1 /*
2 * Copyright 2019 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 // TODO(b/129481165): remove the #pragma below and fix conversion issues
18 #pragma clang diagnostic push
19 #pragma clang diagnostic ignored "-Wextra"
20
21 #undef LOG_TAG
22 #define LOG_TAG "VSyncPredictor"
23
24 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
25
26 #include <algorithm>
27 #include <chrono>
28 #include <sstream>
29
30 #include <android-base/logging.h>
31 #include <android-base/stringprintf.h>
32 #include <cutils/compiler.h>
33 #include <cutils/properties.h>
34 #include <ftl/concat.h>
35 #include <gui/TraceUtils.h>
36 #include <utils/Log.h>
37
38 #include "RefreshRateSelector.h"
39 #include "VSyncPredictor.h"
40
41 namespace android::scheduler {
42
43 using base::StringAppendF;
44
45 static auto constexpr kMaxPercent = 100u;
46
47 VSyncPredictor::~VSyncPredictor() = default;
48
VSyncPredictor(PhysicalDisplayId id,nsecs_t idealPeriod,size_t historySize,size_t minimumSamplesForPrediction,uint32_t outlierTolerancePercent)49 VSyncPredictor::VSyncPredictor(PhysicalDisplayId id, nsecs_t idealPeriod, size_t historySize,
50 size_t minimumSamplesForPrediction, uint32_t outlierTolerancePercent)
51 : mId(id),
52 mTraceOn(property_get_bool("debug.sf.vsp_trace", false)),
53 kHistorySize(historySize),
54 kMinimumSamplesForPrediction(minimumSamplesForPrediction),
55 kOutlierTolerancePercent(std::min(outlierTolerancePercent, kMaxPercent)),
56 mIdealPeriod(idealPeriod) {
57 resetModel();
58 }
59
traceInt64If(const char * name,int64_t value) const60 inline void VSyncPredictor::traceInt64If(const char* name, int64_t value) const {
61 if (CC_UNLIKELY(mTraceOn)) {
62 traceInt64(name, value);
63 }
64 }
65
traceInt64(const char * name,int64_t value) const66 inline void VSyncPredictor::traceInt64(const char* name, int64_t value) const {
67 ATRACE_INT64(ftl::Concat(ftl::truncated<14>(name), " ", mId.value).c_str(), value);
68 }
69
next(size_t i) const70 inline size_t VSyncPredictor::next(size_t i) const {
71 return (i + 1) % mTimestamps.size();
72 }
73
validate(nsecs_t timestamp) const74 bool VSyncPredictor::validate(nsecs_t timestamp) const {
75 if (mLastTimestampIndex < 0 || mTimestamps.empty()) {
76 return true;
77 }
78
79 auto const aValidTimestamp = mTimestamps[mLastTimestampIndex];
80 auto const percent = (timestamp - aValidTimestamp) % mIdealPeriod * kMaxPercent / mIdealPeriod;
81 if (percent >= kOutlierTolerancePercent &&
82 percent <= (kMaxPercent - kOutlierTolerancePercent)) {
83 return false;
84 }
85
86 const auto iter = std::min_element(mTimestamps.begin(), mTimestamps.end(),
87 [timestamp](nsecs_t a, nsecs_t b) {
88 return std::abs(timestamp - a) < std::abs(timestamp - b);
89 });
90 const auto distancePercent = std::abs(*iter - timestamp) * kMaxPercent / mIdealPeriod;
91 if (distancePercent < kOutlierTolerancePercent) {
92 // duplicate timestamp
93 return false;
94 }
95 return true;
96 }
97
currentPeriod() const98 nsecs_t VSyncPredictor::currentPeriod() const {
99 std::lock_guard lock(mMutex);
100 return mRateMap.find(mIdealPeriod)->second.slope;
101 }
102
addVsyncTimestamp(nsecs_t timestamp)103 bool VSyncPredictor::addVsyncTimestamp(nsecs_t timestamp) {
104 std::lock_guard lock(mMutex);
105
106 if (!validate(timestamp)) {
107 // VSR could elect to ignore the incongruent timestamp or resetModel(). If ts is ignored,
108 // don't insert this ts into mTimestamps ringbuffer. If we are still
109 // in the learning phase we should just clear all timestamps and start
110 // over.
111 if (mTimestamps.size() < kMinimumSamplesForPrediction) {
112 // Add the timestamp to mTimestamps before clearing it so we could
113 // update mKnownTimestamp based on the new timestamp.
114 mTimestamps.push_back(timestamp);
115 clearTimestamps();
116 } else if (!mTimestamps.empty()) {
117 mKnownTimestamp =
118 std::max(timestamp, *std::max_element(mTimestamps.begin(), mTimestamps.end()));
119 } else {
120 mKnownTimestamp = timestamp;
121 }
122 return false;
123 }
124
125 if (mTimestamps.size() != kHistorySize) {
126 mTimestamps.push_back(timestamp);
127 mLastTimestampIndex = next(mLastTimestampIndex);
128 } else {
129 mLastTimestampIndex = next(mLastTimestampIndex);
130 mTimestamps[mLastTimestampIndex] = timestamp;
131 }
132
133 traceInt64If("VSP-ts", timestamp);
134
135 const size_t numSamples = mTimestamps.size();
136 if (numSamples < kMinimumSamplesForPrediction) {
137 mRateMap[mIdealPeriod] = {mIdealPeriod, 0};
138 return true;
139 }
140
141 // This is a 'simple linear regression' calculation of Y over X, with Y being the
142 // vsync timestamps, and X being the ordinal of vsync count.
143 // The calculated slope is the vsync period.
144 // Formula for reference:
145 // Sigma_i: means sum over all timestamps.
146 // mean(variable): statistical mean of variable.
147 // X: snapped ordinal of the timestamp
148 // Y: vsync timestamp
149 //
150 // Sigma_i( (X_i - mean(X)) * (Y_i - mean(Y) )
151 // slope = -------------------------------------------
152 // Sigma_i ( X_i - mean(X) ) ^ 2
153 //
154 // intercept = mean(Y) - slope * mean(X)
155 //
156 std::vector<nsecs_t> vsyncTS(numSamples);
157 std::vector<nsecs_t> ordinals(numSamples);
158
159 // Normalizing to the oldest timestamp cuts down on error in calculating the intercept.
160 const auto oldestTS = *std::min_element(mTimestamps.begin(), mTimestamps.end());
161 auto it = mRateMap.find(mIdealPeriod);
162 auto const currentPeriod = it->second.slope;
163
164 // The mean of the ordinals must be precise for the intercept calculation, so scale them up for
165 // fixed-point arithmetic.
166 constexpr int64_t kScalingFactor = 1000;
167
168 nsecs_t meanTS = 0;
169 nsecs_t meanOrdinal = 0;
170
171 for (size_t i = 0; i < numSamples; i++) {
172 const auto timestamp = mTimestamps[i] - oldestTS;
173 vsyncTS[i] = timestamp;
174 meanTS += timestamp;
175
176 const auto ordinal = currentPeriod == 0
177 ? 0
178 : (vsyncTS[i] + currentPeriod / 2) / currentPeriod * kScalingFactor;
179 ordinals[i] = ordinal;
180 meanOrdinal += ordinal;
181 }
182
183 meanTS /= numSamples;
184 meanOrdinal /= numSamples;
185
186 for (size_t i = 0; i < numSamples; i++) {
187 vsyncTS[i] -= meanTS;
188 ordinals[i] -= meanOrdinal;
189 }
190
191 nsecs_t top = 0;
192 nsecs_t bottom = 0;
193 for (size_t i = 0; i < numSamples; i++) {
194 top += vsyncTS[i] * ordinals[i];
195 bottom += ordinals[i] * ordinals[i];
196 }
197
198 if (CC_UNLIKELY(bottom == 0)) {
199 it->second = {mIdealPeriod, 0};
200 clearTimestamps();
201 return false;
202 }
203
204 nsecs_t const anticipatedPeriod = top * kScalingFactor / bottom;
205 nsecs_t const intercept = meanTS - (anticipatedPeriod * meanOrdinal / kScalingFactor);
206
207 auto const percent = std::abs(anticipatedPeriod - mIdealPeriod) * kMaxPercent / mIdealPeriod;
208 if (percent >= kOutlierTolerancePercent) {
209 it->second = {mIdealPeriod, 0};
210 clearTimestamps();
211 return false;
212 }
213
214 traceInt64If("VSP-period", anticipatedPeriod);
215 traceInt64If("VSP-intercept", intercept);
216
217 it->second = {anticipatedPeriod, intercept};
218
219 ALOGV("model update ts %" PRIu64 ": %" PRId64 " slope: %" PRId64 " intercept: %" PRId64,
220 mId.value, timestamp, anticipatedPeriod, intercept);
221 return true;
222 }
223
getVsyncSequenceLocked(nsecs_t timestamp) const224 auto VSyncPredictor::getVsyncSequenceLocked(nsecs_t timestamp) const -> VsyncSequence {
225 const auto vsync = nextAnticipatedVSyncTimeFromLocked(timestamp);
226 if (!mLastVsyncSequence) return {vsync, 0};
227
228 const auto [slope, _] = getVSyncPredictionModelLocked();
229 const auto [lastVsyncTime, lastVsyncSequence] = *mLastVsyncSequence;
230 const auto vsyncSequence = lastVsyncSequence +
231 static_cast<int64_t>(std::round((vsync - lastVsyncTime) / static_cast<float>(slope)));
232 return {vsync, vsyncSequence};
233 }
234
nextAnticipatedVSyncTimeFromLocked(nsecs_t timePoint) const235 nsecs_t VSyncPredictor::nextAnticipatedVSyncTimeFromLocked(nsecs_t timePoint) const {
236 auto const [slope, intercept] = getVSyncPredictionModelLocked();
237
238 if (mTimestamps.empty()) {
239 traceInt64("VSP-mode", 1);
240 auto const knownTimestamp = mKnownTimestamp ? *mKnownTimestamp : timePoint;
241 auto const numPeriodsOut = ((timePoint - knownTimestamp) / mIdealPeriod) + 1;
242 return knownTimestamp + numPeriodsOut * mIdealPeriod;
243 }
244
245 auto const oldest = *std::min_element(mTimestamps.begin(), mTimestamps.end());
246
247 // See b/145667109, the ordinal calculation must take into account the intercept.
248 auto const zeroPoint = oldest + intercept;
249 auto const ordinalRequest = (timePoint - zeroPoint + slope) / slope;
250 auto const prediction = (ordinalRequest * slope) + intercept + oldest;
251
252 traceInt64("VSP-mode", 0);
253 traceInt64If("VSP-timePoint", timePoint);
254 traceInt64If("VSP-prediction", prediction);
255
256 auto const printer = [&, slope = slope, intercept = intercept] {
257 std::stringstream str;
258 str << "prediction made from: " << timePoint << "prediction: " << prediction << " (+"
259 << prediction - timePoint << ") slope: " << slope << " intercept: " << intercept
260 << "oldestTS: " << oldest << " ordinal: " << ordinalRequest;
261 return str.str();
262 };
263
264 ALOGV("%s", printer().c_str());
265 LOG_ALWAYS_FATAL_IF(prediction < timePoint, "VSyncPredictor: model miscalculation: %s",
266 printer().c_str());
267
268 return prediction;
269 }
270
nextAnticipatedVSyncTimeFrom(nsecs_t timePoint) const271 nsecs_t VSyncPredictor::nextAnticipatedVSyncTimeFrom(nsecs_t timePoint) const {
272 std::lock_guard lock(mMutex);
273
274 // update the mLastVsyncSequence for reference point
275 mLastVsyncSequence = getVsyncSequenceLocked(timePoint);
276
277 const auto renderRatePhase = [&]() REQUIRES(mMutex) -> int {
278 if (!mRenderRate) return 0;
279
280 const auto divisor =
281 RefreshRateSelector::getFrameRateDivisor(Fps::fromPeriodNsecs(mIdealPeriod),
282 *mRenderRate);
283 if (divisor <= 1) return 0;
284
285 const int mod = mLastVsyncSequence->seq % divisor;
286 if (mod == 0) return 0;
287
288 return divisor - mod;
289 }();
290
291 if (renderRatePhase == 0) {
292 return mLastVsyncSequence->vsyncTime;
293 }
294
295 auto const [slope, intercept] = getVSyncPredictionModelLocked();
296 const auto approximateNextVsync = mLastVsyncSequence->vsyncTime + slope * renderRatePhase;
297 return nextAnticipatedVSyncTimeFromLocked(approximateNextVsync - slope / 2);
298 }
299
300 /*
301 * Returns whether a given vsync timestamp is in phase with a frame rate.
302 * If the frame rate is not a divisor of the refresh rate, it is always considered in phase.
303 * For example, if the vsync timestamps are (16.6,33.3,50.0,66.6):
304 * isVSyncInPhase(16.6, 30) = true
305 * isVSyncInPhase(33.3, 30) = false
306 * isVSyncInPhase(50.0, 30) = true
307 */
isVSyncInPhase(nsecs_t timePoint,Fps frameRate) const308 bool VSyncPredictor::isVSyncInPhase(nsecs_t timePoint, Fps frameRate) const {
309 std::lock_guard lock(mMutex);
310 const auto divisor =
311 RefreshRateSelector::getFrameRateDivisor(Fps::fromPeriodNsecs(mIdealPeriod), frameRate);
312 return isVSyncInPhaseLocked(timePoint, static_cast<unsigned>(divisor));
313 }
314
isVSyncInPhaseLocked(nsecs_t timePoint,unsigned divisor) const315 bool VSyncPredictor::isVSyncInPhaseLocked(nsecs_t timePoint, unsigned divisor) const {
316 const TimePoint now = TimePoint::now();
317 const auto getTimePointIn = [](TimePoint now, nsecs_t timePoint) -> float {
318 return ticks<std::milli, float>(TimePoint::fromNs(timePoint) - now);
319 };
320 ATRACE_FORMAT("%s timePoint in: %.2f divisor: %zu", __func__, getTimePointIn(now, timePoint),
321 divisor);
322
323 if (divisor <= 1 || timePoint == 0) {
324 return true;
325 }
326
327 const nsecs_t period = mRateMap[mIdealPeriod].slope;
328 const nsecs_t justBeforeTimePoint = timePoint - period / 2;
329 const auto vsyncSequence = getVsyncSequenceLocked(justBeforeTimePoint);
330 ATRACE_FORMAT_INSTANT("vsync in: %.2f sequence: %" PRId64,
331 getTimePointIn(now, vsyncSequence.vsyncTime), vsyncSequence.seq);
332 return vsyncSequence.seq % divisor == 0;
333 }
334
setRenderRate(Fps fps)335 void VSyncPredictor::setRenderRate(Fps fps) {
336 ALOGV("%s %s: %s", __func__, to_string(mId).c_str(), to_string(fps).c_str());
337 std::lock_guard lock(mMutex);
338 mRenderRate = fps;
339 }
340
getVSyncPredictionModel() const341 VSyncPredictor::Model VSyncPredictor::getVSyncPredictionModel() const {
342 std::lock_guard lock(mMutex);
343 const auto model = VSyncPredictor::getVSyncPredictionModelLocked();
344 return {model.slope, model.intercept};
345 }
346
getVSyncPredictionModelLocked() const347 VSyncPredictor::Model VSyncPredictor::getVSyncPredictionModelLocked() const {
348 return mRateMap.find(mIdealPeriod)->second;
349 }
350
setPeriod(nsecs_t period)351 void VSyncPredictor::setPeriod(nsecs_t period) {
352 ATRACE_FORMAT("%s %s", __func__, to_string(mId).c_str());
353 traceInt64("VSP-setPeriod", period);
354
355 std::lock_guard lock(mMutex);
356 static constexpr size_t kSizeLimit = 30;
357 if (CC_UNLIKELY(mRateMap.size() == kSizeLimit)) {
358 mRateMap.erase(mRateMap.begin());
359 }
360
361 mIdealPeriod = period;
362 if (mRateMap.find(period) == mRateMap.end()) {
363 mRateMap[mIdealPeriod] = {period, 0};
364 }
365
366 clearTimestamps();
367 }
368
clearTimestamps()369 void VSyncPredictor::clearTimestamps() {
370 if (!mTimestamps.empty()) {
371 auto const maxRb = *std::max_element(mTimestamps.begin(), mTimestamps.end());
372 if (mKnownTimestamp) {
373 mKnownTimestamp = std::max(*mKnownTimestamp, maxRb);
374 } else {
375 mKnownTimestamp = maxRb;
376 }
377
378 mTimestamps.clear();
379 mLastTimestampIndex = 0;
380 }
381 }
382
needsMoreSamples() const383 bool VSyncPredictor::needsMoreSamples() const {
384 std::lock_guard lock(mMutex);
385 return mTimestamps.size() < kMinimumSamplesForPrediction;
386 }
387
resetModel()388 void VSyncPredictor::resetModel() {
389 std::lock_guard lock(mMutex);
390 mRateMap[mIdealPeriod] = {mIdealPeriod, 0};
391 clearTimestamps();
392 }
393
dump(std::string & result) const394 void VSyncPredictor::dump(std::string& result) const {
395 std::lock_guard lock(mMutex);
396 StringAppendF(&result, "\tmIdealPeriod=%.2f\n", mIdealPeriod / 1e6f);
397 StringAppendF(&result, "\tRefresh Rate Map:\n");
398 for (const auto& [idealPeriod, periodInterceptTuple] : mRateMap) {
399 StringAppendF(&result,
400 "\t\tFor ideal period %.2fms: period = %.2fms, intercept = %" PRId64 "\n",
401 idealPeriod / 1e6f, periodInterceptTuple.slope / 1e6f,
402 periodInterceptTuple.intercept);
403 }
404 }
405
406 } // namespace android::scheduler
407
408 // TODO(b/129481165): remove the #pragma below and fix conversion issues
409 #pragma clang diagnostic pop // ignored "-Wextra"
410