50:
173 				case 114:
174 					// 160MHz channel
175 					return 129;
176 			}
177 		}
178 
179 		if (!support11n) {
180 			if (channel >= 36 && channel <= 48) {
181 				return 115;
182 			}
183 			if (channel >= 52 && channel <= 64) {
184 				return 118;
185 			}
186 			if (channel >= 100 && channel <= 144) {
187 				return 121;
188 			}
189 			if (channel >= 149 && channel <= 161) {
190 				return 124;
191 			}
192 			if (channel >= 165 && channel <= 169) {
193 				return 125;
194 			}
195 		} else {
196 			switch (channel) {
197 				case 36:
198 				case 44:
199 					// HT40 with secondary channel above primary
200 					return 116;
201 				case 40:
202 				case 48:
203 					// HT40 with secondary channel below primary
204 					return 117;
205 				case 52:
206 				case 60:
207 					// HT40 with secondary channel above primary
208 					return  119;
209 				case 56:
210 				case 64:
211 					// HT40 with secondary channel below primary
212 					return 120;
213 				case 100:
214 				case 108:
215 				case 116:
216 				case 124:
217 				case 132:
218 				case 140:
219 					// HT40 with secondary channel above primary
220 					return 122;
221 				case 104:
222 				case 112:
223 				case 120:
224 				case 128:
225 				case 136:
226 				case 144:
227 					// HT40 with secondary channel below primary
228 					return 123;
229 				case 149:
230 				case 157:
231 					// HT40 with secondary channel above primary
232 					return 126;
233 				case 153:
234 				case 161:
235 					// HT40 with secondary channel below primary
236 					return 127;
237 			}
238 		}
239 		// Error
240 		return 0;
241 	}
242 
243 	// 6GHz Band
244 	if ((band & band6Ghz) != 0) {
245 		// Channels 1, 5. 9, 13, ...
246 		if ((channel & 0x03) == 0x01) {
247 			// 20MHz channel
248 			return 131;
249 		}
250 		// Channels 3, 11, 19, 27, ...
251 		if ((channel & 0x07) == 0x03) {
252 			// 40MHz channel
253 			return 132;
254 		}
255 		// Channels 7, 23, 39, 55, ...
256 		if ((channel & 0x0F) == 0x07) {
257 			// 80MHz channel
258 			return 133;
259 		}
260 		// Channels 15, 47, 69, ...
261 		if ((channel & 0x1F) == 0x0F) {
262 			// 160MHz channel
263 			return 134;
264 		}
265 		if (channel == 2) {
266 			// 20MHz channel
267 			return 136;
268 		}
269 		// Error
270 		return 0;
271 	}
272 
273 	if ((band & band60Ghz) != 0) {
274 		if (1 <= channel && channel <= 8) {
275 			return 180;
276 		} else if (9 <= channel && channel <= 15) {
277 			return 181;
278 		} else if (17 <= channel && channel <= 22) {
279 			return 182;
280 		} else if (25 <= channel && channel <= 29) {
281 			return 183;
282 		}
283 		// Error
284 		return 0;
285 	}
286 
287 	return 0;
288 }
289 
validatePassphrase(int passphrase_len,int min_len,int max_len)290 bool validatePassphrase(int passphrase_len, int min_len, int max_len)
291 {
292 	if (min_len != -1 && passphrase_len < min_len) return false;
293 	if (max_len != -1 && passphrase_len > max_len) return false;
294 	return true;
295 }
296 
CreateHostapdConfig(const IfaceParams & iface_params,const ChannelParams & channelParams,const NetworkParams & nw_params,const std::string br_name,const std::string owe_transition_ifname)297 std::string CreateHostapdConfig(
298 	const IfaceParams& iface_params,
299 	const ChannelParams& channelParams,
300 	const NetworkParams& nw_params,
301 	const std::string br_name,
302 	const std::string owe_transition_ifname)
303 {
304 	if (nw_params.ssid.size() >
305 		static_cast<uint32_t>(
306 		ParamSizeLimits::SSID_MAX_LEN_IN_BYTES)) {
307 		wpa_printf(
308 			MSG_ERROR, "Invalid SSID size: %zu", nw_params.ssid.size());
309 		return "";
310 	}
311 
312 	// SSID string
313 	std::stringstream ss;
314 	ss << std::hex;
315 	ss << std::setfill('0');
316 	for (uint8_t b : nw_params.ssid) {
317 		ss << std::setw(2) << static_cast<unsigned int>(b);
318 	}
319 	const std::string ssid_as_string = ss.str();
320 
321 	// Encryption config string
322 	uint32_t band = 0;
323 	band |= static_cast<uint32_t>(channelParams.bandMask);
324 	bool is_2Ghz_band_only = band == static_cast<uint32_t>(band2Ghz);
325 	bool is_6Ghz_band_only = band == static_cast<uint32_t>(band6Ghz);
326 	bool is_60Ghz_band_only = band == static_cast<uint32_t>(band60Ghz);
327 	std::string encryption_config_as_string;
328 	switch (nw_params.encryptionType) {
329 	case EncryptionType::NONE:
330 		// no security params
331 		break;
332 	case EncryptionType::WPA:
333 		if (!validatePassphrase(
334 			nw_params.passphrase.size(),
335 			static_cast<uint32_t>(ParamSizeLimits::
336 				WPA2_PSK_PASSPHRASE_MIN_LEN_IN_BYTES),
337 			static_cast<uint32_t>(ParamSizeLimits::
338 				WPA2_PSK_PASSPHRASE_MAX_LEN_IN_BYTES))) {
339 			return "";
340 		}
341 		encryption_config_as_string = StringPrintf(
342 			"wpa=3\n"
343 			"wpa_pairwise=%s\n"
344 			"wpa_passphrase=%s",
345 			is_60Ghz_band_only ? "GCMP" : "TKIP CCMP",
346 			nw_params.passphrase.c_str());
347 		break;
348 	case EncryptionType::WPA2:
349 		if (!validatePassphrase(
350 			nw_params.passphrase.size(),
351 			static_cast<uint32_t>(ParamSizeLimits::
352 				WPA2_PSK_PASSPHRASE_MIN_LEN_IN_BYTES),
353 			static_cast<uint32_t>(ParamSizeLimits::
354 				WPA2_PSK_PASSPHRASE_MAX_LEN_IN_BYTES))) {
355 			return "";
356 		}
357 		encryption_config_as_string = StringPrintf(
358 			"wpa=2\n"
359 			"rsn_pairwise=%s\n"
360 #ifdef ENABLE_HOSTAPD_CONFIG_80211W_MFP_OPTIONAL
361 			"ieee80211w=1\n"
362 #endif
363 			"wpa_passphrase=%s",
364 			is_60Ghz_band_only ? "GCMP" : "CCMP",
365 			nw_params.passphrase.c_str());
366 		break;
367 	case EncryptionType::WPA3_SAE_TRANSITION:
368 		if (!validatePassphrase(
369 			nw_params.passphrase.size(),
370 			static_cast<uint32_t>(ParamSizeLimits::
371 				WPA2_PSK_PASSPHRASE_MIN_LEN_IN_BYTES),
372 			static_cast<uint32_t>(ParamSizeLimits::
373 				WPA2_PSK_PASSPHRASE_MAX_LEN_IN_BYTES))) {
374 			return "";
375 		}
376 		// WPA3 transition mode or SAE+WPA_PSK key management(AKM) is not allowed in 6GHz.
377 		// Auto-convert any such configurations to SAE.
378 		if ((band & band6Ghz) != 0) {
379 			wpa_printf(MSG_INFO, "WPA3_SAE_TRANSITION configured in 6GHz band."
380 				   "Enable only SAE in key_mgmt");
381 			encryption_config_as_string = StringPrintf(
382 				"wpa=2\n"
383 				"rsn_pairwise=CCMP\n"
384 				"wpa_key_mgmt=%s\n"
385 				"ieee80211w=2\n"
386 				"sae_require_mfp=2\n"
387 				"sae_pwe=%d\n"
388 				"sae_password=%s",
389 #ifdef CONFIG_IEEE80211BE
390 				iface_params.hwModeParams.enable80211BE ?
391 					"SAE SAE-EXT-KEY" : "SAE",
392 #else
393 					"SAE",
394 #endif
395 				is_6Ghz_band_only ? 1 : 2,
396 				nw_params.passphrase.c_str());
397 		} else {
398 			encryption_config_as_string = StringPrintf(
399 				"wpa=2\n"
400 				"rsn_pairwise=%s\n"
401 				"wpa_key_mgmt=%s\n"
402 				"ieee80211w=1\n"
403 				"sae_require_mfp=1\n"
404 				"wpa_passphrase=%s\n"
405 				"sae_password=%s",
406 				is_60Ghz_band_only ? "GCMP" : "CCMP",
407 #ifdef CONFIG_IEEE80211BE
408 				iface_params.hwModeParams.enable80211BE ?
409 					"WPA-PSK SAE SAE-EXT-KEY" : "WPA-PSK SAE",
410 #else
411 					"WPA-PSK SAE",
412 #endif
413 				nw_params.passphrase.c_str(),
414 				nw_params.passphrase.c_str());
415                 }
416 		break;
417 	case EncryptionType::WPA3_SAE:
418 		if (!validatePassphrase(nw_params.passphrase.size(), 1, -1)) {
419 			return "";
420 		}
421 		encryption_config_as_string = StringPrintf(
422 			"wpa=2\n"
423 			"rsn_pairwise=%s\n"
424 			"wpa_key_mgmt=%s\n"
425 			"ieee80211w=2\n"
426 			"sae_require_mfp=2\n"
427 			"sae_pwe=%d\n"
428 			"sae_password=%s",
429 			is_60Ghz_band_only ? "GCMP" : "CCMP",
430 #ifdef CONFIG_IEEE80211BE
431 			iface_params.hwModeParams.enable80211BE ? "SAE SAE-EXT-KEY" : "SAE",
432 #else
433 			"SAE",
434 #endif
435 			is_6Ghz_band_only ? 1 : 2,
436 			nw_params.passphrase.c_str());
437 		break;
438 	case EncryptionType::WPA3_OWE_TRANSITION:
439 		encryption_config_as_string = StringPrintf(
440 			"wpa=2\n"
441 			"rsn_pairwise=%s\n"
442 			"wpa_key_mgmt=OWE\n"
443 			"ieee80211w=2",
444 			is_60Ghz_band_only ? "GCMP" : "CCMP");
445 		break;
446 	case EncryptionType::WPA3_OWE:
447 		encryption_config_as_string = StringPrintf(
448 			"wpa=2\n"
449 			"rsn_pairwise=%s\n"
450 			"wpa_key_mgmt=OWE\n"
451 			"ieee80211w=2",
452 			is_60Ghz_band_only ? "GCMP" : "CCMP");
453 		break;
454 	default:
455 		wpa_printf(MSG_ERROR, "Unknown encryption type");
456 		return "";
457 	}
458 
459 	std::string channel_config_as_string;
460 	bool isFirst = true;
461 	if (channelParams.enableAcs) {
462 		std::string freqList_as_string;
463 		for (const auto &range :
464 			channelParams.acsChannelFreqRangesMhz) {
465 			if (!isFirst) {
466 				freqList_as_string += ",";
467 			}
468 			isFirst = false;
469 
470 			if (range.startMhz != range.endMhz) {
471 				freqList_as_string +=
472 					StringPrintf("%d-%d", range.startMhz, range.endMhz);
473 			} else {
474 				freqList_as_string += StringPrintf("%d", range.startMhz);
475 			}
476 		}
477 		channel_config_as_string = StringPrintf(
478 			"channel=0\n"
479 			"acs_exclude_dfs=%d\n"
480 			"freqlist=%s",
481 			channelParams.acsShouldExcludeDfs,
482 			freqList_as_string.c_str());
483 	} else {
484 		int op_class = getOpClassForChannel(
485 			channelParams.channel,
486 			band,
487 			iface_params.hwModeParams.enable80211N,
488 			iface_params.hwModeParams.enable80211AC);
489 		channel_config_as_string = StringPrintf(
490 			"channel=%d\n"
491 			"op_class=%d",
492 			channelParams.channel, op_class);
493 	}
494 
495 	std::string hw_mode_as_string;
496 	std::string enable_edmg_as_string;
497 	std::string edmg_channel_as_string;
498 	bool is_60Ghz_used = false;
499 
500 	if (((band & band60Ghz) != 0)) {
501 		hw_mode_as_string = "hw_mode=ad";
502 		if (iface_params.hwModeParams.enableEdmg) {
503 			enable_edmg_as_string = "enable_edmg=1";
504 			edmg_channel_as_string = StringPrintf(
505 				"edmg_channel=%d",
506 				channelParams.channel);
507 		}
508 		is_60Ghz_used = true;
509 	} else if ((band & band2Ghz) != 0) {
510 		if (((band & band5Ghz) != 0)
511 		    || ((band & band6Ghz) != 0)) {
512 			hw_mode_as_string = "hw_mode=any";
513 		} else {
514 			hw_mode_as_string = "hw_mode=g";
515 		}
516 	} else if (((band & band5Ghz) != 0)
517 		    || ((band & band6Ghz) != 0)) {
518 			hw_mode_as_string = "hw_mode=a";
519 	} else {
520 		wpa_printf(MSG_ERROR, "Invalid band");
521 		return "";
522 	}
523 
524 	std::string he_params_as_string;
525 #ifdef CONFIG_IEEE80211AX
526 	if (iface_params.hwModeParams.enable80211AX && !is_60Ghz_used) {
527 		he_params_as_string = StringPrintf(
528 			"ieee80211ax=1\n"
529 			"he_su_beamformer=%d\n"
530 			"he_su_beamformee=%d\n"
531 			"he_mu_beamformer=%d\n"
532 			"he_twt_required=%d\n",
533 			iface_params.hwModeParams.enableHeSingleUserBeamformer ? 1 : 0,
534 			iface_params.hwModeParams.enableHeSingleUserBeamformee ? 1 : 0,
535 			iface_params.hwModeParams.enableHeMultiUserBeamformer ? 1 : 0,
536 			iface_params.hwModeParams.enableHeTargetWakeTime ? 1 : 0);
537 	} else {
538 		he_params_as_string = "ieee80211ax=0";
539 	}
540 #endif /* CONFIG_IEEE80211AX */
541 	std::string eht_params_as_string;
542 #ifdef CONFIG_IEEE80211BE
543 	if (iface_params.hwModeParams.enable80211BE && !is_60Ghz_used) {
544 		eht_params_as_string = "ieee80211be=1";
545 		/* TODO set eht_su_beamformer, eht_su_beamformee, eht_mu_beamformer */
546 	} else {
547 		eht_params_as_string = "ieee80211be=0";
548 	}
549 #endif /* CONFIG_IEEE80211BE */
550 
551 	std::string ht_cap_vht_oper_he_oper_chwidth_as_string;
552 	switch (iface_params.hwModeParams.maximumChannelBandwidth) {
553 	case ChannelBandwidth::BANDWIDTH_20:
554 		ht_cap_vht_oper_he_oper_chwidth_as_string = StringPrintf(
555 #ifdef CONFIG_IEEE80211AX
556 			"he_oper_chwidth=0\n"
557 #endif
558 			"vht_oper_chwidth=0");
559 		break;
560 	case ChannelBandwidth::BANDWIDTH_40:
561 		ht_cap_vht_oper_he_oper_chwidth_as_string = StringPrintf(
562 			"ht_capab=[HT40+]\n"
563 #ifdef CONFIG_IEEE80211AX
564 			"he_oper_chwidth=0\n"
565 #endif
566 			"vht_oper_chwidth=0");
567 		break;
568 	case ChannelBandwidth::BANDWIDTH_80:
569 		ht_cap_vht_oper_he_oper_chwidth_as_string = StringPrintf(
570 			"ht_capab=[HT40+]\n"
571 #ifdef CONFIG_IEEE80211AX
572 			"he_oper_chwidth=%d\n"
573 #endif
574 			"vht_oper_chwidth=%d",
575 #ifdef CONFIG_IEEE80211AX
576 			(iface_params.hwModeParams.enable80211AX && !is_60Ghz_used) ? 1 : 0,
577 #endif
578 			iface_params.hwModeParams.enable80211AC ? 1 : 0);
579 		break;
580 	case ChannelBandwidth::BANDWIDTH_160:
581 		ht_cap_vht_oper_he_oper_chwidth_as_string = StringPrintf(
582 			"ht_capab=[HT40+]\n"
583 #ifdef CONFIG_IEEE80211AX
584 			"he_oper_chwidth=%d\n"
585 #endif
586 			"vht_oper_chwidth=%d",
587 #ifdef CONFIG_IEEE80211AX
588 			(iface_params.hwModeParams.enable80211AX && !is_60Ghz_used) ? 2 : 0,
589 #endif
590 			iface_params.hwModeParams.enable80211AC ? 2 : 0);
591 		break;
592 	default:
593 		if (!is_2Ghz_band_only && !is_60Ghz_used) {
594 			if (iface_params.hwModeParams.enable80211AC) {
595 				ht_cap_vht_oper_he_oper_chwidth_as_string =
596 					"ht_capab=[HT40+]\n"
597 					"vht_oper_chwidth=1\n";
598 			}
599 #ifdef CONFIG_IEEE80211AX
600 			if (iface_params.hwModeParams.enable80211AX) {
601 				ht_cap_vht_oper_he_oper_chwidth_as_string += "he_oper_chwidth=1";
602 			}
603 #endif
604 		}
605 		break;
606 	}
607 
608 #ifdef CONFIG_INTERWORKING
609 	std::string access_network_params_as_string;
610 	if (nw_params.isMetered) {
611 		access_network_params_as_string = StringPrintf(
612 			"interworking=1\n"
613 			"access_network_type=2\n"); // CHARGEABLE_PUBLIC_NETWORK
614 	} else {
615 	    access_network_params_as_string = StringPrintf(
616 			"interworking=0\n");
617 	}
618 #endif /* CONFIG_INTERWORKING */
619 
620 	std::string bridge_as_string;
621 	if (!br_name.empty()) {
622 		bridge_as_string = StringPrintf("bridge=%s", br_name.c_str());
623 	}
624 
625 	// vendor_elements string
626 	std::string vendor_elements_as_string;
627 	if (nw_params.vendorElements.size() > 0) {
628 		std::stringstream ss;
629 		ss << std::hex;
630 		ss << std::setfill('0');
631 		for (uint8_t b : nw_params.vendorElements) {
632 			ss << std::setw(2) << static_cast<unsigned int>(b);
633 		}
634 		vendor_elements_as_string = StringPrintf("vendor_elements=%s", ss.str().c_str());
635 	}
636 
637 	std::string owe_transition_ifname_as_string;
638 	if (!owe_transition_ifname.empty()) {
639 		owe_transition_ifname_as_string = StringPrintf(
640 			"owe_transition_ifname=%s", owe_transition_ifname.c_str());
641 	}
642 
643 	return StringPrintf(
644 		"interface=%s\n"
645 		"driver=nl80211\n"
646 		"ctrl_interface=/data/vendor/wifi/hostapd/ctrl\n"
647 		// ssid2 signals to hostapd that the value is not a literal value
648 		// for use as a SSID.  In this case, we're giving it a hex
649 		// std::string and hostapd needs to expect that.
650 		"ssid2=%s\n"
651 		"%s\n"
652 		"ieee80211n=%d\n"
653 		"ieee80211ac=%d\n"
654 		"%s\n"
655 		"%s\n"
656 		"%s\n"
657 		"%s\n"
658 		"ignore_broadcast_ssid=%d\n"
659 		"wowlan_triggers=any\n"
660 #ifdef CONFIG_INTERWORKING
661 		"%s\n"
662 #endif /* CONFIG_INTERWORKING */
663 		"%s\n"
664 		"%s\n"
665 		"%s\n"
666 		"%s\n"
667 		"%s\n"
668 		"%s\n",
669 		iface_params.name.c_str(), ssid_as_string.c_str(),
670 		channel_config_as_string.c_str(),
671 		iface_params.hwModeParams.enable80211N ? 1 : 0,
672 		iface_params.hwModeParams.enable80211AC ? 1 : 0,
673 		he_params_as_string.c_str(),
674 		eht_params_as_string.c_str(),
675 		hw_mode_as_string.c_str(), ht_cap_vht_oper_he_oper_chwidth_as_string.c_str(),
676 		nw_params.isHidden ? 1 : 0,
677 #ifdef CONFIG_INTERWORKING
678 		access_network_params_as_string.c_str(),
679 #endif /* CONFIG_INTERWORKING */
680 		encryption_config_as_string.c_str(),
681 		bridge_as_string.c_str(),
682 		owe_transition_ifname_as_string.c_str(),
683 		enable_edmg_as_string.c_str(),
684 		edmg_channel_as_string.c_str(),
685 		vendor_elements_as_string.c_str());
686 }
687 
getGeneration(hostapd_hw_modes * current_mode)688 Generation getGeneration(hostapd_hw_modes *current_mode)
689 {
690 	wpa_printf(MSG_DEBUG, "getGeneration hwmode=%d, ht_enabled=%d,"
691 		   " vht_enabled=%d, he_supported=%d",
692 		   current_mode->mode, current_mode->ht_capab != 0,
693 		   current_mode->vht_capab != 0, current_mode->he_capab->he_supported);
694 	switch (current_mode->mode) {
695 	case HOSTAPD_MODE_IEEE80211B:
696 		return Generation::WIFI_STANDARD_LEGACY;
697 	case HOSTAPD_MODE_IEEE80211G:
698 		return current_mode->ht_capab == 0 ?
699 				Generation::WIFI_STANDARD_LEGACY : Generation::WIFI_STANDARD_11N;
700 	case HOSTAPD_MODE_IEEE80211A:
701 		if (current_mode->he_capab->he_supported) {
702 			return Generation::WIFI_STANDARD_11AX;
703 		}
704 		return current_mode->vht_capab == 0 ?
705 		       Generation::WIFI_STANDARD_11N : Generation::WIFI_STANDARD_11AC;
706 	case HOSTAPD_MODE_IEEE80211AD:
707 		return Generation::WIFI_STANDARD_11AD;
708 	default:
709 		return Generation::WIFI_STANDARD_UNKNOWN;
710 	}
711 }
712 
getChannelBandwidth(struct hostapd_config * iconf)713 ChannelBandwidth getChannelBandwidth(struct hostapd_config *iconf)
714 {
715 	wpa_printf(MSG_DEBUG, "getChannelBandwidth %d, isHT=%d, isHT40=%d",
716 		   iconf->vht_oper_chwidth, iconf->ieee80211n,
717 		   iconf->secondary_channel);
718 	switch (iconf->vht_oper_chwidth) {
719 	case CONF_OPER_CHWIDTH_80MHZ:
720 		return ChannelBandwidth::BANDWIDTH_80;
721 	case CONF_OPER_CHWIDTH_80P80MHZ:
722 		return ChannelBandwidth::BANDWIDTH_80P80;
723 		break;
724 	case CONF_OPER_CHWIDTH_160MHZ:
725 		return ChannelBandwidth::BANDWIDTH_160;
726 		break;
727 	case CONF_OPER_CHWIDTH_USE_HT:
728 		if (iconf->ieee80211n) {
729 			return iconf->secondary_channel != 0 ?
730 				ChannelBandwidth::BANDWIDTH_40 : ChannelBandwidth::BANDWIDTH_20;
731 		}
732 		return ChannelBandwidth::BANDWIDTH_20_NOHT;
733 	case CONF_OPER_CHWIDTH_2160MHZ:
734 		return ChannelBandwidth::BANDWIDTH_2160;
735 	case CONF_OPER_CHWIDTH_4320MHZ:
736 		return ChannelBandwidth::BANDWIDTH_4320;
737 	case CONF_OPER_CHWIDTH_6480MHZ:
738 		return ChannelBandwidth::BANDWIDTH_6480;
739 	case CONF_OPER_CHWIDTH_8640MHZ:
740 		return ChannelBandwidth::BANDWIDTH_8640;
741 	default:
742 		return ChannelBandwidth::BANDWIDTH_INVALID;
743 	}
744 }
745 
forceStaDisconnection(struct hostapd_data * hapd,const std::vector<uint8_t> & client_address,const uint16_t reason_code)746 bool forceStaDisconnection(struct hostapd_data* hapd,
747 			   const std::vector<uint8_t>& client_address,
748 			   const uint16_t reason_code) {
749 	struct sta_info *sta;
750 	if (client_address.size() != ETH_ALEN) {
751 		return false;
752 	}
753 	for (sta = hapd->sta_list; sta; sta = sta->next) {
754 		int res;
755 		res = memcmp(sta->addr, client_address.data(), ETH_ALEN);
756 		if (res == 0) {
757 			wpa_printf(MSG_INFO, "Force client:" MACSTR " disconnect with reason: %d",
758 			    MAC2STR(client_address.data()), reason_code);
759 			ap_sta_disconnect(hapd, sta, sta->addr, reason_code);
760 			return true;
761 		}
762 	}
763 	return false;
764 }
765 
766 // hostapd core functions accept "C" style function pointers, so use global
767 // functions to pass to the hostapd core function and store the corresponding
768 // std::function methods to be invoked.
769 //
770 // NOTE: Using the pattern from the vendor HAL (wifi_legacy_hal.cpp).
771 //
772 // Callback to be invoked once setup is complete
773 std::function<void(struct hostapd_data*)> on_setup_complete_internal_callback;
onAsyncSetupCompleteCb(void * ctx)774 void onAsyncSetupCompleteCb(void* ctx)
775 {
776 	struct hostapd_data* iface_hapd = (struct hostapd_data*)ctx;
777 	if (on_setup_complete_internal_callback) {
778 		on_setup_complete_internal_callback(iface_hapd);
779 		// Invalidate this callback since we don't want this firing
780 		// again in single AP mode.
781 		if (strlen(iface_hapd->conf->bridge) > 0) {
782 			on_setup_complete_internal_callback = nullptr;
783 		}
784 	}
785 }
786 
787 // Callback to be invoked on hotspot client connection/disconnection
788 std::function<void(struct hostapd_data*, const u8 *mac_addr, int authorized,
789 		const u8 *p2p_dev_addr)> on_sta_authorized_internal_callback;
onAsyncStaAuthorizedCb(void * ctx,const u8 * mac_addr,int authorized,const u8 * p2p_dev_addr)790 void onAsyncStaAuthorizedCb(void* ctx, const u8 *mac_addr, int authorized,
791 		const u8 *p2p_dev_addr)
792 {
793 	struct hostapd_data* iface_hapd = (struct hostapd_data*)ctx;
794 	if (on_sta_authorized_internal_callback) {
795 		on_sta_authorized_internal_callback(iface_hapd, mac_addr,
796 			authorized, p2p_dev_addr);
797 	}
798 }
799 
800 std::function<void(struct hostapd_data*, int level,
801 			enum wpa_msg_type type, const char *txt,
802 			size_t len)> on_wpa_msg_internal_callback;
803 
onAsyncWpaEventCb(void * ctx,int level,enum wpa_msg_type type,const char * txt,size_t len)804 void onAsyncWpaEventCb(void *ctx, int level,
805 			enum wpa_msg_type type, const char *txt,
806 			size_t len)
807 {
808 	struct hostapd_data* iface_hapd = (struct hostapd_data*)ctx;
809 	if (on_wpa_msg_internal_callback) {
810 		on_wpa_msg_internal_callback(iface_hapd, level,
811 					type, txt, len);
812 	}
813 }
814 
createStatus(HostapdStatusCode status_code)815 inline ndk::ScopedAStatus createStatus(HostapdStatusCode status_code) {
816 	return ndk::ScopedAStatus::fromServiceSpecificError(
817 		static_cast<int32_t>(status_code));
818 }
819 
createStatusWithMsg(HostapdStatusCode status_code,std::string msg)820 inline ndk::ScopedAStatus createStatusWithMsg(
821 	HostapdStatusCode status_code, std::string msg)
822 {
823 	return ndk::ScopedAStatus::fromServiceSpecificErrorWithMessage(
824 		static_cast<int32_t>(status_code), msg.c_str());
825 }
826 
827 // Method called by death_notifier_ on client death.
onDeath(void * cookie)828 void onDeath(void* cookie) {
829 	wpa_printf(MSG_ERROR, "Client died. Terminating...");
830 	eloop_terminate();
831 }
832 
833 }  // namespace
834 
835 namespace aidl {
836 namespace android {
837 namespace hardware {
838 namespace wifi {
839 namespace hostapd {
840 
Hostapd(struct hapd_interfaces * interfaces)841 Hostapd::Hostapd(struct hapd_interfaces* interfaces)
842 	: interfaces_(interfaces)
843 {
844 	death_notifier_ = AIBinder_DeathRecipient_new(onDeath);
845 }
846 
addAccessPoint(const IfaceParams & iface_params,const NetworkParams & nw_params)847 ::ndk::ScopedAStatus Hostapd::addAccessPoint(
848 	const IfaceParams& iface_params, const NetworkParams& nw_params)
849 {
850 	return addAccessPointInternal(iface_params, nw_params);
851 }
852 
removeAccessPoint(const std::string & iface_name)853 ::ndk::ScopedAStatus Hostapd::removeAccessPoint(const std::string& iface_name)
854 {
855 	return removeAccessPointInternal(iface_name);
856 }
857 
terminate()858 ::ndk::ScopedAStatus Hostapd::terminate()
859 {
860 	wpa_printf(MSG_INFO, "Terminating...");
861 	// Clear the callback to avoid IPCThreadState shutdown during the
862 	// callback event.
863 	callbacks_.clear();
864 	eloop_terminate();
865 	return ndk::ScopedAStatus::ok();
866 }
867 
registerCallback(const std::shared_ptr<IHostapdCallback> & callback)868 ::ndk::ScopedAStatus Hostapd::registerCallback(
869 	const std::shared_ptr<IHostapdCallback>& callback)
870 {
871 	return registerCallbackInternal(callback);
872 }
873 
forceClientDisconnect(const std::string & iface_name,const std::vector<uint8_t> & client_address,Ieee80211ReasonCode reason_code)874 ::ndk::ScopedAStatus Hostapd::forceClientDisconnect(
875 	const std::string& iface_name, const std::vector<uint8_t>& client_address,
876 	Ieee80211ReasonCode reason_code)
877 {
878 	return forceClientDisconnectInternal(iface_name, client_address, reason_code);
879 }
880 
setDebugParams(DebugLevel level)881 ::ndk::ScopedAStatus Hostapd::setDebugParams(DebugLevel level)
882 {
883 	return setDebugParamsInternal(level);
884 }
885 
addAccessPointInternal(const IfaceParams & iface_params,const NetworkParams & nw_params)886 ::ndk::ScopedAStatus Hostapd::addAccessPointInternal(
887 	const IfaceParams& iface_params,
888 	const NetworkParams& nw_params)
889 {
890 	int channelParamsSize = iface_params.channelParams.size();
891 	if (channelParamsSize == 1) {
892 		// Single AP
893 		wpa_printf(MSG_INFO, "AddSingleAccessPoint, iface=%s",
894 			iface_params.name.c_str());
895 		return addSingleAccessPoint(iface_params, iface_params.channelParams[0],
896 		    nw_params, "", "");
897 	} else if (channelParamsSize == 2) {
898 		// Concurrent APs
899 		wpa_printf(MSG_INFO, "AddDualAccessPoint, iface=%s",
900 			iface_params.name.c_str());
901 		return addConcurrentAccessPoints(iface_params, nw_params);
902 	}
903 	return createStatus(HostapdStatusCode::FAILURE_ARGS_INVALID);
904 }
905 
generateRandomOweSsid()906 std::vector<uint8_t>  generateRandomOweSsid()
907 {
908 	u8 random[8] = {0};
909 	os_get_random(random, 8);
910 
911 	std::string ssid = StringPrintf("Owe-%s", random);
912 	wpa_printf(MSG_INFO, "Generated OWE SSID: %s", ssid.c_str());
913 	std::vector<uint8_t> vssid(ssid.begin(), ssid.end());
914 
915 	return vssid;
916 }
917 
addConcurrentAccessPoints(const IfaceParams & iface_params,const NetworkParams & nw_params)918 ::ndk::ScopedAStatus Hostapd::addConcurrentAccessPoints(
919 	const IfaceParams& iface_params, const NetworkParams& nw_params)
920 {
921 	int channelParamsListSize = iface_params.channelParams.size();
922 	// Get available interfaces in bridge
923 	std::vector<std::string> managed_interfaces;
924 	std::string br_name = StringPrintf(
925 		"%s", iface_params.name.c_str());
926 	if (!GetInterfacesInBridge(br_name, &managed_interfaces)) {
927 		return createStatusWithMsg(HostapdStatusCode::FAILURE_UNKNOWN,
928 			"Get interfaces in bridge failed.");
929 	}
930 	if (managed_interfaces.size() < channelParamsListSize) {
931 		return createStatusWithMsg(HostapdStatusCode::FAILURE_UNKNOWN,
932 			"Available interfaces less than requested bands");
933 	}
934 	// start BSS on specified bands
935 	for (std::size_t i = 0; i < channelParamsListSize; i ++) {
936 		IfaceParams iface_params_new = iface_params;
937 		NetworkParams nw_params_new = nw_params;
938 		iface_params_new.name = managed_interfaces[i];
939 
940 		std::string owe_transition_ifname = "";
941 		if (nw_params.encryptionType == EncryptionType::WPA3_OWE_TRANSITION) {
942 			if (i == 0 && i+1 < channelParamsListSize) {
943 				owe_transition_ifname = managed_interfaces[i+1];
944 				nw_params_new.encryptionType = EncryptionType::NONE;
945 			} else {
946 				owe_transition_ifname = managed_interfaces[0];
947 				nw_params_new.isHidden = true;
948 				nw_params_new.ssid = generateRandomOweSsid();
949 			}
950 		}
951 
952 		ndk::ScopedAStatus status = addSingleAccessPoint(
953 		    iface_params_new, iface_params.channelParams[i], nw_params_new,
954 		    br_name, owe_transition_ifname);
955 		if (!status.isOk()) {
956 			wpa_printf(MSG_ERROR, "Failed to addAccessPoint %s",
957 				   managed_interfaces[i].c_str());
958 			return status;
959 		}
960 	}
961 	// Save bridge interface info
962 	br_interfaces_[br_name] = managed_interfaces;
963 	return ndk::ScopedAStatus::ok();
964 }
965 
addSingleAccessPoint(const IfaceParams & iface_params,const ChannelParams & channelParams,const NetworkParams & nw_params,const std::string br_name,const std::string owe_transition_ifname)966 ::ndk::ScopedAStatus Hostapd::addSingleAccessPoint(
967 	const IfaceParams& iface_params,
968 	const ChannelParams& channelParams,
969 	const NetworkParams& nw_params,
970 	const std::string br_name,
971 	const std::string owe_transition_ifname)
972 {
973 	if (hostapd_get_iface(interfaces_, iface_params.name.c_str())) {
974 		wpa_printf(
975 			MSG_ERROR, "Interface %s already present",
976 			iface_params.name.c_str());
977 		return createStatus(HostapdStatusCode::FAILURE_IFACE_EXISTS);
978 	}
979 	const auto conf_params = CreateHostapdConfig(iface_params, channelParams, nw_params,
980 					br_name, owe_transition_ifname);
981 	if (conf_params.empty()) {
982 		wpa_printf(MSG_ERROR, "Failed to create config params");
983 		return createStatus(HostapdStatusCode::FAILURE_ARGS_INVALID);
984 	}
985 	const auto conf_file_path =
986 		WriteHostapdConfig(iface_params.name, conf_params);
987 	if (conf_file_path.empty()) {
988 		wpa_printf(MSG_ERROR, "Failed to write config file");
989 		return createStatus(HostapdStatusCode::FAILURE_UNKNOWN);
990 	}
991 	std::string add_iface_param_str = StringPrintf(
992 		"%s config=%s", iface_params.name.c_str(),
993 		conf_file_path.c_str());
994 	std::vector<char> add_iface_param_vec(
995 		add_iface_param_str.begin(), add_iface_param_str.end() + 1);
996 	if (hostapd_add_iface(interfaces_, add_iface_param_vec.data()) < 0) {
997 		wpa_printf(
998 			MSG_ERROR, "Adding interface %s failed",
999 			add_iface_param_str.c_str());
1000 		return createStatus(HostapdStatusCode::FAILURE_UNKNOWN);
1001 	}
1002 	struct hostapd_data* iface_hapd =
1003 	    hostapd_get_iface(interfaces_, iface_params.name.c_str());
1004 	WPA_ASSERT(iface_hapd != nullptr && iface_hapd->iface != nullptr);
1005 	// Register the setup complete callbacks
1006 	on_setup_complete_internal_callback =
1007 		[this](struct hostapd_data* iface_hapd) {
1008 			wpa_printf(
1009 			MSG_INFO, "AP interface setup completed - state %s",
1010 			hostapd_state_text(iface_hapd->iface->state));
1011 			if (iface_hapd->iface->state == HAPD_IFACE_DISABLED) {
1012 				// Invoke the failure callback on all registered
1013 				// clients.
1014 				for (const auto& callback : callbacks_) {
1015 					callback->onFailure(strlen(iface_hapd->conf->bridge) > 0 ?
1016 						iface_hapd->conf->bridge : iface_hapd->conf->iface,
1017 							    iface_hapd->conf->iface);
1018 				}
1019 			}
1020 		};
1021 
1022 	// Register for new client connect/disconnect indication.
1023 	on_sta_authorized_internal_callback =
1024 		[this](struct hostapd_data* iface_hapd, const u8 *mac_addr,
1025 			int authorized, const u8 *p2p_dev_addr) {
1026 		wpa_printf(MSG_DEBUG, "notify client " MACSTR " %s",
1027 				MAC2STR(mac_addr),
1028 				(authorized) ? "Connected" : "Disconnected");
1029 		ClientInfo info;
1030 		info.ifaceName = strlen(iface_hapd->conf->bridge) > 0 ?
1031 			iface_hapd->conf->bridge : iface_hapd->conf->iface;
1032 		info.apIfaceInstance = iface_hapd->conf->iface;
1033 		info.clientAddress.assign(mac_addr, mac_addr + ETH_ALEN);
1034 		info.isConnected = authorized;
1035 		for (const auto &callback : callbacks_) {
1036 			callback->onConnectedClientsChanged(info);
1037 		}
1038 		};
1039 
1040 	// Register for wpa_event which used to get channel switch event
1041 	on_wpa_msg_internal_callback =
1042 		[this](struct hostapd_data* iface_hapd, int level,
1043 			enum wpa_msg_type type, const char *txt,
1044 			size_t len) {
1045 		wpa_printf(MSG_DEBUG, "Receive wpa msg : %s", txt);
1046 		if (os_strncmp(txt, AP_EVENT_ENABLED,
1047 					strlen(AP_EVENT_ENABLED)) == 0 ||
1048 			os_strncmp(txt, WPA_EVENT_CHANNEL_SWITCH,
1049 					strlen(WPA_EVENT_CHANNEL_SWITCH)) == 0) {
1050 			ApInfo info;
1051 			info.ifaceName = strlen(iface_hapd->conf->bridge) > 0 ?
1052 				iface_hapd->conf->bridge : iface_hapd->conf->iface,
1053 			info.apIfaceInstance = iface_hapd->conf->iface;
1054 			info.freqMhz = iface_hapd->iface->freq;
1055 			info.channelBandwidth = getChannelBandwidth(iface_hapd->iconf);
1056 			info.generation = getGeneration(iface_hapd->iface->current_mode);
1057 			info.apIfaceInstanceMacAddress.assign(iface_hapd->own_addr,
1058 				iface_hapd->own_addr + ETH_ALEN);
1059 			for (const auto &callback : callbacks_) {
1060 				callback->onApInstanceInfoChanged(info);
1061 			}
1062 		} else if (os_strncmp(txt, AP_EVENT_DISABLED, strlen(AP_EVENT_DISABLED)) == 0
1063                            || os_strncmp(txt, INTERFACE_DISABLED, strlen(INTERFACE_DISABLED)) == 0)
1064 		{
1065 			// Invoke the failure callback on all registered clients.
1066 			for (const auto& callback : callbacks_) {
1067 				callback->onFailure(strlen(iface_hapd->conf->bridge) > 0 ?
1068 					iface_hapd->conf->bridge : iface_hapd->conf->iface,
1069 						    iface_hapd->conf->iface);
1070 			}
1071 		}
1072 	};
1073 
1074 	// Setup callback
1075 	iface_hapd->setup_complete_cb = onAsyncSetupCompleteCb;
1076 	iface_hapd->setup_complete_cb_ctx = iface_hapd;
1077 	iface_hapd->sta_authorized_cb = onAsyncStaAuthorizedCb;
1078 	iface_hapd->sta_authorized_cb_ctx = iface_hapd;
1079 	wpa_msg_register_aidl_cb(onAsyncWpaEventCb);
1080 
1081 	if (hostapd_enable_iface(iface_hapd->iface) < 0) {
1082 		wpa_printf(
1083 			MSG_ERROR, "Enabling interface %s failed",
1084 			iface_params.name.c_str());
1085 		return createStatus(HostapdStatusCode::FAILURE_UNKNOWN);
1086 	}
1087 	return ndk::ScopedAStatus::ok();
1088 }
1089 
removeAccessPointInternal(const std::string & iface_name)1090 ::ndk::ScopedAStatus Hostapd::removeAccessPointInternal(const std::string& iface_name)
1091 {
1092 	// interfaces to be removed
1093 	std::vector<std::string> interfaces;
1094 	bool is_error = false;
1095 
1096 	const auto it = br_interfaces_.find(iface_name);
1097 	if (it != br_interfaces_.end()) {
1098 		// In case bridge, remove managed interfaces
1099 		interfaces = it->second;
1100 		br_interfaces_.erase(iface_name);
1101 	} else {
1102 		// else remove current interface
1103 		interfaces.push_back(iface_name);
1104 	}
1105 
1106 	for (auto& iface : interfaces) {
1107 		std::vector<char> remove_iface_param_vec(
1108 		    iface.begin(), iface.end() + 1);
1109 		if (hostapd_remove_iface(interfaces_, remove_iface_param_vec.data()) <  0) {
1110 			wpa_printf(MSG_INFO, "Remove interface %s failed", iface.c_str());
1111 			is_error = true;
1112 		}
1113 	}
1114 	if (is_error) {
1115 		return createStatus(HostapdStatusCode::FAILURE_UNKNOWN);
1116 	}
1117 	return ndk::ScopedAStatus::ok();
1118 }
1119 
registerCallbackInternal(const std::shared_ptr<IHostapdCallback> & callback)1120 ::ndk::ScopedAStatus Hostapd::registerCallbackInternal(
1121 	const std::shared_ptr<IHostapdCallback>& callback)
1122 {
1123 	binder_status_t status = AIBinder_linkToDeath(callback->asBinder().get(),
1124 			death_notifier_, this /* cookie */);
1125 	if (status != STATUS_OK) {
1126 		wpa_printf(
1127 			MSG_ERROR,
1128 			"Error registering for death notification for "
1129 			"hostapd callback object");
1130 		return createStatus(HostapdStatusCode::FAILURE_UNKNOWN);
1131 	}
1132 	callbacks_.push_back(callback);
1133 	return ndk::ScopedAStatus::ok();
1134 }
1135 
forceClientDisconnectInternal(const std::string & iface_name,const std::vector<uint8_t> & client_address,Ieee80211ReasonCode reason_code)1136 ::ndk::ScopedAStatus Hostapd::forceClientDisconnectInternal(const std::string& iface_name,
1137 	const std::vector<uint8_t>& client_address, Ieee80211ReasonCode reason_code)
1138 {
1139 	struct hostapd_data *hapd = hostapd_get_iface(interfaces_, iface_name.c_str());
1140 	bool result;
1141 	if (!hapd) {
1142 		for (auto const& iface : br_interfaces_) {
1143 			if (iface.first == iface_name) {
1144 				for (auto const& instance : iface.second) {
1145 					hapd = hostapd_get_iface(interfaces_, instance.c_str());
1146 					if (hapd) {
1147 						result = forceStaDisconnection(hapd, client_address,
1148 								(uint16_t) reason_code);
1149 						if (result) break;
1150 					}
1151 				}
1152 			}
1153 		}
1154 	} else {
1155 		result = forceStaDisconnection(hapd, client_address, (uint16_t) reason_code);
1156 	}
1157 	if (!hapd) {
1158 		wpa_printf(MSG_ERROR, "Interface %s doesn't exist", iface_name.c_str());
1159 		return createStatus(HostapdStatusCode::FAILURE_IFACE_UNKNOWN);
1160 	}
1161 	if (result) {
1162 		return ndk::ScopedAStatus::ok();
1163 	}
1164 	return createStatus(HostapdStatusCode::FAILURE_CLIENT_UNKNOWN);
1165 }
1166 
setDebugParamsInternal(DebugLevel level)1167 ::ndk::ScopedAStatus Hostapd::setDebugParamsInternal(DebugLevel level)
1168 {
1169 	wpa_debug_level = static_cast<uint32_t>(level);
1170 	return ndk::ScopedAStatus::ok();
1171 }
1172 
1173 }  // namespace hostapd
1174 }  // namespace wifi
1175 }  // namespace hardware
1176 }  // namespace android
1177 }  // namespace aidl
1178