• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2018 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkRasterPipeline_opts_DEFINED
9 #define SkRasterPipeline_opts_DEFINED
10 
11 #include "include/core/SkData.h"
12 #include "include/core/SkTypes.h"
13 #include "include/private/base/SkMalloc.h"
14 #include "modules/skcms/skcms.h"
15 #include "src/base/SkUtils.h"  // unaligned_{load,store}
16 #include "src/core/SkRasterPipeline.h"
17 #include <cstdint>
18 
19 // Every function in this file should be marked static and inline using SI.
20 #if defined(__clang__)
21     #define SI __attribute__((always_inline)) static inline
22 #else
23     #define SI static inline
24 #endif
25 
26 template <typename Dst, typename Src>
widen_cast(const Src & src)27 SI Dst widen_cast(const Src& src) {
28     static_assert(sizeof(Dst) > sizeof(Src));
29     static_assert(std::is_trivially_copyable<Dst>::value);
30     static_assert(std::is_trivially_copyable<Src>::value);
31     Dst dst;
32     memcpy(&dst, &src, sizeof(Src));
33     return dst;
34 }
35 
36 struct Ctx {
37     SkRasterPipelineStage* fStage;
38 
39     template <typename T>
40     operator T*() {
41         return (T*)fStage->ctx;
42     }
43 };
44 
45 using NoCtx = const void*;
46 
47 #if !defined(__clang__)
48     #define JUMPER_IS_SCALAR
49 #elif defined(SK_ARM_HAS_NEON)
50     #define JUMPER_IS_NEON
51 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SKX
52     #define JUMPER_IS_SKX
53 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2
54     #define JUMPER_IS_HSW
55 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX
56     #define JUMPER_IS_AVX
57 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41
58     #define JUMPER_IS_SSE41
59 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
60     #define JUMPER_IS_SSE2
61 #else
62     #define JUMPER_IS_SCALAR
63 #endif
64 
65 // Older Clangs seem to crash when generating non-optimized NEON code for ARMv7.
66 #if defined(__clang__) && !defined(__OPTIMIZE__) && defined(SK_CPU_ARM32)
67     // Apple Clang 9 and vanilla Clang 5 are fine, and may even be conservative.
68     #if defined(__apple_build_version__) && __clang_major__ < 9
69         #define JUMPER_IS_SCALAR
70     #elif __clang_major__ < 5
71         #define JUMPER_IS_SCALAR
72     #endif
73 
74     #if defined(JUMPER_IS_NEON) && defined(JUMPER_IS_SCALAR)
75         #undef  JUMPER_IS_NEON
76     #endif
77 #endif
78 
79 #if defined(JUMPER_IS_SCALAR)
80     #include <math.h>
81 #elif defined(JUMPER_IS_NEON)
82     #include <arm_neon.h>
83 #else
84     #include <immintrin.h>
85 #endif
86 
87 // Notes:
88 // * rcp_fast and rcp_precise both produce a reciprocal, but rcp_fast is an estimate with at least
89 //   12 bits of precision while rcp_precise should be accurate for float size. For ARM rcp_precise
90 //   requires 2 Newton-Raphson refinement steps because its estimate has 8 bit precision, and for
91 //   Intel this requires one additional step because its estimate has 12 bit precision.
92 
93 namespace SK_OPTS_NS {
94 #if defined(JUMPER_IS_SCALAR)
95     // This path should lead to portable scalar code.
96     using F   = float   ;
97     using I32 =  int32_t;
98     using U64 = uint64_t;
99     using U32 = uint32_t;
100     using U16 = uint16_t;
101     using U8  = uint8_t ;
102 
min(F a,F b)103     SI F   min(F a, F b)     { return fminf(a,b); }
min(I32 a,I32 b)104     SI I32 min(I32 a, I32 b) { return a < b ? a : b; }
min(U32 a,U32 b)105     SI U32 min(U32 a, U32 b) { return a < b ? a : b; }
max(F a,F b)106     SI F   max(F a, F b)     { return fmaxf(a,b); }
max(I32 a,I32 b)107     SI I32 max(I32 a, I32 b) { return a > b ? a : b; }
max(U32 a,U32 b)108     SI U32 max(U32 a, U32 b) { return a > b ? a : b; }
109 
mad(F f,F m,F a)110     SI F   mad(F f, F m, F a)   { return f*m+a; }
abs_(F v)111     SI F   abs_  (F v)          { return fabsf(v); }
abs_(I32 v)112     SI I32 abs_  (I32 v)        { return v < 0 ? -v : v; }
floor_(F v)113     SI F   floor_(F v)          { return floorf(v); }
ceil_(F v)114     SI F    ceil_(F v)          { return ceilf(v); }
rcp_fast(F v)115     SI F   rcp_fast(F v)        { return 1.0f / v; }
rsqrt(F v)116     SI F   rsqrt (F v)          { return 1.0f / sqrtf(v); }
sqrt_(F v)117     SI F   sqrt_ (F v)          { return sqrtf(v); }
rcp_precise(F v)118     SI F   rcp_precise (F v)    { return 1.0f / v; }
119 
round(F v,F scale)120     SI U32 round (F v, F scale) { return (uint32_t)(v*scale + 0.5f); }
pack(U32 v)121     SI U16 pack(U32 v)          { return (U16)v; }
pack(U16 v)122     SI U8  pack(U16 v)          { return  (U8)v; }
123 
if_then_else(I32 c,F t,F e)124     SI F if_then_else(I32 c, F t, F e) { return c ? t : e; }
any(I32 c)125     SI bool any(I32 c)                 { return c != 0; }
all(I32 c)126     SI bool all(I32 c)                 { return c != 0; }
127 
128     template <typename T>
gather(const T * p,U32 ix)129     SI T gather(const T* p, U32 ix) { return p[ix]; }
130 
load2(const uint16_t * ptr,size_t tail,U16 * r,U16 * g)131     SI void load2(const uint16_t* ptr, size_t tail, U16* r, U16* g) {
132         *r = ptr[0];
133         *g = ptr[1];
134     }
store2(uint16_t * ptr,size_t tail,U16 r,U16 g)135     SI void store2(uint16_t* ptr, size_t tail, U16 r, U16 g) {
136         ptr[0] = r;
137         ptr[1] = g;
138     }
load3(const uint16_t * ptr,size_t tail,U16 * r,U16 * g,U16 * b)139     SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) {
140         *r = ptr[0];
141         *g = ptr[1];
142         *b = ptr[2];
143     }
load4(const uint16_t * ptr,size_t tail,U16 * r,U16 * g,U16 * b,U16 * a)144     SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
145         *r = ptr[0];
146         *g = ptr[1];
147         *b = ptr[2];
148         *a = ptr[3];
149     }
store4(uint16_t * ptr,size_t tail,U16 r,U16 g,U16 b,U16 a)150     SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
151         ptr[0] = r;
152         ptr[1] = g;
153         ptr[2] = b;
154         ptr[3] = a;
155     }
156 
load2(const float * ptr,size_t tail,F * r,F * g)157     SI void load2(const float* ptr, size_t tail, F* r, F* g) {
158         *r = ptr[0];
159         *g = ptr[1];
160     }
store2(float * ptr,size_t tail,F r,F g)161     SI void store2(float* ptr, size_t tail, F r, F g) {
162         ptr[0] = r;
163         ptr[1] = g;
164     }
load4(const float * ptr,size_t tail,F * r,F * g,F * b,F * a)165     SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) {
166         *r = ptr[0];
167         *g = ptr[1];
168         *b = ptr[2];
169         *a = ptr[3];
170     }
store4(float * ptr,size_t tail,F r,F g,F b,F a)171     SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) {
172         ptr[0] = r;
173         ptr[1] = g;
174         ptr[2] = b;
175         ptr[3] = a;
176     }
177 
178 #elif defined(JUMPER_IS_NEON)
179     // Since we know we're using Clang, we can use its vector extensions.
180     template <typename T> using V = T __attribute__((ext_vector_type(4)));
181     using F   = V<float   >;
182     using I32 = V< int32_t>;
183     using U64 = V<uint64_t>;
184     using U32 = V<uint32_t>;
185     using U16 = V<uint16_t>;
186     using U8  = V<uint8_t >;
187 
188     // We polyfill a few routines that Clang doesn't build into ext_vector_types.
189     SI F   min(F a, F b)     { return vminq_f32(a,b); }
190     SI I32 min(I32 a, I32 b) { return vminq_s32(a,b); }
191     SI U32 min(U32 a, U32 b) { return vminq_u32(a,b); }
192     SI F   max(F a, F b)     { return vmaxq_f32(a,b); }
193     SI I32 max(I32 a, I32 b) { return vmaxq_s32(a,b); }
194     SI U32 max(U32 a, U32 b) { return vmaxq_u32(a,b); }
195 
196     SI F   abs_  (F v)   { return vabsq_f32(v); }
197     SI I32 abs_  (I32 v) { return vabsq_s32(v); }
198     SI F   rcp_fast(F v) { auto e = vrecpeq_f32 (v); return vrecpsq_f32 (v,e  ) * e; }
199     SI F   rcp_precise (F v) { auto e = rcp_fast(v); return vrecpsq_f32 (v,e  ) * e; }
200     SI F   rsqrt (F v)   { auto e = vrsqrteq_f32(v); return vrsqrtsq_f32(v,e*e) * e; }
201 
202     SI U16 pack(U32 v)       { return __builtin_convertvector(v, U16); }
203     SI U8  pack(U16 v)       { return __builtin_convertvector(v,  U8); }
204 
205     SI F if_then_else(I32 c, F t, F e) { return vbslq_f32((U32)c,t,e); }
206 
207     #if defined(SK_CPU_ARM64)
208         SI bool any(I32 c) { return vmaxvq_u32((U32)c) != 0; }
209         SI bool all(I32 c) { return vminvq_u32((U32)c) != 0; }
210 
211         SI F     mad(F f, F m, F a) { return vfmaq_f32(a,f,m); }
212         SI F  floor_(F v) { return vrndmq_f32(v); }
213         SI F   ceil_(F v) { return vrndpq_f32(v); }
214         SI F   sqrt_(F v) { return vsqrtq_f32(v); }
215         SI U32 round(F v, F scale) { return vcvtnq_u32_f32(v*scale); }
216     #else
217         SI bool any(I32 c) { return c[0] | c[1] | c[2] | c[3]; }
218         SI bool all(I32 c) { return c[0] & c[1] & c[2] & c[3]; }
219 
220         SI F mad(F f, F m, F a) { return vmlaq_f32(a,f,m); }
221         SI F floor_(F v) {
222             F roundtrip = vcvtq_f32_s32(vcvtq_s32_f32(v));
223             return roundtrip - if_then_else(roundtrip > v, 1, 0);
224         }
225 
226         SI F ceil_(F v) {
227             F roundtrip = vcvtq_f32_s32(vcvtq_s32_f32(v));
228             return roundtrip + if_then_else(roundtrip < v, 1, 0);
229         }
230 
231         SI F sqrt_(F v) {
232             auto e = vrsqrteq_f32(v);  // Estimate and two refinement steps for e = rsqrt(v).
233             e *= vrsqrtsq_f32(v,e*e);
234             e *= vrsqrtsq_f32(v,e*e);
235             return v*e;                // sqrt(v) == v*rsqrt(v).
236         }
237 
238         SI U32 round(F v, F scale) {
239             return vcvtq_u32_f32(mad(v,scale,0.5f));
240         }
241     #endif
242 
243     template <typename T>
244     SI V<T> gather(const T* p, U32 ix) {
245         return {p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]};
246     }
247     SI void load2(const uint16_t* ptr, size_t tail, U16* r, U16* g) {
248         uint16x4x2_t rg;
249         if (__builtin_expect(tail,0)) {
250             if (  true  ) { rg = vld2_lane_u16(ptr + 0, rg, 0); }
251             if (tail > 1) { rg = vld2_lane_u16(ptr + 2, rg, 1); }
252             if (tail > 2) { rg = vld2_lane_u16(ptr + 4, rg, 2); }
253         } else {
254             rg = vld2_u16(ptr);
255         }
256         *r = rg.val[0];
257         *g = rg.val[1];
258     }
259     SI void store2(uint16_t* ptr, size_t tail, U16 r, U16 g) {
260         if (__builtin_expect(tail,0)) {
261             if (  true  ) { vst2_lane_u16(ptr + 0, (uint16x4x2_t{{r,g}}), 0); }
262             if (tail > 1) { vst2_lane_u16(ptr + 2, (uint16x4x2_t{{r,g}}), 1); }
263             if (tail > 2) { vst2_lane_u16(ptr + 4, (uint16x4x2_t{{r,g}}), 2); }
264         } else {
265             vst2_u16(ptr, (uint16x4x2_t{{r,g}}));
266         }
267     }
268     SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) {
269         uint16x4x3_t rgb;
270         if (__builtin_expect(tail,0)) {
271             if (  true  ) { rgb = vld3_lane_u16(ptr + 0, rgb, 0); }
272             if (tail > 1) { rgb = vld3_lane_u16(ptr + 3, rgb, 1); }
273             if (tail > 2) { rgb = vld3_lane_u16(ptr + 6, rgb, 2); }
274         } else {
275             rgb = vld3_u16(ptr);
276         }
277         *r = rgb.val[0];
278         *g = rgb.val[1];
279         *b = rgb.val[2];
280     }
281     SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
282         uint16x4x4_t rgba;
283         if (__builtin_expect(tail,0)) {
284             if (  true  ) { rgba = vld4_lane_u16(ptr + 0, rgba, 0); }
285             if (tail > 1) { rgba = vld4_lane_u16(ptr + 4, rgba, 1); }
286             if (tail > 2) { rgba = vld4_lane_u16(ptr + 8, rgba, 2); }
287         } else {
288             rgba = vld4_u16(ptr);
289         }
290         *r = rgba.val[0];
291         *g = rgba.val[1];
292         *b = rgba.val[2];
293         *a = rgba.val[3];
294     }
295 
296     SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
297         if (__builtin_expect(tail,0)) {
298             if (  true  ) { vst4_lane_u16(ptr + 0, (uint16x4x4_t{{r,g,b,a}}), 0); }
299             if (tail > 1) { vst4_lane_u16(ptr + 4, (uint16x4x4_t{{r,g,b,a}}), 1); }
300             if (tail > 2) { vst4_lane_u16(ptr + 8, (uint16x4x4_t{{r,g,b,a}}), 2); }
301         } else {
302             vst4_u16(ptr, (uint16x4x4_t{{r,g,b,a}}));
303         }
304     }
305     SI void load2(const float* ptr, size_t tail, F* r, F* g) {
306         float32x4x2_t rg;
307         if (__builtin_expect(tail,0)) {
308             if (  true  ) { rg = vld2q_lane_f32(ptr + 0, rg, 0); }
309             if (tail > 1) { rg = vld2q_lane_f32(ptr + 2, rg, 1); }
310             if (tail > 2) { rg = vld2q_lane_f32(ptr + 4, rg, 2); }
311         } else {
312             rg = vld2q_f32(ptr);
313         }
314         *r = rg.val[0];
315         *g = rg.val[1];
316     }
317     SI void store2(float* ptr, size_t tail, F r, F g) {
318         if (__builtin_expect(tail,0)) {
319             if (  true  ) { vst2q_lane_f32(ptr + 0, (float32x4x2_t{{r,g}}), 0); }
320             if (tail > 1) { vst2q_lane_f32(ptr + 2, (float32x4x2_t{{r,g}}), 1); }
321             if (tail > 2) { vst2q_lane_f32(ptr + 4, (float32x4x2_t{{r,g}}), 2); }
322         } else {
323             vst2q_f32(ptr, (float32x4x2_t{{r,g}}));
324         }
325     }
326     SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) {
327         float32x4x4_t rgba;
328         if (__builtin_expect(tail,0)) {
329             if (  true  ) { rgba = vld4q_lane_f32(ptr + 0, rgba, 0); }
330             if (tail > 1) { rgba = vld4q_lane_f32(ptr + 4, rgba, 1); }
331             if (tail > 2) { rgba = vld4q_lane_f32(ptr + 8, rgba, 2); }
332         } else {
333             rgba = vld4q_f32(ptr);
334         }
335         *r = rgba.val[0];
336         *g = rgba.val[1];
337         *b = rgba.val[2];
338         *a = rgba.val[3];
339     }
340     SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) {
341         if (__builtin_expect(tail,0)) {
342             if (  true  ) { vst4q_lane_f32(ptr + 0, (float32x4x4_t{{r,g,b,a}}), 0); }
343             if (tail > 1) { vst4q_lane_f32(ptr + 4, (float32x4x4_t{{r,g,b,a}}), 1); }
344             if (tail > 2) { vst4q_lane_f32(ptr + 8, (float32x4x4_t{{r,g,b,a}}), 2); }
345         } else {
346             vst4q_f32(ptr, (float32x4x4_t{{r,g,b,a}}));
347         }
348     }
349 
350 #elif defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
351     // These are __m256 and __m256i, but friendlier and strongly-typed.
352     template <typename T> using V = T __attribute__((ext_vector_type(8)));
353     using F   = V<float   >;
354     using I32 = V< int32_t>;
355     using U64 = V<uint64_t>;
356     using U32 = V<uint32_t>;
357     using U16 = V<uint16_t>;
358     using U8  = V<uint8_t >;
359 
360     SI F mad(F f, F m, F a)  {
361     #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
362         return _mm256_fmadd_ps(f,m,a);
363     #else
364         return f*m+a;
365     #endif
366     }
367 
368     SI F   min(F a, F b)     { return _mm256_min_ps(a,b);    }
369     SI I32 min(I32 a, I32 b) { return _mm256_min_epi32(a,b); }
370     SI U32 min(U32 a, U32 b) { return _mm256_min_epu32(a,b); }
371     SI F   max(F a, F b)     { return _mm256_max_ps(a,b);    }
372     SI I32 max(I32 a, I32 b) { return _mm256_max_epi32(a,b); }
373     SI U32 max(U32 a, U32 b) { return _mm256_max_epu32(a,b); }
374 
375     SI F   abs_  (F v)   { return _mm256_and_ps(v, 0-v); }
376     SI I32 abs_  (I32 v) { return _mm256_abs_epi32(v);   }
377     SI F   floor_(F v)   { return _mm256_floor_ps(v);    }
378     SI F   ceil_(F v)    { return _mm256_ceil_ps(v);     }
379     SI F   rcp_fast(F v) { return _mm256_rcp_ps  (v);    }
380     SI F   rsqrt (F v)   { return _mm256_rsqrt_ps(v);    }
381     SI F   sqrt_ (F v)   { return _mm256_sqrt_ps (v);    }
382     SI F rcp_precise (F v) {
383         F e = rcp_fast(v);
384         #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
385             return _mm256_fnmadd_ps(v, e, _mm256_set1_ps(2.0f)) * e;
386         #else
387             return e * (2.0f - v * e);
388         #endif
389     }
390 
391     SI U32 round (F v, F scale) { return _mm256_cvtps_epi32(v*scale); }
392     SI U16 pack(U32 v) {
393         return _mm_packus_epi32(_mm256_extractf128_si256(v, 0),
394                                 _mm256_extractf128_si256(v, 1));
395     }
396     SI U8 pack(U16 v) {
397         auto r = _mm_packus_epi16(v,v);
398         return sk_unaligned_load<U8>(&r);
399     }
400 
401     SI F if_then_else(I32 c, F t, F e) { return _mm256_blendv_ps(e,t,c); }
402     // NOTE: This version of 'all' only works with mask values (true == all bits set)
403     SI bool any(I32 c) { return !_mm256_testz_si256(c, _mm256_set1_epi32(-1)); }
404     SI bool all(I32 c) { return  _mm256_testc_si256(c, _mm256_set1_epi32(-1)); }
405 
406     template <typename T>
407     SI V<T> gather(const T* p, U32 ix) {
408         return { p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]],
409                  p[ix[4]], p[ix[5]], p[ix[6]], p[ix[7]], };
410     }
411     #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
412         SI F   gather(const float*    p, U32 ix) { return _mm256_i32gather_ps   (p, ix, 4); }
413         SI U32 gather(const uint32_t* p, U32 ix) { return _mm256_i32gather_epi32(p, ix, 4); }
414         SI U64 gather(const uint64_t* p, U32 ix) {
415             __m256i parts[] = {
416                 _mm256_i32gather_epi64(p, _mm256_extracti128_si256(ix,0), 8),
417                 _mm256_i32gather_epi64(p, _mm256_extracti128_si256(ix,1), 8),
418             };
419             return sk_bit_cast<U64>(parts);
420         }
421     #endif
422 
423     SI void load2(const uint16_t* ptr, size_t tail, U16* r, U16* g) {
424         U16 _0123, _4567;
425         if (__builtin_expect(tail,0)) {
426             _0123 = _4567 = _mm_setzero_si128();
427             auto* d = &_0123;
428             if (tail > 3) {
429                 *d = _mm_loadu_si128(((__m128i*)ptr) + 0);
430                 tail -= 4;
431                 ptr += 8;
432                 d = &_4567;
433             }
434             bool high = false;
435             if (tail > 1) {
436                 *d = _mm_loadu_si64(ptr);
437                 tail -= 2;
438                 ptr += 4;
439                 high = true;
440             }
441             if (tail > 0) {
442                 (*d)[high ? 4 : 0] = *(ptr + 0);
443                 (*d)[high ? 5 : 1] = *(ptr + 1);
444             }
445         } else {
446             _0123 = _mm_loadu_si128(((__m128i*)ptr) + 0);
447             _4567 = _mm_loadu_si128(((__m128i*)ptr) + 1);
448         }
449         *r = _mm_packs_epi32(_mm_srai_epi32(_mm_slli_epi32(_0123, 16), 16),
450                              _mm_srai_epi32(_mm_slli_epi32(_4567, 16), 16));
451         *g = _mm_packs_epi32(_mm_srai_epi32(_0123, 16),
452                              _mm_srai_epi32(_4567, 16));
453     }
454     SI void store2(uint16_t* ptr, size_t tail, U16 r, U16 g) {
455         auto _0123 = _mm_unpacklo_epi16(r, g),
456              _4567 = _mm_unpackhi_epi16(r, g);
457         if (__builtin_expect(tail,0)) {
458             const auto* s = &_0123;
459             if (tail > 3) {
460                 _mm_storeu_si128((__m128i*)ptr, *s);
461                 s = &_4567;
462                 tail -= 4;
463                 ptr += 8;
464             }
465             bool high = false;
466             if (tail > 1) {
467                 _mm_storel_epi64((__m128i*)ptr, *s);
468                 ptr += 4;
469                 tail -= 2;
470                 high = true;
471             }
472             if (tail > 0) {
473                 if (high) {
474                     *(int32_t*)ptr = _mm_extract_epi32(*s, 2);
475                 } else {
476                     *(int32_t*)ptr = _mm_cvtsi128_si32(*s);
477                 }
478             }
479         } else {
480             _mm_storeu_si128((__m128i*)ptr + 0, _0123);
481             _mm_storeu_si128((__m128i*)ptr + 1, _4567);
482         }
483     }
484 
485     SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) {
486         __m128i _0,_1,_2,_3,_4,_5,_6,_7;
487         if (__builtin_expect(tail,0)) {
488             auto load_rgb = [](const uint16_t* src) {
489                 auto v = _mm_cvtsi32_si128(*(const uint32_t*)src);
490                 return _mm_insert_epi16(v, src[2], 2);
491             };
492             _1 = _2 = _3 = _4 = _5 = _6 = _7 = _mm_setzero_si128();
493             if (  true  ) { _0 = load_rgb(ptr +  0); }
494             if (tail > 1) { _1 = load_rgb(ptr +  3); }
495             if (tail > 2) { _2 = load_rgb(ptr +  6); }
496             if (tail > 3) { _3 = load_rgb(ptr +  9); }
497             if (tail > 4) { _4 = load_rgb(ptr + 12); }
498             if (tail > 5) { _5 = load_rgb(ptr + 15); }
499             if (tail > 6) { _6 = load_rgb(ptr + 18); }
500         } else {
501             // Load 0+1, 2+3, 4+5 normally, and 6+7 backed up 4 bytes so we don't run over.
502             auto _01 =                _mm_loadu_si128((const __m128i*)(ptr +  0))    ;
503             auto _23 =                _mm_loadu_si128((const __m128i*)(ptr +  6))    ;
504             auto _45 =                _mm_loadu_si128((const __m128i*)(ptr + 12))    ;
505             auto _67 = _mm_srli_si128(_mm_loadu_si128((const __m128i*)(ptr + 16)), 4);
506             _0 = _01; _1 = _mm_srli_si128(_01, 6);
507             _2 = _23; _3 = _mm_srli_si128(_23, 6);
508             _4 = _45; _5 = _mm_srli_si128(_45, 6);
509             _6 = _67; _7 = _mm_srli_si128(_67, 6);
510         }
511 
512         auto _02 = _mm_unpacklo_epi16(_0, _2),  // r0 r2 g0 g2 b0 b2 xx xx
513              _13 = _mm_unpacklo_epi16(_1, _3),
514              _46 = _mm_unpacklo_epi16(_4, _6),
515              _57 = _mm_unpacklo_epi16(_5, _7);
516 
517         auto rg0123 = _mm_unpacklo_epi16(_02, _13),  // r0 r1 r2 r3 g0 g1 g2 g3
518              bx0123 = _mm_unpackhi_epi16(_02, _13),  // b0 b1 b2 b3 xx xx xx xx
519              rg4567 = _mm_unpacklo_epi16(_46, _57),
520              bx4567 = _mm_unpackhi_epi16(_46, _57);
521 
522         *r = _mm_unpacklo_epi64(rg0123, rg4567);
523         *g = _mm_unpackhi_epi64(rg0123, rg4567);
524         *b = _mm_unpacklo_epi64(bx0123, bx4567);
525     }
526     SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
527         __m128i _01, _23, _45, _67;
528         if (__builtin_expect(tail,0)) {
529             auto src = (const double*)ptr;
530             _01 = _23 = _45 = _67 = _mm_setzero_si128();
531             if (tail > 0) { _01 = _mm_loadl_pd(_01, src+0); }
532             if (tail > 1) { _01 = _mm_loadh_pd(_01, src+1); }
533             if (tail > 2) { _23 = _mm_loadl_pd(_23, src+2); }
534             if (tail > 3) { _23 = _mm_loadh_pd(_23, src+3); }
535             if (tail > 4) { _45 = _mm_loadl_pd(_45, src+4); }
536             if (tail > 5) { _45 = _mm_loadh_pd(_45, src+5); }
537             if (tail > 6) { _67 = _mm_loadl_pd(_67, src+6); }
538         } else {
539             _01 = _mm_loadu_si128(((__m128i*)ptr) + 0);
540             _23 = _mm_loadu_si128(((__m128i*)ptr) + 1);
541             _45 = _mm_loadu_si128(((__m128i*)ptr) + 2);
542             _67 = _mm_loadu_si128(((__m128i*)ptr) + 3);
543         }
544 
545         auto _02 = _mm_unpacklo_epi16(_01, _23),  // r0 r2 g0 g2 b0 b2 a0 a2
546              _13 = _mm_unpackhi_epi16(_01, _23),  // r1 r3 g1 g3 b1 b3 a1 a3
547              _46 = _mm_unpacklo_epi16(_45, _67),
548              _57 = _mm_unpackhi_epi16(_45, _67);
549 
550         auto rg0123 = _mm_unpacklo_epi16(_02, _13),  // r0 r1 r2 r3 g0 g1 g2 g3
551              ba0123 = _mm_unpackhi_epi16(_02, _13),  // b0 b1 b2 b3 a0 a1 a2 a3
552              rg4567 = _mm_unpacklo_epi16(_46, _57),
553              ba4567 = _mm_unpackhi_epi16(_46, _57);
554 
555         *r = _mm_unpacklo_epi64(rg0123, rg4567);
556         *g = _mm_unpackhi_epi64(rg0123, rg4567);
557         *b = _mm_unpacklo_epi64(ba0123, ba4567);
558         *a = _mm_unpackhi_epi64(ba0123, ba4567);
559     }
560     SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
561         auto rg0123 = _mm_unpacklo_epi16(r, g),  // r0 g0 r1 g1 r2 g2 r3 g3
562              rg4567 = _mm_unpackhi_epi16(r, g),  // r4 g4 r5 g5 r6 g6 r7 g7
563              ba0123 = _mm_unpacklo_epi16(b, a),
564              ba4567 = _mm_unpackhi_epi16(b, a);
565 
566         auto _01 = _mm_unpacklo_epi32(rg0123, ba0123),
567              _23 = _mm_unpackhi_epi32(rg0123, ba0123),
568              _45 = _mm_unpacklo_epi32(rg4567, ba4567),
569              _67 = _mm_unpackhi_epi32(rg4567, ba4567);
570 
571         if (__builtin_expect(tail,0)) {
572             auto dst = (double*)ptr;
573             if (tail > 0) { _mm_storel_pd(dst+0, _01); }
574             if (tail > 1) { _mm_storeh_pd(dst+1, _01); }
575             if (tail > 2) { _mm_storel_pd(dst+2, _23); }
576             if (tail > 3) { _mm_storeh_pd(dst+3, _23); }
577             if (tail > 4) { _mm_storel_pd(dst+4, _45); }
578             if (tail > 5) { _mm_storeh_pd(dst+5, _45); }
579             if (tail > 6) { _mm_storel_pd(dst+6, _67); }
580         } else {
581             _mm_storeu_si128((__m128i*)ptr + 0, _01);
582             _mm_storeu_si128((__m128i*)ptr + 1, _23);
583             _mm_storeu_si128((__m128i*)ptr + 2, _45);
584             _mm_storeu_si128((__m128i*)ptr + 3, _67);
585         }
586     }
587 
588     SI void load2(const float* ptr, size_t tail, F* r, F* g) {
589         F _0123, _4567;
590         if (__builtin_expect(tail, 0)) {
591             _0123 = _4567 = _mm256_setzero_ps();
592             F* d = &_0123;
593             if (tail > 3) {
594                 *d = _mm256_loadu_ps(ptr);
595                 ptr += 8;
596                 tail -= 4;
597                 d = &_4567;
598             }
599             bool high = false;
600             if (tail > 1) {
601                 *d = _mm256_castps128_ps256(_mm_loadu_ps(ptr));
602                 ptr += 4;
603                 tail -= 2;
604                 high = true;
605             }
606             if (tail > 0) {
607                 *d = high ? _mm256_insertf128_ps(*d, _mm_loadu_si64(ptr), 1)
608                           : _mm256_insertf128_ps(*d, _mm_loadu_si64(ptr), 0);
609             }
610         } else {
611             _0123 = _mm256_loadu_ps(ptr + 0);
612             _4567 = _mm256_loadu_ps(ptr + 8);
613         }
614 
615         F _0145 = _mm256_permute2f128_pd(_0123, _4567, 0x20),
616           _2367 = _mm256_permute2f128_pd(_0123, _4567, 0x31);
617 
618         *r = _mm256_shuffle_ps(_0145, _2367, 0x88);
619         *g = _mm256_shuffle_ps(_0145, _2367, 0xDD);
620     }
621     SI void store2(float* ptr, size_t tail, F r, F g) {
622         F _0145 = _mm256_unpacklo_ps(r, g),
623           _2367 = _mm256_unpackhi_ps(r, g);
624         F _0123 = _mm256_permute2f128_pd(_0145, _2367, 0x20),
625           _4567 = _mm256_permute2f128_pd(_0145, _2367, 0x31);
626 
627         if (__builtin_expect(tail, 0)) {
628             const __m256* s = &_0123;
629             if (tail > 3) {
630                 _mm256_storeu_ps(ptr, *s);
631                 s = &_4567;
632                 tail -= 4;
633                 ptr += 8;
634             }
635             bool high = false;
636             if (tail > 1) {
637                 _mm_storeu_ps(ptr, _mm256_extractf128_ps(*s, 0));
638                 ptr += 4;
639                 tail -= 2;
640                 high = true;
641             }
642             if (tail > 0) {
643                 *(ptr + 0) = (*s)[ high ? 4 : 0];
644                 *(ptr + 1) = (*s)[ high ? 5 : 1];
645             }
646         } else {
647             _mm256_storeu_ps(ptr + 0, _0123);
648             _mm256_storeu_ps(ptr + 8, _4567);
649         }
650     }
651 
652     SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) {
653         F _04, _15, _26, _37;
654         _04 = _15 = _26 = _37 = 0;
655         switch (tail) {
656             case 0: _37 = _mm256_insertf128_ps(_37, _mm_loadu_ps(ptr+28), 1); [[fallthrough]];
657             case 7: _26 = _mm256_insertf128_ps(_26, _mm_loadu_ps(ptr+24), 1); [[fallthrough]];
658             case 6: _15 = _mm256_insertf128_ps(_15, _mm_loadu_ps(ptr+20), 1); [[fallthrough]];
659             case 5: _04 = _mm256_insertf128_ps(_04, _mm_loadu_ps(ptr+16), 1); [[fallthrough]];
660             case 4: _37 = _mm256_insertf128_ps(_37, _mm_loadu_ps(ptr+12), 0); [[fallthrough]];
661             case 3: _26 = _mm256_insertf128_ps(_26, _mm_loadu_ps(ptr+ 8), 0); [[fallthrough]];
662             case 2: _15 = _mm256_insertf128_ps(_15, _mm_loadu_ps(ptr+ 4), 0); [[fallthrough]];
663             case 1: _04 = _mm256_insertf128_ps(_04, _mm_loadu_ps(ptr+ 0), 0);
664         }
665 
666         F rg0145 = _mm256_unpacklo_ps(_04,_15),  // r0 r1 g0 g1 | r4 r5 g4 g5
667           ba0145 = _mm256_unpackhi_ps(_04,_15),
668           rg2367 = _mm256_unpacklo_ps(_26,_37),
669           ba2367 = _mm256_unpackhi_ps(_26,_37);
670 
671         *r = _mm256_unpacklo_pd(rg0145, rg2367);
672         *g = _mm256_unpackhi_pd(rg0145, rg2367);
673         *b = _mm256_unpacklo_pd(ba0145, ba2367);
674         *a = _mm256_unpackhi_pd(ba0145, ba2367);
675     }
676     SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) {
677         F rg0145 = _mm256_unpacklo_ps(r, g),  // r0 g0 r1 g1 | r4 g4 r5 g5
678           rg2367 = _mm256_unpackhi_ps(r, g),  // r2 ...      | r6 ...
679           ba0145 = _mm256_unpacklo_ps(b, a),  // b0 a0 b1 a1 | b4 a4 b5 a5
680           ba2367 = _mm256_unpackhi_ps(b, a);  // b2 ...      | b6 ...
681 
682         F _04 = _mm256_unpacklo_pd(rg0145, ba0145),  // r0 g0 b0 a0 | r4 g4 b4 a4
683           _15 = _mm256_unpackhi_pd(rg0145, ba0145),  // r1 ...      | r5 ...
684           _26 = _mm256_unpacklo_pd(rg2367, ba2367),  // r2 ...      | r6 ...
685           _37 = _mm256_unpackhi_pd(rg2367, ba2367);  // r3 ...      | r7 ...
686 
687         if (__builtin_expect(tail, 0)) {
688             if (tail > 0) { _mm_storeu_ps(ptr+ 0, _mm256_extractf128_ps(_04, 0)); }
689             if (tail > 1) { _mm_storeu_ps(ptr+ 4, _mm256_extractf128_ps(_15, 0)); }
690             if (tail > 2) { _mm_storeu_ps(ptr+ 8, _mm256_extractf128_ps(_26, 0)); }
691             if (tail > 3) { _mm_storeu_ps(ptr+12, _mm256_extractf128_ps(_37, 0)); }
692             if (tail > 4) { _mm_storeu_ps(ptr+16, _mm256_extractf128_ps(_04, 1)); }
693             if (tail > 5) { _mm_storeu_ps(ptr+20, _mm256_extractf128_ps(_15, 1)); }
694             if (tail > 6) { _mm_storeu_ps(ptr+24, _mm256_extractf128_ps(_26, 1)); }
695         } else {
696             F _01 = _mm256_permute2f128_ps(_04, _15, 32),  // 32 == 0010 0000 == lo, lo
697               _23 = _mm256_permute2f128_ps(_26, _37, 32),
698               _45 = _mm256_permute2f128_ps(_04, _15, 49),  // 49 == 0011 0001 == hi, hi
699               _67 = _mm256_permute2f128_ps(_26, _37, 49);
700             _mm256_storeu_ps(ptr+ 0, _01);
701             _mm256_storeu_ps(ptr+ 8, _23);
702             _mm256_storeu_ps(ptr+16, _45);
703             _mm256_storeu_ps(ptr+24, _67);
704         }
705     }
706 
707 #elif defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
708 template <typename T> using V = T __attribute__((ext_vector_type(4)));
709     using F   = V<float   >;
710     using I32 = V< int32_t>;
711     using U64 = V<uint64_t>;
712     using U32 = V<uint32_t>;
713     using U16 = V<uint16_t>;
714     using U8  = V<uint8_t >;
715 
716     SI F if_then_else(I32 c, F t, F e) {
717         return _mm_or_ps(_mm_and_ps(c, t), _mm_andnot_ps(c, e));
718     }
719 
720     SI F   min(F a, F b)     { return _mm_min_ps(a,b); }
721     SI F   max(F a, F b)     { return _mm_max_ps(a,b); }
722 #if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
723     SI I32 min(I32 a, I32 b) { return _mm_min_epi32(a,b); }
724     SI U32 min(U32 a, U32 b) { return _mm_min_epu32(a,b); }
725     SI I32 max(I32 a, I32 b) { return _mm_max_epi32(a,b); }
726     SI U32 max(U32 a, U32 b) { return _mm_max_epu32(a,b); }
727 #else
728     SI I32 min(I32 a, I32 b) {
729         return sk_bit_cast<I32>(if_then_else(a < b, sk_bit_cast<F>(a), sk_bit_cast<F>(b)));
730     }
731     SI U32 min(U32 a, U32 b) {
732         return sk_bit_cast<U32>(if_then_else(a < b, sk_bit_cast<F>(a), sk_bit_cast<F>(b)));
733     }
734     SI I32 max(I32 a, I32 b) {
735         return sk_bit_cast<I32>(if_then_else(a > b, sk_bit_cast<F>(a), sk_bit_cast<F>(b)));
736     }
737     SI U32 max(U32 a, U32 b) {
738         return sk_bit_cast<U32>(if_then_else(a > b, sk_bit_cast<F>(a), sk_bit_cast<F>(b)));
739     }
740 #endif
741 
742     SI F   mad(F f, F m, F a)  { return f*m+a;              }
743     SI F   abs_(F v)           { return _mm_and_ps(v, 0-v); }
744 #if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
745     SI I32 abs_(I32 v)         { return _mm_abs_epi32(v); }
746 #else
747     SI I32 abs_(I32 v)         { return max(v, -v); }
748 #endif
749     SI F   rcp_fast(F v)       { return _mm_rcp_ps  (v);    }
750     SI F   rcp_precise (F v)   { F e = rcp_fast(v); return e * (2.0f - v * e); }
751     SI F   rsqrt (F v)         { return _mm_rsqrt_ps(v);    }
752     SI F    sqrt_(F v)         { return _mm_sqrt_ps (v);    }
753 
754     SI U32 round(F v, F scale) { return _mm_cvtps_epi32(v*scale); }
755 
756     SI U16 pack(U32 v) {
757     #if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
758         auto p = _mm_packus_epi32(v,v);
759     #else
760         // Sign extend so that _mm_packs_epi32() does the pack we want.
761         auto p = _mm_srai_epi32(_mm_slli_epi32(v, 16), 16);
762         p = _mm_packs_epi32(p,p);
763     #endif
764         return sk_unaligned_load<U16>(&p);  // We have two copies.  Return (the lower) one.
765     }
766     SI U8 pack(U16 v) {
767         auto r = widen_cast<__m128i>(v);
768         r = _mm_packus_epi16(r,r);
769         return sk_unaligned_load<U8>(&r);
770     }
771 
772     // NOTE: This only checks the top bit of each lane, and is incorrect with non-mask values.
773     SI bool any(I32 c) { return _mm_movemask_ps(c) != 0b0000; }
774     SI bool all(I32 c) { return _mm_movemask_ps(c) == 0b1111; }
775 
776     SI F floor_(F v) {
777     #if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
778         return _mm_floor_ps(v);
779     #else
780         F roundtrip = _mm_cvtepi32_ps(_mm_cvttps_epi32(v));
781         return roundtrip - if_then_else(roundtrip > v, 1, 0);
782     #endif
783     }
784 
785     SI F ceil_(F v) {
786     #if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
787         return _mm_ceil_ps(v);
788     #else
789         F roundtrip = _mm_cvtepi32_ps(_mm_cvttps_epi32(v));
790         return roundtrip + if_then_else(roundtrip < v, 1, 0);
791     #endif
792     }
793 
794     template <typename T>
795     SI V<T> gather(const T* p, U32 ix) {
796         return {p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]};
797     }
798 
799     SI void load2(const uint16_t* ptr, size_t tail, U16* r, U16* g) {
800         __m128i _01;
801         if (__builtin_expect(tail,0)) {
802             _01 = _mm_setzero_si128();
803             if (tail > 1) {
804                 _01 = _mm_loadl_pd(_01, (const double*)ptr);            // r0 g0 r1 g1 00 00 00 00
805                 if (tail > 2) {
806                   _01 = _mm_insert_epi16(_01, *(ptr+4), 4);             // r0 g0 r1 g1 r2 00 00 00
807                   _01 = _mm_insert_epi16(_01, *(ptr+5), 5);             // r0 g0 r1 g1 r2 g2 00 00
808                 }
809             } else {
810                 _01 = _mm_cvtsi32_si128(*(const uint32_t*)ptr);         // r0 g0 00 00 00 00 00 00
811             }
812         } else {
813             _01 = _mm_loadu_si128(((__m128i*)ptr) + 0);  // r0 g0 r1 g1 r2 g2 r3 g3
814         }
815         auto rg01_23 = _mm_shufflelo_epi16(_01, 0xD8);      // r0 r1 g0 g1 r2 g2 r3 g3
816         auto rg      = _mm_shufflehi_epi16(rg01_23, 0xD8);  // r0 r1 g0 g1 r2 r3 g2 g3
817 
818         auto R = _mm_shuffle_epi32(rg, 0x88);  // r0 r1 r2 r3 r0 r1 r2 r3
819         auto G = _mm_shuffle_epi32(rg, 0xDD);  // g0 g1 g2 g3 g0 g1 g2 g3
820         *r = sk_unaligned_load<U16>(&R);
821         *g = sk_unaligned_load<U16>(&G);
822     }
823     SI void store2(uint16_t* ptr, size_t tail, U16 r, U16 g) {
824         U32 rg = _mm_unpacklo_epi16(widen_cast<__m128i>(r), widen_cast<__m128i>(g));
825         if (__builtin_expect(tail, 0)) {
826             if (tail > 1) {
827                 _mm_storel_epi64((__m128i*)ptr, rg);
828                 if (tail > 2) {
829                     int32_t rgpair = rg[2];
830                     memcpy(ptr + 4, &rgpair, sizeof(rgpair));
831                 }
832             } else {
833                 int32_t rgpair = rg[0];
834                 memcpy(ptr, &rgpair, sizeof(rgpair));
835             }
836         } else {
837             _mm_storeu_si128((__m128i*)ptr + 0, rg);
838         }
839     }
840 
841     SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) {
842         __m128i _0, _1, _2, _3;
843         if (__builtin_expect(tail,0)) {
844             _1 = _2 = _3 = _mm_setzero_si128();
845             auto load_rgb = [](const uint16_t* src) {
846                 auto v = _mm_cvtsi32_si128(*(const uint32_t*)src);
847                 return _mm_insert_epi16(v, src[2], 2);
848             };
849             if (  true  ) { _0 = load_rgb(ptr + 0); }
850             if (tail > 1) { _1 = load_rgb(ptr + 3); }
851             if (tail > 2) { _2 = load_rgb(ptr + 6); }
852         } else {
853             // Load slightly weirdly to make sure we don't load past the end of 4x48 bits.
854             auto _01 =                _mm_loadu_si128((const __m128i*)(ptr + 0))    ,
855                  _23 = _mm_srli_si128(_mm_loadu_si128((const __m128i*)(ptr + 4)), 4);
856 
857             // Each _N holds R,G,B for pixel N in its lower 3 lanes (upper 5 are ignored).
858             _0 = _01;
859             _1 = _mm_srli_si128(_01, 6);
860             _2 = _23;
861             _3 = _mm_srli_si128(_23, 6);
862         }
863 
864         // De-interlace to R,G,B.
865         auto _02 = _mm_unpacklo_epi16(_0, _2),  // r0 r2 g0 g2 b0 b2 xx xx
866              _13 = _mm_unpacklo_epi16(_1, _3);  // r1 r3 g1 g3 b1 b3 xx xx
867 
868         auto R = _mm_unpacklo_epi16(_02, _13),  // r0 r1 r2 r3 g0 g1 g2 g3
869              G = _mm_srli_si128(R, 8),
870              B = _mm_unpackhi_epi16(_02, _13);  // b0 b1 b2 b3 xx xx xx xx
871 
872         *r = sk_unaligned_load<U16>(&R);
873         *g = sk_unaligned_load<U16>(&G);
874         *b = sk_unaligned_load<U16>(&B);
875     }
876 
877     SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
878         __m128i _01, _23;
879         if (__builtin_expect(tail,0)) {
880             _01 = _23 = _mm_setzero_si128();
881             auto src = (const double*)ptr;
882             if (  true  ) { _01 = _mm_loadl_pd(_01, src + 0); } // r0 g0 b0 a0 00 00 00 00
883             if (tail > 1) { _01 = _mm_loadh_pd(_01, src + 1); } // r0 g0 b0 a0 r1 g1 b1 a1
884             if (tail > 2) { _23 = _mm_loadl_pd(_23, src + 2); } // r2 g2 b2 a2 00 00 00 00
885         } else {
886             _01 = _mm_loadu_si128(((__m128i*)ptr) + 0); // r0 g0 b0 a0 r1 g1 b1 a1
887             _23 = _mm_loadu_si128(((__m128i*)ptr) + 1); // r2 g2 b2 a2 r3 g3 b3 a3
888         }
889 
890         auto _02 = _mm_unpacklo_epi16(_01, _23),  // r0 r2 g0 g2 b0 b2 a0 a2
891              _13 = _mm_unpackhi_epi16(_01, _23);  // r1 r3 g1 g3 b1 b3 a1 a3
892 
893         auto rg = _mm_unpacklo_epi16(_02, _13),  // r0 r1 r2 r3 g0 g1 g2 g3
894              ba = _mm_unpackhi_epi16(_02, _13);  // b0 b1 b2 b3 a0 a1 a2 a3
895 
896         *r = sk_unaligned_load<U16>((uint16_t*)&rg + 0);
897         *g = sk_unaligned_load<U16>((uint16_t*)&rg + 4);
898         *b = sk_unaligned_load<U16>((uint16_t*)&ba + 0);
899         *a = sk_unaligned_load<U16>((uint16_t*)&ba + 4);
900     }
901 
902     SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
903         auto rg = _mm_unpacklo_epi16(widen_cast<__m128i>(r), widen_cast<__m128i>(g)),
904              ba = _mm_unpacklo_epi16(widen_cast<__m128i>(b), widen_cast<__m128i>(a));
905 
906         if (__builtin_expect(tail, 0)) {
907             auto dst = (double*)ptr;
908             if (  true  ) { _mm_storel_pd(dst + 0, _mm_unpacklo_epi32(rg, ba)); }
909             if (tail > 1) { _mm_storeh_pd(dst + 1, _mm_unpacklo_epi32(rg, ba)); }
910             if (tail > 2) { _mm_storel_pd(dst + 2, _mm_unpackhi_epi32(rg, ba)); }
911         } else {
912             _mm_storeu_si128((__m128i*)ptr + 0, _mm_unpacklo_epi32(rg, ba));
913             _mm_storeu_si128((__m128i*)ptr + 1, _mm_unpackhi_epi32(rg, ba));
914         }
915     }
916 
917     SI void load2(const float* ptr, size_t tail, F* r, F* g) {
918         F _01, _23;
919         if (__builtin_expect(tail, 0)) {
920             _01 = _23 = _mm_setzero_si128();
921             if (  true  ) { _01 = _mm_loadl_pi(_01, (__m64 const*)(ptr + 0)); }
922             if (tail > 1) { _01 = _mm_loadh_pi(_01, (__m64 const*)(ptr + 2)); }
923             if (tail > 2) { _23 = _mm_loadl_pi(_23, (__m64 const*)(ptr + 4)); }
924         } else {
925             _01 = _mm_loadu_ps(ptr + 0);
926             _23 = _mm_loadu_ps(ptr + 4);
927         }
928         *r = _mm_shuffle_ps(_01, _23, 0x88);
929         *g = _mm_shuffle_ps(_01, _23, 0xDD);
930     }
931     SI void store2(float* ptr, size_t tail, F r, F g) {
932         F _01 = _mm_unpacklo_ps(r, g),
933           _23 = _mm_unpackhi_ps(r, g);
934         if (__builtin_expect(tail, 0)) {
935             if (  true  ) { _mm_storel_pi((__m64*)(ptr + 0), _01); }
936             if (tail > 1) { _mm_storeh_pi((__m64*)(ptr + 2), _01); }
937             if (tail > 2) { _mm_storel_pi((__m64*)(ptr + 4), _23); }
938         } else {
939             _mm_storeu_ps(ptr + 0, _01);
940             _mm_storeu_ps(ptr + 4, _23);
941         }
942     }
943 
944     SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) {
945         F _0, _1, _2, _3;
946         if (__builtin_expect(tail, 0)) {
947             _1 = _2 = _3 = _mm_setzero_si128();
948             if (  true  ) { _0 = _mm_loadu_ps(ptr + 0); }
949             if (tail > 1) { _1 = _mm_loadu_ps(ptr + 4); }
950             if (tail > 2) { _2 = _mm_loadu_ps(ptr + 8); }
951         } else {
952             _0 = _mm_loadu_ps(ptr + 0);
953             _1 = _mm_loadu_ps(ptr + 4);
954             _2 = _mm_loadu_ps(ptr + 8);
955             _3 = _mm_loadu_ps(ptr +12);
956         }
957         _MM_TRANSPOSE4_PS(_0,_1,_2,_3);
958         *r = _0;
959         *g = _1;
960         *b = _2;
961         *a = _3;
962     }
963 
964     SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) {
965         _MM_TRANSPOSE4_PS(r,g,b,a);
966         if (__builtin_expect(tail, 0)) {
967             if (  true  ) { _mm_storeu_ps(ptr + 0, r); }
968             if (tail > 1) { _mm_storeu_ps(ptr + 4, g); }
969             if (tail > 2) { _mm_storeu_ps(ptr + 8, b); }
970         } else {
971             _mm_storeu_ps(ptr + 0, r);
972             _mm_storeu_ps(ptr + 4, g);
973             _mm_storeu_ps(ptr + 8, b);
974             _mm_storeu_ps(ptr +12, a);
975         }
976     }
977 #endif
978 
979 // We need to be a careful with casts.
980 // (F)x means cast x to float in the portable path, but bit_cast x to float in the others.
981 // These named casts and bit_cast() are always what they seem to be.
982 #if defined(JUMPER_IS_SCALAR)
cast(U32 v)983     SI F   cast  (U32 v) { return   (F)v; }
cast64(U64 v)984     SI F   cast64(U64 v) { return   (F)v; }
trunc_(F v)985     SI U32 trunc_(F   v) { return (U32)v; }
expand(U16 v)986     SI U32 expand(U16 v) { return (U32)v; }
expand(U8 v)987     SI U32 expand(U8  v) { return (U32)v; }
988 #else
cast(U32 v)989     SI F   cast  (U32 v) { return      __builtin_convertvector((I32)v,   F); }
cast64(U64 v)990     SI F   cast64(U64 v) { return      __builtin_convertvector(     v,   F); }
trunc_(F v)991     SI U32 trunc_(F   v) { return (U32)__builtin_convertvector(     v, I32); }
expand(U16 v)992     SI U32 expand(U16 v) { return      __builtin_convertvector(     v, U32); }
expand(U8 v)993     SI U32 expand(U8  v) { return      __builtin_convertvector(     v, U32); }
994 #endif
995 
996 template <typename V>
if_then_else(I32 c,V t,V e)997 SI V if_then_else(I32 c, V t, V e) {
998     return sk_bit_cast<V>(if_then_else(c, sk_bit_cast<F>(t), sk_bit_cast<F>(e)));
999 }
1000 
bswap(U16 x)1001 SI U16 bswap(U16 x) {
1002 #if defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41)
1003     // Somewhat inexplicably Clang decides to do (x<<8) | (x>>8) in 32-bit lanes
1004     // when generating code for SSE2 and SSE4.1.  We'll do it manually...
1005     auto v = widen_cast<__m128i>(x);
1006     v = _mm_slli_epi16(v,8) | _mm_srli_epi16(v,8);
1007     return sk_unaligned_load<U16>(&v);
1008 #else
1009     return (x<<8) | (x>>8);
1010 #endif
1011 }
1012 
fract(F v)1013 SI F fract(F v) { return v - floor_(v); }
1014 
1015 // See http://www.machinedlearnings.com/2011/06/fast-approximate-logarithm-exponential.html.
approx_log2(F x)1016 SI F approx_log2(F x) {
1017     // e - 127 is a fair approximation of log2(x) in its own right...
1018     F e = cast(sk_bit_cast<U32>(x)) * (1.0f / (1<<23));
1019 
1020     // ... but using the mantissa to refine its error is _much_ better.
1021     F m = sk_bit_cast<F>((sk_bit_cast<U32>(x) & 0x007fffff) | 0x3f000000);
1022     return e
1023          - 124.225514990f
1024          -   1.498030302f * m
1025          -   1.725879990f / (0.3520887068f + m);
1026 }
1027 
approx_log(F x)1028 SI F approx_log(F x) {
1029     const float ln2 = 0.69314718f;
1030     return ln2 * approx_log2(x);
1031 }
1032 
approx_pow2(F x)1033 SI F approx_pow2(F x) {
1034     F f = fract(x);
1035     return sk_bit_cast<F>(round(1.0f * (1<<23),
1036                                 x + 121.274057500f
1037                                   -   1.490129070f * f
1038                                   +  27.728023300f / (4.84252568f - f)));
1039 }
1040 
approx_exp(F x)1041 SI F approx_exp(F x) {
1042     const float log2_e = 1.4426950408889634074f;
1043     return approx_pow2(log2_e * x);
1044 }
1045 
approx_powf(F x,F y)1046 SI F approx_powf(F x, F y) {
1047     return if_then_else((x == 0)|(x == 1), x
1048                                          , approx_pow2(approx_log2(x) * y));
1049 }
1050 
from_half(U16 h)1051 SI F from_half(U16 h) {
1052 #if defined(JUMPER_IS_NEON) && defined(SK_CPU_ARM64) \
1053     && !defined(SK_BUILD_FOR_GOOGLE3)  // Temporary workaround for some Google3 builds.
1054     return vcvt_f32_f16(h);
1055 
1056 #elif defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
1057     return _mm256_cvtph_ps(h);
1058 
1059 #else
1060     // Remember, a half is 1-5-10 (sign-exponent-mantissa) with 15 exponent bias.
1061     U32 sem = expand(h),
1062         s   = sem & 0x8000,
1063          em = sem ^ s;
1064 
1065     // Convert to 1-8-23 float with 127 bias, flushing denorm halfs (including zero) to zero.
1066     auto denorm = (I32)em < 0x0400;      // I32 comparison is often quicker, and always safe here.
1067     return if_then_else(denorm, F(0)
1068                               , sk_bit_cast<F>( (s<<16) + (em<<13) + ((127-15)<<23) ));
1069 #endif
1070 }
1071 
to_half(F f)1072 SI U16 to_half(F f) {
1073 #if defined(JUMPER_IS_NEON) && defined(SK_CPU_ARM64) \
1074     && !defined(SK_BUILD_FOR_GOOGLE3)  // Temporary workaround for some Google3 builds.
1075     return vcvt_f16_f32(f);
1076 
1077 #elif defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
1078     return _mm256_cvtps_ph(f, _MM_FROUND_CUR_DIRECTION);
1079 
1080 #else
1081     // Remember, a float is 1-8-23 (sign-exponent-mantissa) with 127 exponent bias.
1082     U32 sem = sk_bit_cast<U32>(f),
1083         s   = sem & 0x80000000,
1084          em = sem ^ s;
1085 
1086     // Convert to 1-5-10 half with 15 bias, flushing denorm halfs (including zero) to zero.
1087     auto denorm = (I32)em < 0x38800000;  // I32 comparison is often quicker, and always safe here.
1088     return pack(if_then_else(denorm, U32(0)
1089                                    , (s>>16) + (em>>13) - ((127-15)<<10)));
1090 #endif
1091 }
1092 
1093 // Our fundamental vector depth is our pixel stride.
1094 static constexpr size_t N = sizeof(F) / sizeof(float);
1095 
1096 // We're finally going to get to what a Stage function looks like!
1097 //    tail == 0 ~~> work on a full N pixels
1098 //    tail != 0 ~~> work on only the first tail pixels
1099 // tail is always < N.
1100 
1101 // Any custom ABI to use for all (non-externally-facing) stage functions?
1102 // Also decide here whether to use narrow (compromise) or wide (ideal) stages.
1103 #if defined(SK_CPU_ARM32) && defined(JUMPER_IS_NEON)
1104     // This lets us pass vectors more efficiently on 32-bit ARM.
1105     // We can still only pass 16 floats, so best as 4x {r,g,b,a}.
1106     #define ABI __attribute__((pcs("aapcs-vfp")))
1107     #define JUMPER_NARROW_STAGES 1
1108 #elif defined(_MSC_VER)
1109     // Even if not vectorized, this lets us pass {r,g,b,a} as registers,
1110     // instead of {b,a} on the stack.  Narrow stages work best for __vectorcall.
1111     #define ABI __vectorcall
1112     #define JUMPER_NARROW_STAGES 1
1113 #elif defined(__x86_64__) || defined(SK_CPU_ARM64)
1114     // These platforms are ideal for wider stages, and their default ABI is ideal.
1115     #define ABI
1116     #define JUMPER_NARROW_STAGES 0
1117 #else
1118     // 32-bit or unknown... shunt them down the narrow path.
1119     // Odds are these have few registers and are better off there.
1120     #define ABI
1121     #define JUMPER_NARROW_STAGES 1
1122 #endif
1123 
1124 #if JUMPER_NARROW_STAGES
1125     struct Params {
1126         size_t dx, dy, tail;
1127         F dr,dg,db,da;
1128     };
1129     using Stage = void(ABI*)(Params*, SkRasterPipelineStage* program, F r, F g, F b, F a);
1130 #else
1131     using Stage = void(ABI*)(size_t tail, SkRasterPipelineStage* program, size_t dx, size_t dy,
1132                              F,F,F,F, F,F,F,F);
1133 #endif
1134 
start_pipeline(size_t dx,size_t dy,size_t xlimit,size_t ylimit,SkRasterPipelineStage * program)1135 static void start_pipeline(size_t dx, size_t dy,
1136                            size_t xlimit, size_t ylimit,
1137                            SkRasterPipelineStage* program) {
1138     auto start = (Stage)program->fn;
1139     const size_t x0 = dx;
1140     for (; dy < ylimit; dy++) {
1141     #if JUMPER_NARROW_STAGES
1142         Params params = { x0,dy,0, 0,0,0,0 };
1143         while (params.dx + N <= xlimit) {
1144             start(&params,program, 0,0,0,0);
1145             params.dx += N;
1146         }
1147         if (size_t tail = xlimit - params.dx) {
1148             params.tail = tail;
1149             start(&params,program, 0,0,0,0);
1150         }
1151     #else
1152         dx = x0;
1153         while (dx + N <= xlimit) {
1154             start(0,program,dx,dy,    0,0,0,0, 0,0,0,0);
1155             dx += N;
1156         }
1157         if (size_t tail = xlimit - dx) {
1158             start(tail,program,dx,dy, 0,0,0,0, 0,0,0,0);
1159         }
1160     #endif
1161     }
1162 }
1163 
1164 #if SK_HAS_MUSTTAIL
1165     #define JUMPER_MUSTTAIL [[clang::musttail]]
1166 #else
1167     #define JUMPER_MUSTTAIL
1168 #endif
1169 
1170 #if JUMPER_NARROW_STAGES
1171     #define DECLARE_STAGE(name, ARG, STAGE_RET, INC, OFFSET, MUSTTAIL)               \
1172         SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, size_t tail,                \
1173                               F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da);   \
1174         static void ABI name(Params* params, SkRasterPipelineStage* program,         \
1175                              F r, F g, F b, F a) {                                   \
1176             OFFSET name##_k(Ctx{program},params->dx,params->dy,params->tail, r,g,b,a,\
1177                             params->dr, params->dg, params->db, params->da);         \
1178             INC;                                                                     \
1179             auto fn = (Stage)program->fn;                                            \
1180             MUSTTAIL return fn(params, program, r,g,b,a);                            \
1181         }                                                                            \
1182         SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, size_t tail,                \
1183                               F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da)
1184 #else
1185     #define DECLARE_STAGE(name, ARG, STAGE_RET, INC, OFFSET, MUSTTAIL)                          \
1186         SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, size_t tail,                           \
1187                               F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da);              \
1188         static void ABI name(size_t tail, SkRasterPipelineStage* program, size_t dx, size_t dy, \
1189                              F r, F g, F b, F a, F dr, F dg, F db, F da) {                      \
1190             OFFSET name##_k(Ctx{program},dx,dy,tail, r,g,b,a, dr,dg,db,da);                     \
1191             INC;                                                                                \
1192             auto fn = (Stage)program->fn;                                                       \
1193             MUSTTAIL return fn(tail, program, dx,dy, r,g,b,a, dr,dg,db,da);                     \
1194         }                                                                                       \
1195         SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, size_t tail,                           \
1196                               F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da)
1197 #endif
1198 
1199 // A typical stage returns void, always increments the program counter by 1, and lets the optimizer
1200 // decide whether or not tail-calling is appropriate.
1201 #define STAGE(name, arg) \
1202     DECLARE_STAGE(name, arg, void, ++program, /*no offset*/, /*no musttail*/)
1203 
1204 // A tail stage returns void, always increments the program counter by 1, and uses tail-calling.
1205 // Tail-calling is necessary in SkSL-generated programs, which can be thousands of ops long, and
1206 // could overflow the stack (particularly in debug).
1207 #define STAGE_TAIL(name, arg) \
1208     DECLARE_STAGE(name, arg, void, ++program, /*no offset*/, JUMPER_MUSTTAIL)
1209 
1210 // A branch stage returns an integer, which is added directly to the program counter, and tailcalls.
1211 #define STAGE_BRANCH(name, arg) \
1212     DECLARE_STAGE(name, arg, int, /*no increment*/, program +=, JUMPER_MUSTTAIL)
1213 
1214 // just_return() is a simple no-op stage that only exists to end the chain,
1215 // returning back up to start_pipeline(), and from there to the caller.
1216 #if JUMPER_NARROW_STAGES
just_return(Params *,SkRasterPipelineStage *,F,F,F,F)1217     static void ABI just_return(Params*, SkRasterPipelineStage*, F,F,F,F) {}
1218 #else
just_return(size_t,SkRasterPipelineStage *,size_t,size_t,F,F,F,F,F,F,F,F)1219     static void ABI just_return(size_t, SkRasterPipelineStage*, size_t,size_t, F,F,F,F, F,F,F,F) {}
1220 #endif
1221 
1222 // Note that in release builds, most stages consume no stack (thanks to tail call optimization).
1223 // However: certain builds (especially with non-clang compilers) may fail to optimize tail
1224 // calls, resulting in actual stack frames being generated.
1225 //
1226 // stack_checkpoint() and stack_rewind() are special stages that can be used to manage stack growth.
1227 // If a pipeline contains a stack_checkpoint, followed by any number of stack_rewind (at any point),
1228 // the C++ stack will be reset to the state it was at when the stack_checkpoint was initially hit.
1229 //
1230 // All instances of stack_rewind (as well as the one instance of stack_checkpoint near the start of
1231 // a pipeline) share a single context (of type SkRasterPipeline_RewindCtx). That context holds the
1232 // full state of the mutable registers that are normally passed to the next stage in the program.
1233 //
1234 // stack_rewind is the only stage other than just_return that actually returns (rather than jumping
1235 // to the next stage in the program). Before it does so, it stashes all of the registers in the
1236 // context. This includes the updated `program` pointer. Unlike stages that tail call exactly once,
1237 // stack_checkpoint calls the next stage in the program repeatedly, as long as the `program` in the
1238 // context is overwritten (i.e., as long as a stack_rewind was the reason the pipeline returned,
1239 // rather than a just_return).
1240 //
1241 // Normally, just_return is the only stage that returns, and no other stage does anything after a
1242 // subsequent (called) stage returns, so the stack just unwinds all the way to start_pipeline.
1243 // With stack_checkpoint on the stack, any stack_rewind stages will return all the way up to the
1244 // stack_checkpoint. That grabs the values that would have been passed to the next stage (from the
1245 // context), and continues the linear execution of stages, but has reclaimed all of the stack frames
1246 // pushed before the stack_rewind before doing so.
1247 #if JUMPER_NARROW_STAGES
stack_checkpoint(Params * params,SkRasterPipelineStage * program,F r,F g,F b,F a)1248     static void ABI stack_checkpoint(Params* params, SkRasterPipelineStage* program,
1249                                      F r, F g, F b, F a) {
1250         SkRasterPipeline_RewindCtx* ctx = Ctx{program};
1251         while (program) {
1252             auto next = (Stage)(++program)->fn;
1253 
1254             ctx->stage = nullptr;
1255             next(params, program, r, g, b, a);
1256             program = ctx->stage;
1257 
1258             if (program) {
1259                 r          = sk_unaligned_load<F>(ctx->r );
1260                 g          = sk_unaligned_load<F>(ctx->g );
1261                 b          = sk_unaligned_load<F>(ctx->b );
1262                 a          = sk_unaligned_load<F>(ctx->a );
1263                 params->dr = sk_unaligned_load<F>(ctx->dr);
1264                 params->dg = sk_unaligned_load<F>(ctx->dg);
1265                 params->db = sk_unaligned_load<F>(ctx->db);
1266                 params->da = sk_unaligned_load<F>(ctx->da);
1267             }
1268         }
1269     }
stack_rewind(Params * params,SkRasterPipelineStage * program,F r,F g,F b,F a)1270     static void ABI stack_rewind(Params* params, SkRasterPipelineStage* program,
1271                                  F r, F g, F b, F a) {
1272         SkRasterPipeline_RewindCtx* ctx = Ctx{program};
1273         sk_unaligned_store(ctx->r , r );
1274         sk_unaligned_store(ctx->g , g );
1275         sk_unaligned_store(ctx->b , b );
1276         sk_unaligned_store(ctx->a , a );
1277         sk_unaligned_store(ctx->dr, params->dr);
1278         sk_unaligned_store(ctx->dg, params->dg);
1279         sk_unaligned_store(ctx->db, params->db);
1280         sk_unaligned_store(ctx->da, params->da);
1281         ctx->stage = program;
1282     }
1283 #else
stack_checkpoint(size_t tail,SkRasterPipelineStage * program,size_t dx,size_t dy,F r,F g,F b,F a,F dr,F dg,F db,F da)1284     static void ABI stack_checkpoint(size_t tail, SkRasterPipelineStage* program,
1285                                      size_t dx, size_t dy,
1286                                      F r, F g, F b, F a, F dr, F dg, F db, F da) {
1287         SkRasterPipeline_RewindCtx* ctx = Ctx{program};
1288         while (program) {
1289             auto next = (Stage)(++program)->fn;
1290 
1291             ctx->stage = nullptr;
1292             next(tail, program, dx, dy, r, g, b, a, dr, dg, db, da);
1293             program = ctx->stage;
1294 
1295             if (program) {
1296                 r  = sk_unaligned_load<F>(ctx->r );
1297                 g  = sk_unaligned_load<F>(ctx->g );
1298                 b  = sk_unaligned_load<F>(ctx->b );
1299                 a  = sk_unaligned_load<F>(ctx->a );
1300                 dr = sk_unaligned_load<F>(ctx->dr);
1301                 dg = sk_unaligned_load<F>(ctx->dg);
1302                 db = sk_unaligned_load<F>(ctx->db);
1303                 da = sk_unaligned_load<F>(ctx->da);
1304             }
1305         }
1306     }
stack_rewind(size_t tail,SkRasterPipelineStage * program,size_t dx,size_t dy,F r,F g,F b,F a,F dr,F dg,F db,F da)1307     static void ABI stack_rewind(size_t tail, SkRasterPipelineStage* program,
1308                                  size_t dx, size_t dy,
1309                                  F r, F g, F b, F a, F dr, F dg, F db, F da) {
1310         SkRasterPipeline_RewindCtx* ctx = Ctx{program};
1311         sk_unaligned_store(ctx->r , r );
1312         sk_unaligned_store(ctx->g , g );
1313         sk_unaligned_store(ctx->b , b );
1314         sk_unaligned_store(ctx->a , a );
1315         sk_unaligned_store(ctx->dr, dr);
1316         sk_unaligned_store(ctx->dg, dg);
1317         sk_unaligned_store(ctx->db, db);
1318         sk_unaligned_store(ctx->da, da);
1319         ctx->stage = program;
1320     }
1321 #endif
1322 
1323 
1324 // We could start defining normal Stages now.  But first, some helper functions.
1325 
1326 // These load() and store() methods are tail-aware,
1327 // but focus mainly on keeping the at-stride tail==0 case fast.
1328 
1329 template <typename V, typename T>
load(const T * src,size_t tail)1330 SI V load(const T* src, size_t tail) {
1331 #if !defined(JUMPER_IS_SCALAR)
1332     __builtin_assume(tail < N);
1333     if (__builtin_expect(tail, 0)) {
1334         V v{};  // Any inactive lanes are zeroed.
1335         switch (tail) {
1336             case 7: v[6] = src[6]; [[fallthrough]];
1337             case 6: v[5] = src[5]; [[fallthrough]];
1338             case 5: v[4] = src[4]; [[fallthrough]];
1339             case 4: memcpy(&v, src, 4*sizeof(T)); break;
1340             case 3: v[2] = src[2]; [[fallthrough]];
1341             case 2: memcpy(&v, src, 2*sizeof(T)); break;
1342             case 1: memcpy(&v, src, 1*sizeof(T)); break;
1343         }
1344         return v;
1345     }
1346 #endif
1347     return sk_unaligned_load<V>(src);
1348 }
1349 
1350 template <typename V, typename T>
store(T * dst,V v,size_t tail)1351 SI void store(T* dst, V v, size_t tail) {
1352 #if !defined(JUMPER_IS_SCALAR)
1353     __builtin_assume(tail < N);
1354     if (__builtin_expect(tail, 0)) {
1355         switch (tail) {
1356             case 7: dst[6] = v[6]; [[fallthrough]];
1357             case 6: dst[5] = v[5]; [[fallthrough]];
1358             case 5: dst[4] = v[4]; [[fallthrough]];
1359             case 4: memcpy(dst, &v, 4*sizeof(T)); break;
1360             case 3: dst[2] = v[2]; [[fallthrough]];
1361             case 2: memcpy(dst, &v, 2*sizeof(T)); break;
1362             case 1: memcpy(dst, &v, 1*sizeof(T)); break;
1363         }
1364         return;
1365     }
1366 #endif
1367     sk_unaligned_store(dst, v);
1368 }
1369 
from_byte(U8 b)1370 SI F from_byte(U8 b) {
1371     return cast(expand(b)) * (1/255.0f);
1372 }
from_short(U16 s)1373 SI F from_short(U16 s) {
1374     return cast(expand(s)) * (1/65535.0f);
1375 }
from_565(U16 _565,F * r,F * g,F * b)1376 SI void from_565(U16 _565, F* r, F* g, F* b) {
1377     U32 wide = expand(_565);
1378     *r = cast(wide & (31<<11)) * (1.0f / (31<<11));
1379     *g = cast(wide & (63<< 5)) * (1.0f / (63<< 5));
1380     *b = cast(wide & (31<< 0)) * (1.0f / (31<< 0));
1381 }
from_4444(U16 _4444,F * r,F * g,F * b,F * a)1382 SI void from_4444(U16 _4444, F* r, F* g, F* b, F* a) {
1383     U32 wide = expand(_4444);
1384     *r = cast(wide & (15<<12)) * (1.0f / (15<<12));
1385     *g = cast(wide & (15<< 8)) * (1.0f / (15<< 8));
1386     *b = cast(wide & (15<< 4)) * (1.0f / (15<< 4));
1387     *a = cast(wide & (15<< 0)) * (1.0f / (15<< 0));
1388 }
from_8888(U32 _8888,F * r,F * g,F * b,F * a)1389 SI void from_8888(U32 _8888, F* r, F* g, F* b, F* a) {
1390     *r = cast((_8888      ) & 0xff) * (1/255.0f);
1391     *g = cast((_8888 >>  8) & 0xff) * (1/255.0f);
1392     *b = cast((_8888 >> 16) & 0xff) * (1/255.0f);
1393     *a = cast((_8888 >> 24)       ) * (1/255.0f);
1394 }
from_88(U16 _88,F * r,F * g)1395 SI void from_88(U16 _88, F* r, F* g) {
1396     U32 wide = expand(_88);
1397     *r = cast((wide      ) & 0xff) * (1/255.0f);
1398     *g = cast((wide >>  8) & 0xff) * (1/255.0f);
1399 }
from_1010102(U32 rgba,F * r,F * g,F * b,F * a)1400 SI void from_1010102(U32 rgba, F* r, F* g, F* b, F* a) {
1401     *r = cast((rgba      ) & 0x3ff) * (1/1023.0f);
1402     *g = cast((rgba >> 10) & 0x3ff) * (1/1023.0f);
1403     *b = cast((rgba >> 20) & 0x3ff) * (1/1023.0f);
1404     *a = cast((rgba >> 30)        ) * (1/   3.0f);
1405 }
from_1010102_xr(U32 rgba,F * r,F * g,F * b,F * a)1406 SI void from_1010102_xr(U32 rgba, F* r, F* g, F* b, F* a) {
1407     static constexpr float min = -0.752941f;
1408     static constexpr float max = 1.25098f;
1409     static constexpr float range = max - min;
1410     *r = cast((rgba      ) & 0x3ff) * (1/1023.0f) * range + min;
1411     *g = cast((rgba >> 10) & 0x3ff) * (1/1023.0f) * range + min;
1412     *b = cast((rgba >> 20) & 0x3ff) * (1/1023.0f) * range + min;
1413     *a = cast((rgba >> 30)        ) * (1/   3.0f);
1414 }
from_1616(U32 _1616,F * r,F * g)1415 SI void from_1616(U32 _1616, F* r, F* g) {
1416     *r = cast((_1616      ) & 0xffff) * (1/65535.0f);
1417     *g = cast((_1616 >> 16) & 0xffff) * (1/65535.0f);
1418 }
from_16161616(U64 _16161616,F * r,F * g,F * b,F * a)1419 SI void from_16161616(U64 _16161616, F* r, F* g, F* b, F* a) {
1420     *r = cast64((_16161616      ) & 0xffff) * (1/65535.0f);
1421     *g = cast64((_16161616 >> 16) & 0xffff) * (1/65535.0f);
1422     *b = cast64((_16161616 >> 32) & 0xffff) * (1/65535.0f);
1423     *a = cast64((_16161616 >> 48) & 0xffff) * (1/65535.0f);
1424 }
1425 
1426 // Used by load_ and store_ stages to get to the right (dx,dy) starting point of contiguous memory.
1427 template <typename T>
ptr_at_xy(const SkRasterPipeline_MemoryCtx * ctx,size_t dx,size_t dy)1428 SI T* ptr_at_xy(const SkRasterPipeline_MemoryCtx* ctx, size_t dx, size_t dy) {
1429     return (T*)ctx->pixels + dy*ctx->stride + dx;
1430 }
1431 
1432 // clamp v to [0,limit).
clamp(F v,F limit)1433 SI F clamp(F v, F limit) {
1434     F inclusive = sk_bit_cast<F>( sk_bit_cast<U32>(limit) - 1 );  // Exclusive -> inclusive.
1435     return min(max(0.0f, v), inclusive);
1436 }
1437 
1438 // clamp to (0,limit).
clamp_ex(F v,F limit)1439 SI F clamp_ex(F v, F limit) {
1440     const F inclusiveZ = std::numeric_limits<float>::min(),
1441             inclusiveL = sk_bit_cast<F>( sk_bit_cast<U32>(limit) - 1 );
1442     return min(max(inclusiveZ, v), inclusiveL);
1443 }
1444 
1445 // Bhaskara I's sine approximation
1446 // 16x(pi - x) / (5*pi^2 - 4x(pi - x)
1447 // ... divide by 4
1448 // 4x(pi - x) / 5*pi^2/4 - x(pi - x)
1449 //
1450 // This is a good approximation only for 0 <= x <= pi, so we use symmetries to get
1451 // radians into that range first.
sin_(F v)1452 SI F sin_(F v) {
1453     constexpr float Pi = SK_ScalarPI;
1454     F x = fract(v * (0.5f/Pi)) * (2*Pi);
1455     I32 neg = x > Pi;
1456     x = if_then_else(neg, x - Pi, x);
1457 
1458     F pair = x * (Pi - x);
1459     x = 4.0f * pair / ((5*Pi*Pi/4) - pair);
1460     x = if_then_else(neg, -x, x);
1461     return x;
1462 }
1463 
cos_(F v)1464 SI F cos_(F v) {
1465     return sin_(v + (SK_ScalarPI/2));
1466 }
1467 
1468 /*  "GENERATING ACCURATE VALUES FOR THE TANGENT FUNCTION"
1469      https://mae.ufl.edu/~uhk/ACCURATE-TANGENT.pdf
1470 
1471     approx = x + (1/3)x^3 + (2/15)x^5 + (17/315)x^7 + (62/2835)x^9
1472 
1473     Some simplifications:
1474     1. tan(x) is periodic, -PI/2 < x < PI/2
1475     2. tan(x) is odd, so tan(-x) = -tan(x)
1476     3. Our polynomial approximation is best near zero, so we use the following identity
1477                     tan(x) + tan(y)
1478        tan(x + y) = -----------------
1479                    1 - tan(x)*tan(y)
1480        tan(PI/4) = 1
1481 
1482        So for x > PI/8, we do the following refactor:
1483        x' = x - PI/4
1484 
1485                 1 + tan(x')
1486        tan(x) = ------------
1487                 1 - tan(x')
1488  */
tan_(F x)1489 SI F tan_(F x) {
1490     constexpr float Pi = SK_ScalarPI;
1491     // periodic between -pi/2 ... pi/2
1492     // shift to 0...Pi, scale 1/Pi to get into 0...1, then fract, scale-up, shift-back
1493     x = fract((1/Pi)*x + 0.5f) * Pi - (Pi/2);
1494 
1495     I32 neg = (x < 0.0f);
1496     x = if_then_else(neg, -x, x);
1497 
1498     // minimize total error by shifting if x > pi/8
1499     I32 use_quotient = (x > (Pi/8));
1500     x = if_then_else(use_quotient, x - (Pi/4), x);
1501 
1502     // 9th order poly = 4th order(x^2) * x
1503     F x2 = x * x;
1504     x *= 1 + x2 * (1/3.0f    +
1505              x2 * (2/15.0f   +
1506              x2 * (17/315.0f +
1507              x2 * (62/2835.0f))));
1508     x = if_then_else(use_quotient, (1+x)/(1-x), x);
1509     x = if_then_else(neg, -x, x);
1510     return x;
1511 }
1512 
1513 /*  Use 4th order polynomial approximation from https://arachnoid.com/polysolve/
1514         with 129 values of x,atan(x) for x:[0...1]
1515     This only works for 0 <= x <= 1
1516  */
approx_atan_unit(F x)1517 SI F approx_atan_unit(F x) {
1518     // y =   0.14130025741326729 x⁴
1519     //     - 0.34312835980675116 x³
1520     //     - 0.016172900528248768 x²
1521     //     + 1.00376969762003850 x
1522     //     - 0.00014758242182738969
1523     return x * (x * (x * (x * 0.14130025741326729f - 0.34312835980675116f)
1524                                                    - 0.016172900528248768f)
1525                                                    + 1.0037696976200385f)
1526                                                    - 0.00014758242182738969f;
1527 }
1528 
1529 // Use identity atan(x) = pi/2 - atan(1/x) for x > 1
atan_(F x)1530 SI F atan_(F x) {
1531     I32 neg = (x < 0.0f);
1532     x = if_then_else(neg, -x, x);
1533     I32 flip = (x > 1.0f);
1534     x = if_then_else(flip, 1/x, x);
1535     x = approx_atan_unit(x);
1536     x = if_then_else(flip, SK_ScalarPI/2 - x, x);
1537     x = if_then_else(neg, -x, x);
1538     return x;
1539 }
1540 
1541 /*  Use identity atan(x) = pi/2 - atan(1/x) for x > 1
1542     By swapping y,x to ensure the ratio is <= 1, we can safely call atan_unit()
1543     which avoids a 2nd divide instruction if we had instead called atan().
1544  */
atan2_(F y0,F x0)1545 SI F atan2_(F y0, F x0) {
1546     I32 flip = (abs_(y0) > abs_(x0));
1547     F   y = if_then_else(flip, x0, y0);
1548     F   x = if_then_else(flip, y0, x0);
1549     F   arg = y/x;
1550 
1551     I32 neg = (arg < 0.0f);
1552     arg = if_then_else(neg, -arg, arg);
1553 
1554     F r = approx_atan_unit(arg);
1555     r = if_then_else(flip, SK_ScalarPI/2 - r, r);
1556     r = if_then_else(neg, -r, r);
1557 
1558     // handle quadrant distinctions
1559     r = if_then_else((y0 >= 0) & (x0  < 0), r + SK_ScalarPI, r);
1560     r = if_then_else((y0  < 0) & (x0 <= 0), r - SK_ScalarPI, r);
1561     // Note: we don't try to handle 0,0 or infinities
1562     return r;
1563 }
1564 
1565 // Used by gather_ stages to calculate the base pointer and a vector of indices to load.
1566 template <typename T>
ix_and_ptr(T ** ptr,const SkRasterPipeline_GatherCtx * ctx,F x,F y)1567 SI U32 ix_and_ptr(T** ptr, const SkRasterPipeline_GatherCtx* ctx, F x, F y) {
1568     // We use exclusive clamp so that our min value is > 0 because ULP subtraction using U32 would
1569     // produce a NaN if applied to +0.f.
1570     x = clamp_ex(x, ctx->width );
1571     y = clamp_ex(y, ctx->height);
1572     x = sk_bit_cast<F>(sk_bit_cast<U32>(x) - (uint32_t)ctx->roundDownAtInteger);
1573     y = sk_bit_cast<F>(sk_bit_cast<U32>(y) - (uint32_t)ctx->roundDownAtInteger);
1574     *ptr = (const T*)ctx->pixels;
1575     return trunc_(y)*ctx->stride + trunc_(x);
1576 }
1577 
1578 // We often have a nominally [0,1] float value we need to scale and convert to an integer,
1579 // whether for a table lookup or to pack back down into bytes for storage.
1580 //
1581 // In practice, especially when dealing with interesting color spaces, that notionally
1582 // [0,1] float may be out of [0,1] range.  Unorms cannot represent that, so we must clamp.
1583 //
1584 // You can adjust the expected input to [0,bias] by tweaking that parameter.
1585 SI U32 to_unorm(F v, F scale, F bias = 1.0f) {
1586     // Any time we use round() we probably want to use to_unorm().
1587     return round(min(max(0.0f, v), bias), scale);
1588 }
1589 
cond_to_mask(I32 cond)1590 SI I32 cond_to_mask(I32 cond) {
1591 #if defined(JUMPER_IS_SCALAR)
1592     // In scalar mode, conditions are bools (0 or 1), but we want to store and operate on masks
1593     // (eg, using bitwise operations to select values).
1594     return if_then_else(cond, I32(~0), I32(0));
1595 #else
1596     // In SIMD mode, our various instruction sets already represent conditions as masks.
1597     return cond;
1598 #endif
1599 }
1600 
1601 // Now finally, normal Stages!
1602 
STAGE(seed_shader,NoCtx)1603 STAGE(seed_shader, NoCtx) {
1604     static constexpr float iota[] = {
1605         0.5f, 1.5f, 2.5f, 3.5f, 4.5f, 5.5f, 6.5f, 7.5f,
1606         8.5f, 9.5f,10.5f,11.5f,12.5f,13.5f,14.5f,15.5f,
1607     };
1608     // It's important for speed to explicitly cast(dx) and cast(dy),
1609     // which has the effect of splatting them to vectors before converting to floats.
1610     // On Intel this breaks a data dependency on previous loop iterations' registers.
1611     r = cast(dx) + sk_unaligned_load<F>(iota);
1612     g = cast(dy) + 0.5f;
1613     b = 1.0f;  // This is w=1 for matrix multiplies by the device coords.
1614     a = 0;
1615 }
1616 
STAGE(store_device_xy01,F * dst)1617 STAGE(store_device_xy01, F* dst) {
1618     // This is very similar to `seed_shader + store_src`, but b/a are backwards.
1619     // (sk_FragCoord actually puts w=1 in the w slot.)
1620     static constexpr float iota[] = {
1621         0.5f, 1.5f, 2.5f, 3.5f, 4.5f, 5.5f, 6.5f, 7.5f,
1622         8.5f, 9.5f,10.5f,11.5f,12.5f,13.5f,14.5f,15.5f,
1623     };
1624     dst[0] = cast(dx) + sk_unaligned_load<F>(iota);
1625     dst[1] = cast(dy) + 0.5f;
1626     dst[2] = 0.0f;
1627     dst[3] = 1.0f;
1628 }
1629 
STAGE(dither,const float * rate)1630 STAGE(dither, const float* rate) {
1631     // Get [(dx,dy), (dx+1,dy), (dx+2,dy), ...] loaded up in integer vectors.
1632     uint32_t iota[] = {0,1,2,3,4,5,6,7};
1633     U32 X = dx + sk_unaligned_load<U32>(iota),
1634         Y = dy;
1635 
1636     // We're doing 8x8 ordered dithering, see https://en.wikipedia.org/wiki/Ordered_dithering.
1637     // In this case n=8 and we're using the matrix that looks like 1/64 x [ 0 48 12 60 ... ].
1638 
1639     // We only need X and X^Y from here on, so it's easier to just think of that as "Y".
1640     Y ^= X;
1641 
1642     // We'll mix the bottom 3 bits of each of X and Y to make 6 bits,
1643     // for 2^6 == 64 == 8x8 matrix values.  If X=abc and Y=def, we make fcebda.
1644     U32 M = (Y & 1) << 5 | (X & 1) << 4
1645           | (Y & 2) << 2 | (X & 2) << 1
1646           | (Y & 4) >> 1 | (X & 4) >> 2;
1647 
1648     // Scale that dither to [0,1), then (-0.5,+0.5), here using 63/128 = 0.4921875 as 0.5-epsilon.
1649     // We want to make sure our dither is less than 0.5 in either direction to keep exact values
1650     // like 0 and 1 unchanged after rounding.
1651     F dither = cast(M) * (2/128.0f) - (63/128.0f);
1652 
1653     r += *rate*dither;
1654     g += *rate*dither;
1655     b += *rate*dither;
1656 
1657     r = max(0.0f, min(r, a));
1658     g = max(0.0f, min(g, a));
1659     b = max(0.0f, min(b, a));
1660 }
1661 
1662 // load 4 floats from memory, and splat them into r,g,b,a
STAGE(uniform_color,const SkRasterPipeline_UniformColorCtx * c)1663 STAGE(uniform_color, const SkRasterPipeline_UniformColorCtx* c) {
1664     r = c->r;
1665     g = c->g;
1666     b = c->b;
1667     a = c->a;
1668 }
STAGE(unbounded_uniform_color,const SkRasterPipeline_UniformColorCtx * c)1669 STAGE(unbounded_uniform_color, const SkRasterPipeline_UniformColorCtx* c) {
1670     r = c->r;
1671     g = c->g;
1672     b = c->b;
1673     a = c->a;
1674 }
1675 // load 4 floats from memory, and splat them into dr,dg,db,da
STAGE(uniform_color_dst,const SkRasterPipeline_UniformColorCtx * c)1676 STAGE(uniform_color_dst, const SkRasterPipeline_UniformColorCtx* c) {
1677     dr = c->r;
1678     dg = c->g;
1679     db = c->b;
1680     da = c->a;
1681 }
1682 
1683 // splats opaque-black into r,g,b,a
STAGE(black_color,NoCtx)1684 STAGE(black_color, NoCtx) {
1685     r = g = b = 0.0f;
1686     a = 1.0f;
1687 }
1688 
STAGE(white_color,NoCtx)1689 STAGE(white_color, NoCtx) {
1690     r = g = b = a = 1.0f;
1691 }
1692 
1693 // load registers r,g,b,a from context (mirrors store_src)
STAGE(load_src,const float * ptr)1694 STAGE(load_src, const float* ptr) {
1695     r = sk_unaligned_load<F>(ptr + 0*N);
1696     g = sk_unaligned_load<F>(ptr + 1*N);
1697     b = sk_unaligned_load<F>(ptr + 2*N);
1698     a = sk_unaligned_load<F>(ptr + 3*N);
1699 }
1700 
1701 // store registers r,g,b,a into context (mirrors load_src)
STAGE(store_src,float * ptr)1702 STAGE(store_src, float* ptr) {
1703     sk_unaligned_store(ptr + 0*N, r);
1704     sk_unaligned_store(ptr + 1*N, g);
1705     sk_unaligned_store(ptr + 2*N, b);
1706     sk_unaligned_store(ptr + 3*N, a);
1707 }
1708 // store registers r,g into context
STAGE(store_src_rg,float * ptr)1709 STAGE(store_src_rg, float* ptr) {
1710     sk_unaligned_store(ptr + 0*N, r);
1711     sk_unaligned_store(ptr + 1*N, g);
1712 }
1713 // load registers r,g from context
STAGE(load_src_rg,float * ptr)1714 STAGE(load_src_rg, float* ptr) {
1715     r = sk_unaligned_load<F>(ptr + 0*N);
1716     g = sk_unaligned_load<F>(ptr + 1*N);
1717 }
1718 // store register a into context
STAGE(store_src_a,float * ptr)1719 STAGE(store_src_a, float* ptr) {
1720     sk_unaligned_store(ptr, a);
1721 }
1722 
1723 // load registers dr,dg,db,da from context (mirrors store_dst)
STAGE(load_dst,const float * ptr)1724 STAGE(load_dst, const float* ptr) {
1725     dr = sk_unaligned_load<F>(ptr + 0*N);
1726     dg = sk_unaligned_load<F>(ptr + 1*N);
1727     db = sk_unaligned_load<F>(ptr + 2*N);
1728     da = sk_unaligned_load<F>(ptr + 3*N);
1729 }
1730 
1731 // store registers dr,dg,db,da into context (mirrors load_dst)
STAGE(store_dst,float * ptr)1732 STAGE(store_dst, float* ptr) {
1733     sk_unaligned_store(ptr + 0*N, dr);
1734     sk_unaligned_store(ptr + 1*N, dg);
1735     sk_unaligned_store(ptr + 2*N, db);
1736     sk_unaligned_store(ptr + 3*N, da);
1737 }
1738 
1739 // Most blend modes apply the same logic to each channel.
1740 #define BLEND_MODE(name)                       \
1741     SI F name##_channel(F s, F d, F sa, F da); \
1742     STAGE(name, NoCtx) {                   \
1743         r = name##_channel(r,dr,a,da);         \
1744         g = name##_channel(g,dg,a,da);         \
1745         b = name##_channel(b,db,a,da);         \
1746         a = name##_channel(a,da,a,da);         \
1747     }                                          \
1748     SI F name##_channel(F s, F d, F sa, F da)
1749 
inv(F x)1750 SI F inv(F x) { return 1.0f - x; }
two(F x)1751 SI F two(F x) { return x + x; }
1752 
1753 
BLEND_MODE(clear)1754 BLEND_MODE(clear)    { return 0; }
BLEND_MODE(srcatop)1755 BLEND_MODE(srcatop)  { return s*da + d*inv(sa); }
BLEND_MODE(dstatop)1756 BLEND_MODE(dstatop)  { return d*sa + s*inv(da); }
BLEND_MODE(srcin)1757 BLEND_MODE(srcin)    { return s * da; }
BLEND_MODE(dstin)1758 BLEND_MODE(dstin)    { return d * sa; }
BLEND_MODE(srcout)1759 BLEND_MODE(srcout)   { return s * inv(da); }
BLEND_MODE(dstout)1760 BLEND_MODE(dstout)   { return d * inv(sa); }
BLEND_MODE(srcover)1761 BLEND_MODE(srcover)  { return mad(d, inv(sa), s); }
BLEND_MODE(dstover)1762 BLEND_MODE(dstover)  { return mad(s, inv(da), d); }
1763 
BLEND_MODE(modulate)1764 BLEND_MODE(modulate) { return s*d; }
BLEND_MODE(multiply)1765 BLEND_MODE(multiply) { return s*inv(da) + d*inv(sa) + s*d; }
BLEND_MODE(plus_)1766 BLEND_MODE(plus_)    { return min(s + d, 1.0f); }  // We can clamp to either 1 or sa.
BLEND_MODE(screen)1767 BLEND_MODE(screen)   { return s + d - s*d; }
BLEND_MODE(xor_)1768 BLEND_MODE(xor_)     { return s*inv(da) + d*inv(sa); }
1769 #undef BLEND_MODE
1770 
1771 // Most other blend modes apply the same logic to colors, and srcover to alpha.
1772 #define BLEND_MODE(name)                       \
1773     SI F name##_channel(F s, F d, F sa, F da); \
1774     STAGE(name, NoCtx) {                   \
1775         r = name##_channel(r,dr,a,da);         \
1776         g = name##_channel(g,dg,a,da);         \
1777         b = name##_channel(b,db,a,da);         \
1778         a = mad(da, inv(a), a);                \
1779     }                                          \
1780     SI F name##_channel(F s, F d, F sa, F da)
1781 
BLEND_MODE(darken)1782 BLEND_MODE(darken)     { return s + d -     max(s*da, d*sa) ; }
BLEND_MODE(lighten)1783 BLEND_MODE(lighten)    { return s + d -     min(s*da, d*sa) ; }
BLEND_MODE(difference)1784 BLEND_MODE(difference) { return s + d - two(min(s*da, d*sa)); }
BLEND_MODE(exclusion)1785 BLEND_MODE(exclusion)  { return s + d - two(s*d); }
1786 
BLEND_MODE(colorburn)1787 BLEND_MODE(colorburn) {
1788     return if_then_else(d == da,    d +    s*inv(da),
1789            if_then_else(s ==  0, /* s + */ d*inv(sa),
1790                                 sa*(da - min(da, (da-d)*sa*rcp_fast(s))) + s*inv(da) + d*inv(sa)));
1791 }
BLEND_MODE(colordodge)1792 BLEND_MODE(colordodge) {
1793     return if_then_else(d ==  0, /* d + */ s*inv(da),
1794            if_then_else(s == sa,    s +    d*inv(sa),
1795                                  sa*min(da, (d*sa)*rcp_fast(sa - s)) + s*inv(da) + d*inv(sa)));
1796 }
BLEND_MODE(hardlight)1797 BLEND_MODE(hardlight) {
1798     return s*inv(da) + d*inv(sa)
1799          + if_then_else(two(s) <= sa, two(s*d), sa*da - two((da-d)*(sa-s)));
1800 }
BLEND_MODE(overlay)1801 BLEND_MODE(overlay) {
1802     return s*inv(da) + d*inv(sa)
1803          + if_then_else(two(d) <= da, two(s*d), sa*da - two((da-d)*(sa-s)));
1804 }
1805 
BLEND_MODE(softlight)1806 BLEND_MODE(softlight) {
1807     F m  = if_then_else(da > 0, d / da, 0),
1808       s2 = two(s),
1809       m4 = two(two(m));
1810 
1811     // The logic forks three ways:
1812     //    1. dark src?
1813     //    2. light src, dark dst?
1814     //    3. light src, light dst?
1815     F darkSrc = d*(sa + (s2 - sa)*(1.0f - m)),     // Used in case 1.
1816       darkDst = (m4*m4 + m4)*(m - 1.0f) + 7.0f*m,  // Used in case 2.
1817       liteDst = sqrt_(m) - m,
1818       liteSrc = d*sa + da*(s2 - sa) * if_then_else(two(two(d)) <= da, darkDst, liteDst); // 2 or 3?
1819     return s*inv(da) + d*inv(sa) + if_then_else(s2 <= sa, darkSrc, liteSrc);      // 1 or (2 or 3)?
1820 }
1821 #undef BLEND_MODE
1822 
1823 // We're basing our implemenation of non-separable blend modes on
1824 //   https://www.w3.org/TR/compositing-1/#blendingnonseparable.
1825 // and
1826 //   https://www.khronos.org/registry/OpenGL/specs/es/3.2/es_spec_3.2.pdf
1827 // They're equivalent, but ES' math has been better simplified.
1828 //
1829 // Anything extra we add beyond that is to make the math work with premul inputs.
1830 
sat(F r,F g,F b)1831 SI F sat(F r, F g, F b) { return max(r, max(g,b)) - min(r, min(g,b)); }
lum(F r,F g,F b)1832 SI F lum(F r, F g, F b) { return r*0.30f + g*0.59f + b*0.11f; }
1833 
set_sat(F * r,F * g,F * b,F s)1834 SI void set_sat(F* r, F* g, F* b, F s) {
1835     F mn  = min(*r, min(*g,*b)),
1836       mx  = max(*r, max(*g,*b)),
1837       sat = mx - mn;
1838 
1839     // Map min channel to 0, max channel to s, and scale the middle proportionally.
1840     auto scale = [=](F c) {
1841         return if_then_else(sat == 0, 0, (c - mn) * s / sat);
1842     };
1843     *r = scale(*r);
1844     *g = scale(*g);
1845     *b = scale(*b);
1846 }
set_lum(F * r,F * g,F * b,F l)1847 SI void set_lum(F* r, F* g, F* b, F l) {
1848     F diff = l - lum(*r, *g, *b);
1849     *r += diff;
1850     *g += diff;
1851     *b += diff;
1852 }
clip_color(F * r,F * g,F * b,F a)1853 SI void clip_color(F* r, F* g, F* b, F a) {
1854     F mn = min(*r, min(*g, *b)),
1855       mx = max(*r, max(*g, *b)),
1856       l  = lum(*r, *g, *b);
1857 
1858     auto clip = [=](F c) {
1859         c = if_then_else(mn < 0 && l != mn, l + (c - l) * (    l) / (l - mn), c);
1860         c = if_then_else(mx > a && l != mx, l + (c - l) * (a - l) / (mx - l), c);
1861         c = max(c, 0.0f);  // Sometimes without this we may dip just a little negative.
1862         return c;
1863     };
1864     *r = clip(*r);
1865     *g = clip(*g);
1866     *b = clip(*b);
1867 }
1868 
STAGE(hue,NoCtx)1869 STAGE(hue, NoCtx) {
1870     F R = r*a,
1871       G = g*a,
1872       B = b*a;
1873 
1874     set_sat(&R, &G, &B, sat(dr,dg,db)*a);
1875     set_lum(&R, &G, &B, lum(dr,dg,db)*a);
1876     clip_color(&R,&G,&B, a*da);
1877 
1878     r = r*inv(da) + dr*inv(a) + R;
1879     g = g*inv(da) + dg*inv(a) + G;
1880     b = b*inv(da) + db*inv(a) + B;
1881     a = a + da - a*da;
1882 }
STAGE(saturation,NoCtx)1883 STAGE(saturation, NoCtx) {
1884     F R = dr*a,
1885       G = dg*a,
1886       B = db*a;
1887 
1888     set_sat(&R, &G, &B, sat( r, g, b)*da);
1889     set_lum(&R, &G, &B, lum(dr,dg,db)* a);  // (This is not redundant.)
1890     clip_color(&R,&G,&B, a*da);
1891 
1892     r = r*inv(da) + dr*inv(a) + R;
1893     g = g*inv(da) + dg*inv(a) + G;
1894     b = b*inv(da) + db*inv(a) + B;
1895     a = a + da - a*da;
1896 }
STAGE(color,NoCtx)1897 STAGE(color, NoCtx) {
1898     F R = r*da,
1899       G = g*da,
1900       B = b*da;
1901 
1902     set_lum(&R, &G, &B, lum(dr,dg,db)*a);
1903     clip_color(&R,&G,&B, a*da);
1904 
1905     r = r*inv(da) + dr*inv(a) + R;
1906     g = g*inv(da) + dg*inv(a) + G;
1907     b = b*inv(da) + db*inv(a) + B;
1908     a = a + da - a*da;
1909 }
STAGE(luminosity,NoCtx)1910 STAGE(luminosity, NoCtx) {
1911     F R = dr*a,
1912       G = dg*a,
1913       B = db*a;
1914 
1915     set_lum(&R, &G, &B, lum(r,g,b)*da);
1916     clip_color(&R,&G,&B, a*da);
1917 
1918     r = r*inv(da) + dr*inv(a) + R;
1919     g = g*inv(da) + dg*inv(a) + G;
1920     b = b*inv(da) + db*inv(a) + B;
1921     a = a + da - a*da;
1922 }
1923 
STAGE(srcover_rgba_8888,const SkRasterPipeline_MemoryCtx * ctx)1924 STAGE(srcover_rgba_8888, const SkRasterPipeline_MemoryCtx* ctx) {
1925     auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
1926 
1927     U32 dst = load<U32>(ptr, tail);
1928     dr = cast((dst      ) & 0xff);
1929     dg = cast((dst >>  8) & 0xff);
1930     db = cast((dst >> 16) & 0xff);
1931     da = cast((dst >> 24)       );
1932     // {dr,dg,db,da} are in [0,255]
1933     // { r, g, b, a} are in [0,  1] (but may be out of gamut)
1934 
1935     r = mad(dr, inv(a), r*255.0f);
1936     g = mad(dg, inv(a), g*255.0f);
1937     b = mad(db, inv(a), b*255.0f);
1938     a = mad(da, inv(a), a*255.0f);
1939     // { r, g, b, a} are now in [0,255]  (but may be out of gamut)
1940 
1941     // to_unorm() clamps back to gamut.  Scaling by 1 since we're already 255-biased.
1942     dst = to_unorm(r, 1, 255)
1943         | to_unorm(g, 1, 255) <<  8
1944         | to_unorm(b, 1, 255) << 16
1945         | to_unorm(a, 1, 255) << 24;
1946     store(ptr, dst, tail);
1947 }
1948 
clamp_01_(F v)1949 SI F clamp_01_(F v) { return min(max(0.0f, v), 1.0f); }
1950 
STAGE(clamp_01,NoCtx)1951 STAGE(clamp_01, NoCtx) {
1952     r = clamp_01_(r);
1953     g = clamp_01_(g);
1954     b = clamp_01_(b);
1955     a = clamp_01_(a);
1956 }
1957 
STAGE(clamp_gamut,NoCtx)1958 STAGE(clamp_gamut, NoCtx) {
1959     a = min(max(a, 0.0f), 1.0f);
1960     r = min(max(r, 0.0f), a);
1961     g = min(max(g, 0.0f), a);
1962     b = min(max(b, 0.0f), a);
1963 }
1964 
STAGE(set_rgb,const float * rgb)1965 STAGE(set_rgb, const float* rgb) {
1966     r = rgb[0];
1967     g = rgb[1];
1968     b = rgb[2];
1969 }
1970 
STAGE(unbounded_set_rgb,const float * rgb)1971 STAGE(unbounded_set_rgb, const float* rgb) {
1972     r = rgb[0];
1973     g = rgb[1];
1974     b = rgb[2];
1975 }
1976 
STAGE(swap_rb,NoCtx)1977 STAGE(swap_rb, NoCtx) {
1978     auto tmp = r;
1979     r = b;
1980     b = tmp;
1981 }
STAGE(swap_rb_dst,NoCtx)1982 STAGE(swap_rb_dst, NoCtx) {
1983     auto tmp = dr;
1984     dr = db;
1985     db = tmp;
1986 }
1987 
STAGE(move_src_dst,NoCtx)1988 STAGE(move_src_dst, NoCtx) {
1989     dr = r;
1990     dg = g;
1991     db = b;
1992     da = a;
1993 }
STAGE(move_dst_src,NoCtx)1994 STAGE(move_dst_src, NoCtx) {
1995     r = dr;
1996     g = dg;
1997     b = db;
1998     a = da;
1999 }
STAGE(swap_src_dst,NoCtx)2000 STAGE(swap_src_dst, NoCtx) {
2001     std::swap(r, dr);
2002     std::swap(g, dg);
2003     std::swap(b, db);
2004     std::swap(a, da);
2005 }
2006 
STAGE(premul,NoCtx)2007 STAGE(premul, NoCtx) {
2008     r = r * a;
2009     g = g * a;
2010     b = b * a;
2011 }
STAGE(premul_dst,NoCtx)2012 STAGE(premul_dst, NoCtx) {
2013     dr = dr * da;
2014     dg = dg * da;
2015     db = db * da;
2016 }
STAGE(unpremul,NoCtx)2017 STAGE(unpremul, NoCtx) {
2018     float inf = sk_bit_cast<float>(0x7f800000);
2019     auto scale = if_then_else(1.0f/a < inf, 1.0f/a, 0);
2020     r *= scale;
2021     g *= scale;
2022     b *= scale;
2023 }
STAGE(unpremul_polar,NoCtx)2024 STAGE(unpremul_polar, NoCtx) {
2025     float inf = sk_bit_cast<float>(0x7f800000);
2026     auto scale = if_then_else(1.0f/a < inf, 1.0f/a, 0);
2027     g *= scale;
2028     b *= scale;
2029 }
2030 
STAGE(force_opaque,NoCtx)2031 STAGE(force_opaque    , NoCtx) {  a = 1; }
STAGE(force_opaque_dst,NoCtx)2032 STAGE(force_opaque_dst, NoCtx) { da = 1; }
2033 
STAGE(rgb_to_hsl,NoCtx)2034 STAGE(rgb_to_hsl, NoCtx) {
2035     F mx = max(r, max(g,b)),
2036       mn = min(r, min(g,b)),
2037       d = mx - mn,
2038       d_rcp = 1.0f / d;
2039 
2040     F h = (1/6.0f) *
2041           if_then_else(mx == mn, 0,
2042           if_then_else(mx ==  r, (g-b)*d_rcp + if_then_else(g < b, 6.0f, 0),
2043           if_then_else(mx ==  g, (b-r)*d_rcp + 2.0f,
2044                                  (r-g)*d_rcp + 4.0f)));
2045 
2046     F l = (mx + mn) * 0.5f;
2047     F s = if_then_else(mx == mn, 0,
2048                        d / if_then_else(l > 0.5f, 2.0f-mx-mn, mx+mn));
2049 
2050     r = h;
2051     g = s;
2052     b = l;
2053 }
STAGE(hsl_to_rgb,NoCtx)2054 STAGE(hsl_to_rgb, NoCtx) {
2055     // See GrRGBToHSLFilterEffect.fp
2056 
2057     F h = r,
2058       s = g,
2059       l = b,
2060       c = (1.0f - abs_(2.0f * l - 1)) * s;
2061 
2062     auto hue_to_rgb = [&](F hue) {
2063         F q = clamp_01_(abs_(fract(hue) * 6.0f - 3.0f) - 1.0f);
2064         return (q - 0.5f) * c + l;
2065     };
2066 
2067     r = hue_to_rgb(h + 0.0f/3.0f);
2068     g = hue_to_rgb(h + 2.0f/3.0f);
2069     b = hue_to_rgb(h + 1.0f/3.0f);
2070 }
2071 
2072 // Color conversion functions used in gradient interpolation, based on
2073 // https://www.w3.org/TR/css-color-4/#color-conversion-code
STAGE(css_lab_to_xyz,NoCtx)2074 STAGE(css_lab_to_xyz, NoCtx) {
2075     constexpr float k = 24389 / 27.0f;
2076     constexpr float e = 216 / 24389.0f;
2077 
2078     F f[3];
2079     f[1] = (r + 16) * (1 / 116.0f);
2080     f[0] = (g * (1 / 500.0f)) + f[1];
2081     f[2] = f[1] - (b * (1 / 200.0f));
2082 
2083     F f_cubed[3] = { f[0]*f[0]*f[0], f[1]*f[1]*f[1], f[2]*f[2]*f[2] };
2084 
2085     F xyz[3] = {
2086         if_then_else(f_cubed[0] > e, f_cubed[0], (116 * f[0] - 16) * (1 / k)),
2087         if_then_else(r > k * e,      f_cubed[1], r * (1 / k)),
2088         if_then_else(f_cubed[2] > e, f_cubed[2], (116 * f[2] - 16) * (1 / k))
2089     };
2090 
2091     constexpr float D50[3] = { 0.3457f / 0.3585f, 1.0f, (1.0f - 0.3457f - 0.3585f) / 0.3585f };
2092     r = xyz[0]*D50[0];
2093     g = xyz[1]*D50[1];
2094     b = xyz[2]*D50[2];
2095 }
2096 
STAGE(css_oklab_to_linear_srgb,NoCtx)2097 STAGE(css_oklab_to_linear_srgb, NoCtx) {
2098     F l_ = r + 0.3963377774f * g + 0.2158037573f * b,
2099       m_ = r - 0.1055613458f * g - 0.0638541728f * b,
2100       s_ = r - 0.0894841775f * g - 1.2914855480f * b;
2101 
2102     F l = l_*l_*l_,
2103       m = m_*m_*m_,
2104       s = s_*s_*s_;
2105 
2106     r = +4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s;
2107     g = -1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s;
2108     b = -0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s;
2109 }
2110 
2111 // Skia stores all polar colors with hue in the first component, so this "LCH -> Lab" transform
2112 // actually takes "HCL". This is also used to do the same polar transform for OkHCL to OkLAB.
2113 // See similar comments & logic in SkGradientShaderBase.cpp.
STAGE(css_hcl_to_lab,NoCtx)2114 STAGE(css_hcl_to_lab, NoCtx) {
2115     F H = r,
2116       C = g,
2117       L = b;
2118 
2119     F hueRadians = H * (SK_FloatPI / 180);
2120 
2121     r = L;
2122     g = C * cos_(hueRadians);
2123     b = C * sin_(hueRadians);
2124 }
2125 
mod_(F x,float y)2126 SI F mod_(F x, float y) {
2127     return x - y * floor_(x * (1 / y));
2128 }
2129 
2130 struct RGB { F r, g, b; };
2131 
css_hsl_to_srgb_(F h,F s,F l)2132 SI RGB css_hsl_to_srgb_(F h, F s, F l) {
2133     h = mod_(h, 360);
2134 
2135     s *= 0.01f;
2136     l *= 0.01f;
2137 
2138     F k[3] = {
2139         mod_(0 + h * (1 / 30.0f), 12),
2140         mod_(8 + h * (1 / 30.0f), 12),
2141         mod_(4 + h * (1 / 30.0f), 12)
2142     };
2143     F a  = s * min(l, 1 - l);
2144     return {
2145         l - a * max(-1.0f, min(min(k[0] - 3.0f, 9.0f - k[0]), 1.0f)),
2146         l - a * max(-1.0f, min(min(k[1] - 3.0f, 9.0f - k[1]), 1.0f)),
2147         l - a * max(-1.0f, min(min(k[2] - 3.0f, 9.0f - k[2]), 1.0f))
2148     };
2149 }
2150 
STAGE(css_hsl_to_srgb,NoCtx)2151 STAGE(css_hsl_to_srgb, NoCtx) {
2152     RGB rgb = css_hsl_to_srgb_(r, g, b);
2153     r = rgb.r;
2154     g = rgb.g;
2155     b = rgb.b;
2156 }
2157 
STAGE(css_hwb_to_srgb,NoCtx)2158 STAGE(css_hwb_to_srgb, NoCtx) {
2159     g *= 0.01f;
2160     b *= 0.01f;
2161 
2162     F gray = g / (g + b);
2163 
2164     RGB rgb = css_hsl_to_srgb_(r, 100.0f, 50.0f);
2165     rgb.r = rgb.r * (1 - g - b) + g;
2166     rgb.g = rgb.g * (1 - g - b) + g;
2167     rgb.b = rgb.b * (1 - g - b) + g;
2168 
2169     auto isGray = (g + b) >= 1;
2170 
2171     r = if_then_else(isGray, gray, rgb.r);
2172     g = if_then_else(isGray, gray, rgb.g);
2173     b = if_then_else(isGray, gray, rgb.b);
2174 }
2175 
2176 // Derive alpha's coverage from rgb coverage and the values of src and dst alpha.
alpha_coverage_from_rgb_coverage(F a,F da,F cr,F cg,F cb)2177 SI F alpha_coverage_from_rgb_coverage(F a, F da, F cr, F cg, F cb) {
2178     return if_then_else(a < da, min(cr, min(cg,cb))
2179                               , max(cr, max(cg,cb)));
2180 }
2181 
STAGE(scale_1_float,const float * c)2182 STAGE(scale_1_float, const float* c) {
2183     r = r * *c;
2184     g = g * *c;
2185     b = b * *c;
2186     a = a * *c;
2187 }
STAGE(scale_u8,const SkRasterPipeline_MemoryCtx * ctx)2188 STAGE(scale_u8, const SkRasterPipeline_MemoryCtx* ctx) {
2189     auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
2190 
2191     auto scales = load<U8>(ptr, tail);
2192     auto c = from_byte(scales);
2193 
2194     r = r * c;
2195     g = g * c;
2196     b = b * c;
2197     a = a * c;
2198 }
STAGE(scale_565,const SkRasterPipeline_MemoryCtx * ctx)2199 STAGE(scale_565, const SkRasterPipeline_MemoryCtx* ctx) {
2200     auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
2201 
2202     F cr,cg,cb;
2203     from_565(load<U16>(ptr, tail), &cr, &cg, &cb);
2204 
2205     F ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
2206 
2207     r = r * cr;
2208     g = g * cg;
2209     b = b * cb;
2210     a = a * ca;
2211 }
2212 
lerp(F from,F to,F t)2213 SI F lerp(F from, F to, F t) {
2214     return mad(to-from, t, from);
2215 }
2216 
STAGE(lerp_1_float,const float * c)2217 STAGE(lerp_1_float, const float* c) {
2218     r = lerp(dr, r, *c);
2219     g = lerp(dg, g, *c);
2220     b = lerp(db, b, *c);
2221     a = lerp(da, a, *c);
2222 }
STAGE(scale_native,const float scales[])2223 STAGE(scale_native, const float scales[]) {
2224     auto c = sk_unaligned_load<F>(scales);
2225     r = r * c;
2226     g = g * c;
2227     b = b * c;
2228     a = a * c;
2229 }
STAGE(lerp_native,const float scales[])2230 STAGE(lerp_native, const float scales[]) {
2231     auto c = sk_unaligned_load<F>(scales);
2232     r = lerp(dr, r, c);
2233     g = lerp(dg, g, c);
2234     b = lerp(db, b, c);
2235     a = lerp(da, a, c);
2236 }
STAGE(lerp_u8,const SkRasterPipeline_MemoryCtx * ctx)2237 STAGE(lerp_u8, const SkRasterPipeline_MemoryCtx* ctx) {
2238     auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
2239 
2240     auto scales = load<U8>(ptr, tail);
2241     auto c = from_byte(scales);
2242 
2243     r = lerp(dr, r, c);
2244     g = lerp(dg, g, c);
2245     b = lerp(db, b, c);
2246     a = lerp(da, a, c);
2247 }
STAGE(lerp_565,const SkRasterPipeline_MemoryCtx * ctx)2248 STAGE(lerp_565, const SkRasterPipeline_MemoryCtx* ctx) {
2249     auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
2250 
2251     F cr,cg,cb;
2252     from_565(load<U16>(ptr, tail), &cr, &cg, &cb);
2253 
2254     F ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
2255 
2256     r = lerp(dr, r, cr);
2257     g = lerp(dg, g, cg);
2258     b = lerp(db, b, cb);
2259     a = lerp(da, a, ca);
2260 }
2261 
STAGE(emboss,const SkRasterPipeline_EmbossCtx * ctx)2262 STAGE(emboss, const SkRasterPipeline_EmbossCtx* ctx) {
2263     auto mptr = ptr_at_xy<const uint8_t>(&ctx->mul, dx,dy),
2264          aptr = ptr_at_xy<const uint8_t>(&ctx->add, dx,dy);
2265 
2266     F mul = from_byte(load<U8>(mptr, tail)),
2267       add = from_byte(load<U8>(aptr, tail));
2268 
2269     r = mad(r, mul, add);
2270     g = mad(g, mul, add);
2271     b = mad(b, mul, add);
2272 }
2273 
STAGE(byte_tables,const SkRasterPipeline_TablesCtx * tables)2274 STAGE(byte_tables, const SkRasterPipeline_TablesCtx* tables) {
2275     r = from_byte(gather(tables->r, to_unorm(r, 255)));
2276     g = from_byte(gather(tables->g, to_unorm(g, 255)));
2277     b = from_byte(gather(tables->b, to_unorm(b, 255)));
2278     a = from_byte(gather(tables->a, to_unorm(a, 255)));
2279 }
2280 
strip_sign(F x,U32 * sign)2281 SI F strip_sign(F x, U32* sign) {
2282     U32 bits = sk_bit_cast<U32>(x);
2283     *sign = bits & 0x80000000;
2284     return sk_bit_cast<F>(bits ^ *sign);
2285 }
2286 
apply_sign(F x,U32 sign)2287 SI F apply_sign(F x, U32 sign) {
2288     return sk_bit_cast<F>(sign | sk_bit_cast<U32>(x));
2289 }
2290 
STAGE(parametric,const skcms_TransferFunction * ctx)2291 STAGE(parametric, const skcms_TransferFunction* ctx) {
2292     auto fn = [&](F v) {
2293         U32 sign;
2294         v = strip_sign(v, &sign);
2295 
2296         F r = if_then_else(v <= ctx->d, mad(ctx->c, v, ctx->f)
2297                                       , approx_powf(mad(ctx->a, v, ctx->b), ctx->g) + ctx->e);
2298         return apply_sign(r, sign);
2299     };
2300     r = fn(r);
2301     g = fn(g);
2302     b = fn(b);
2303 }
2304 
STAGE(gamma_,const float * G)2305 STAGE(gamma_, const float* G) {
2306     auto fn = [&](F v) {
2307         U32 sign;
2308         v = strip_sign(v, &sign);
2309         return apply_sign(approx_powf(v, *G), sign);
2310     };
2311     r = fn(r);
2312     g = fn(g);
2313     b = fn(b);
2314 }
2315 
STAGE(PQish,const skcms_TransferFunction * ctx)2316 STAGE(PQish, const skcms_TransferFunction* ctx) {
2317     auto fn = [&](F v) {
2318         U32 sign;
2319         v = strip_sign(v, &sign);
2320 
2321         F r = approx_powf(max(mad(ctx->b, approx_powf(v, ctx->c), ctx->a), 0.0f)
2322                            / (mad(ctx->e, approx_powf(v, ctx->c), ctx->d)),
2323                         ctx->f);
2324 
2325         return apply_sign(r, sign);
2326     };
2327     r = fn(r);
2328     g = fn(g);
2329     b = fn(b);
2330 }
2331 
STAGE(HLGish,const skcms_TransferFunction * ctx)2332 STAGE(HLGish, const skcms_TransferFunction* ctx) {
2333     auto fn = [&](F v) {
2334         U32 sign;
2335         v = strip_sign(v, &sign);
2336 
2337         const float R = ctx->a, G = ctx->b,
2338                     a = ctx->c, b = ctx->d, c = ctx->e,
2339                     K = ctx->f + 1.0f;
2340 
2341         F r = if_then_else(v*R <= 1, approx_powf(v*R, G)
2342                                    , approx_exp((v-c)*a) + b);
2343 
2344         return K * apply_sign(r, sign);
2345     };
2346     r = fn(r);
2347     g = fn(g);
2348     b = fn(b);
2349 }
2350 
STAGE(HLGinvish,const skcms_TransferFunction * ctx)2351 STAGE(HLGinvish, const skcms_TransferFunction* ctx) {
2352     auto fn = [&](F v) {
2353         U32 sign;
2354         v = strip_sign(v, &sign);
2355 
2356         const float R = ctx->a, G = ctx->b,
2357                     a = ctx->c, b = ctx->d, c = ctx->e,
2358                     K = ctx->f + 1.0f;
2359 
2360         v /= K;
2361         F r = if_then_else(v <= 1, R * approx_powf(v, G)
2362                                  , a * approx_log(v - b) + c);
2363 
2364         return apply_sign(r, sign);
2365     };
2366     r = fn(r);
2367     g = fn(g);
2368     b = fn(b);
2369 }
2370 
STAGE(load_a8,const SkRasterPipeline_MemoryCtx * ctx)2371 STAGE(load_a8, const SkRasterPipeline_MemoryCtx* ctx) {
2372     auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
2373 
2374     r = g = b = 0.0f;
2375     a = from_byte(load<U8>(ptr, tail));
2376 }
STAGE(load_a8_dst,const SkRasterPipeline_MemoryCtx * ctx)2377 STAGE(load_a8_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2378     auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
2379 
2380     dr = dg = db = 0.0f;
2381     da = from_byte(load<U8>(ptr, tail));
2382 }
STAGE(gather_a8,const SkRasterPipeline_GatherCtx * ctx)2383 STAGE(gather_a8, const SkRasterPipeline_GatherCtx* ctx) {
2384     const uint8_t* ptr;
2385     U32 ix = ix_and_ptr(&ptr, ctx, r,g);
2386     r = g = b = 0.0f;
2387     a = from_byte(gather(ptr, ix));
2388 }
STAGE(store_a8,const SkRasterPipeline_MemoryCtx * ctx)2389 STAGE(store_a8, const SkRasterPipeline_MemoryCtx* ctx) {
2390     auto ptr = ptr_at_xy<uint8_t>(ctx, dx,dy);
2391 
2392     U8 packed = pack(pack(to_unorm(a, 255)));
2393     store(ptr, packed, tail);
2394 }
STAGE(store_r8,const SkRasterPipeline_MemoryCtx * ctx)2395 STAGE(store_r8, const SkRasterPipeline_MemoryCtx* ctx) {
2396     auto ptr = ptr_at_xy<uint8_t>(ctx, dx,dy);
2397 
2398     U8 packed = pack(pack(to_unorm(r, 255)));
2399     store(ptr, packed, tail);
2400 }
2401 
STAGE(load_565,const SkRasterPipeline_MemoryCtx * ctx)2402 STAGE(load_565, const SkRasterPipeline_MemoryCtx* ctx) {
2403     auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
2404 
2405     from_565(load<U16>(ptr, tail), &r,&g,&b);
2406     a = 1.0f;
2407 }
STAGE(load_565_dst,const SkRasterPipeline_MemoryCtx * ctx)2408 STAGE(load_565_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2409     auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
2410 
2411     from_565(load<U16>(ptr, tail), &dr,&dg,&db);
2412     da = 1.0f;
2413 }
STAGE(gather_565,const SkRasterPipeline_GatherCtx * ctx)2414 STAGE(gather_565, const SkRasterPipeline_GatherCtx* ctx) {
2415     const uint16_t* ptr;
2416     U32 ix = ix_and_ptr(&ptr, ctx, r,g);
2417     from_565(gather(ptr, ix), &r,&g,&b);
2418     a = 1.0f;
2419 }
STAGE(store_565,const SkRasterPipeline_MemoryCtx * ctx)2420 STAGE(store_565, const SkRasterPipeline_MemoryCtx* ctx) {
2421     auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy);
2422 
2423     U16 px = pack( to_unorm(r, 31) << 11
2424                  | to_unorm(g, 63) <<  5
2425                  | to_unorm(b, 31)      );
2426     store(ptr, px, tail);
2427 }
2428 
STAGE(load_4444,const SkRasterPipeline_MemoryCtx * ctx)2429 STAGE(load_4444, const SkRasterPipeline_MemoryCtx* ctx) {
2430     auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
2431     from_4444(load<U16>(ptr, tail), &r,&g,&b,&a);
2432 }
STAGE(load_4444_dst,const SkRasterPipeline_MemoryCtx * ctx)2433 STAGE(load_4444_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2434     auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
2435     from_4444(load<U16>(ptr, tail), &dr,&dg,&db,&da);
2436 }
STAGE(gather_4444,const SkRasterPipeline_GatherCtx * ctx)2437 STAGE(gather_4444, const SkRasterPipeline_GatherCtx* ctx) {
2438     const uint16_t* ptr;
2439     U32 ix = ix_and_ptr(&ptr, ctx, r,g);
2440     from_4444(gather(ptr, ix), &r,&g,&b,&a);
2441 }
STAGE(store_4444,const SkRasterPipeline_MemoryCtx * ctx)2442 STAGE(store_4444, const SkRasterPipeline_MemoryCtx* ctx) {
2443     auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy);
2444     U16 px = pack( to_unorm(r, 15) << 12
2445                  | to_unorm(g, 15) <<  8
2446                  | to_unorm(b, 15) <<  4
2447                  | to_unorm(a, 15)      );
2448     store(ptr, px, tail);
2449 }
2450 
STAGE(load_8888,const SkRasterPipeline_MemoryCtx * ctx)2451 STAGE(load_8888, const SkRasterPipeline_MemoryCtx* ctx) {
2452     auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
2453     from_8888(load<U32>(ptr, tail), &r,&g,&b,&a);
2454 }
STAGE(load_8888_dst,const SkRasterPipeline_MemoryCtx * ctx)2455 STAGE(load_8888_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2456     auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
2457     from_8888(load<U32>(ptr, tail), &dr,&dg,&db,&da);
2458 }
STAGE(gather_8888,const SkRasterPipeline_GatherCtx * ctx)2459 STAGE(gather_8888, const SkRasterPipeline_GatherCtx* ctx) {
2460     const uint32_t* ptr;
2461     U32 ix = ix_and_ptr(&ptr, ctx, r,g);
2462     from_8888(gather(ptr, ix), &r,&g,&b,&a);
2463 }
STAGE(store_8888,const SkRasterPipeline_MemoryCtx * ctx)2464 STAGE(store_8888, const SkRasterPipeline_MemoryCtx* ctx) {
2465     auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
2466 
2467     U32 px = to_unorm(r, 255)
2468            | to_unorm(g, 255) <<  8
2469            | to_unorm(b, 255) << 16
2470            | to_unorm(a, 255) << 24;
2471     store(ptr, px, tail);
2472 }
2473 
STAGE(load_rg88,const SkRasterPipeline_MemoryCtx * ctx)2474 STAGE(load_rg88, const SkRasterPipeline_MemoryCtx* ctx) {
2475     auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy);
2476     from_88(load<U16>(ptr, tail), &r, &g);
2477     b = 0;
2478     a = 1;
2479 }
STAGE(load_rg88_dst,const SkRasterPipeline_MemoryCtx * ctx)2480 STAGE(load_rg88_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2481     auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy);
2482     from_88(load<U16>(ptr, tail), &dr, &dg);
2483     db = 0;
2484     da = 1;
2485 }
STAGE(gather_rg88,const SkRasterPipeline_GatherCtx * ctx)2486 STAGE(gather_rg88, const SkRasterPipeline_GatherCtx* ctx) {
2487     const uint16_t* ptr;
2488     U32 ix = ix_and_ptr(&ptr, ctx, r, g);
2489     from_88(gather(ptr, ix), &r, &g);
2490     b = 0;
2491     a = 1;
2492 }
STAGE(store_rg88,const SkRasterPipeline_MemoryCtx * ctx)2493 STAGE(store_rg88, const SkRasterPipeline_MemoryCtx* ctx) {
2494     auto ptr = ptr_at_xy<uint16_t>(ctx, dx, dy);
2495     U16 px = pack( to_unorm(r, 255) | to_unorm(g, 255) <<  8 );
2496     store(ptr, px, tail);
2497 }
2498 
STAGE(load_a16,const SkRasterPipeline_MemoryCtx * ctx)2499 STAGE(load_a16, const SkRasterPipeline_MemoryCtx* ctx) {
2500     auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
2501     r = g = b = 0;
2502     a = from_short(load<U16>(ptr, tail));
2503 }
STAGE(load_a16_dst,const SkRasterPipeline_MemoryCtx * ctx)2504 STAGE(load_a16_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2505     auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy);
2506     dr = dg = db = 0.0f;
2507     da = from_short(load<U16>(ptr, tail));
2508 }
STAGE(gather_a16,const SkRasterPipeline_GatherCtx * ctx)2509 STAGE(gather_a16, const SkRasterPipeline_GatherCtx* ctx) {
2510     const uint16_t* ptr;
2511     U32 ix = ix_and_ptr(&ptr, ctx, r, g);
2512     r = g = b = 0.0f;
2513     a = from_short(gather(ptr, ix));
2514 }
STAGE(store_a16,const SkRasterPipeline_MemoryCtx * ctx)2515 STAGE(store_a16, const SkRasterPipeline_MemoryCtx* ctx) {
2516     auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy);
2517 
2518     U16 px = pack(to_unorm(a, 65535));
2519     store(ptr, px, tail);
2520 }
2521 
STAGE(load_rg1616,const SkRasterPipeline_MemoryCtx * ctx)2522 STAGE(load_rg1616, const SkRasterPipeline_MemoryCtx* ctx) {
2523     auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy);
2524     b = 0; a = 1;
2525     from_1616(load<U32>(ptr, tail), &r,&g);
2526 }
STAGE(load_rg1616_dst,const SkRasterPipeline_MemoryCtx * ctx)2527 STAGE(load_rg1616_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2528     auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy);
2529     from_1616(load<U32>(ptr, tail), &dr, &dg);
2530     db = 0;
2531     da = 1;
2532 }
STAGE(gather_rg1616,const SkRasterPipeline_GatherCtx * ctx)2533 STAGE(gather_rg1616, const SkRasterPipeline_GatherCtx* ctx) {
2534     const uint32_t* ptr;
2535     U32 ix = ix_and_ptr(&ptr, ctx, r, g);
2536     from_1616(gather(ptr, ix), &r, &g);
2537     b = 0;
2538     a = 1;
2539 }
STAGE(store_rg1616,const SkRasterPipeline_MemoryCtx * ctx)2540 STAGE(store_rg1616, const SkRasterPipeline_MemoryCtx* ctx) {
2541     auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
2542 
2543     U32 px = to_unorm(r, 65535)
2544            | to_unorm(g, 65535) <<  16;
2545     store(ptr, px, tail);
2546 }
2547 
STAGE(load_16161616,const SkRasterPipeline_MemoryCtx * ctx)2548 STAGE(load_16161616, const SkRasterPipeline_MemoryCtx* ctx) {
2549     auto ptr = ptr_at_xy<const uint64_t>(ctx, dx, dy);
2550     from_16161616(load<U64>(ptr, tail), &r,&g, &b, &a);
2551 }
STAGE(load_16161616_dst,const SkRasterPipeline_MemoryCtx * ctx)2552 STAGE(load_16161616_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2553     auto ptr = ptr_at_xy<const uint64_t>(ctx, dx, dy);
2554     from_16161616(load<U64>(ptr, tail), &dr, &dg, &db, &da);
2555 }
STAGE(gather_16161616,const SkRasterPipeline_GatherCtx * ctx)2556 STAGE(gather_16161616, const SkRasterPipeline_GatherCtx* ctx) {
2557     const uint64_t* ptr;
2558     U32 ix = ix_and_ptr(&ptr, ctx, r, g);
2559     from_16161616(gather(ptr, ix), &r, &g, &b, &a);
2560 }
STAGE(store_16161616,const SkRasterPipeline_MemoryCtx * ctx)2561 STAGE(store_16161616, const SkRasterPipeline_MemoryCtx* ctx) {
2562     auto ptr = ptr_at_xy<uint16_t>(ctx, 4*dx,4*dy);
2563 
2564     U16 R = pack(to_unorm(r, 65535)),
2565         G = pack(to_unorm(g, 65535)),
2566         B = pack(to_unorm(b, 65535)),
2567         A = pack(to_unorm(a, 65535));
2568 
2569     store4(ptr,tail, R,G,B,A);
2570 }
2571 
2572 
STAGE(load_1010102,const SkRasterPipeline_MemoryCtx * ctx)2573 STAGE(load_1010102, const SkRasterPipeline_MemoryCtx* ctx) {
2574     auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
2575     from_1010102(load<U32>(ptr, tail), &r,&g,&b,&a);
2576 }
STAGE(load_1010102_dst,const SkRasterPipeline_MemoryCtx * ctx)2577 STAGE(load_1010102_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2578     auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
2579     from_1010102(load<U32>(ptr, tail), &dr,&dg,&db,&da);
2580 }
STAGE(load_1010102_xr,const SkRasterPipeline_MemoryCtx * ctx)2581 STAGE(load_1010102_xr, const SkRasterPipeline_MemoryCtx* ctx) {
2582     auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
2583     from_1010102_xr(load<U32>(ptr, tail), &r,&g,&b,&a);
2584 }
STAGE(load_1010102_xr_dst,const SkRasterPipeline_MemoryCtx * ctx)2585 STAGE(load_1010102_xr_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2586     auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
2587     from_1010102_xr(load<U32>(ptr, tail), &dr,&dg,&db,&da);
2588 }
STAGE(gather_1010102,const SkRasterPipeline_GatherCtx * ctx)2589 STAGE(gather_1010102, const SkRasterPipeline_GatherCtx* ctx) {
2590     const uint32_t* ptr;
2591     U32 ix = ix_and_ptr(&ptr, ctx, r,g);
2592     from_1010102(gather(ptr, ix), &r,&g,&b,&a);
2593 }
STAGE(store_1010102,const SkRasterPipeline_MemoryCtx * ctx)2594 STAGE(store_1010102, const SkRasterPipeline_MemoryCtx* ctx) {
2595     auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
2596 
2597     U32 px = to_unorm(r, 1023)
2598            | to_unorm(g, 1023) << 10
2599            | to_unorm(b, 1023) << 20
2600            | to_unorm(a,    3) << 30;
2601     store(ptr, px, tail);
2602 }
STAGE(store_1010102_xr,const SkRasterPipeline_MemoryCtx * ctx)2603 STAGE(store_1010102_xr, const SkRasterPipeline_MemoryCtx* ctx) {
2604     auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
2605     static constexpr float min = -0.752941f;
2606     static constexpr float max = 1.25098f;
2607     static constexpr float range = max - min;
2608     U32 px = to_unorm((r - min) / range, 1023)
2609            | to_unorm((g - min) / range, 1023) << 10
2610            | to_unorm((b - min) / range, 1023) << 20
2611            | to_unorm(a,    3) << 30;
2612     store(ptr, px, tail);
2613 }
2614 
STAGE(load_f16,const SkRasterPipeline_MemoryCtx * ctx)2615 STAGE(load_f16, const SkRasterPipeline_MemoryCtx* ctx) {
2616     auto ptr = ptr_at_xy<const uint64_t>(ctx, dx,dy);
2617 
2618     U16 R,G,B,A;
2619     load4((const uint16_t*)ptr,tail, &R,&G,&B,&A);
2620     r = from_half(R);
2621     g = from_half(G);
2622     b = from_half(B);
2623     a = from_half(A);
2624 }
STAGE(load_f16_dst,const SkRasterPipeline_MemoryCtx * ctx)2625 STAGE(load_f16_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2626     auto ptr = ptr_at_xy<const uint64_t>(ctx, dx,dy);
2627 
2628     U16 R,G,B,A;
2629     load4((const uint16_t*)ptr,tail, &R,&G,&B,&A);
2630     dr = from_half(R);
2631     dg = from_half(G);
2632     db = from_half(B);
2633     da = from_half(A);
2634 }
STAGE(gather_f16,const SkRasterPipeline_GatherCtx * ctx)2635 STAGE(gather_f16, const SkRasterPipeline_GatherCtx* ctx) {
2636     const uint64_t* ptr;
2637     U32 ix = ix_and_ptr(&ptr, ctx, r,g);
2638     auto px = gather(ptr, ix);
2639 
2640     U16 R,G,B,A;
2641     load4((const uint16_t*)&px,0, &R,&G,&B,&A);
2642     r = from_half(R);
2643     g = from_half(G);
2644     b = from_half(B);
2645     a = from_half(A);
2646 }
STAGE(store_f16,const SkRasterPipeline_MemoryCtx * ctx)2647 STAGE(store_f16, const SkRasterPipeline_MemoryCtx* ctx) {
2648     auto ptr = ptr_at_xy<uint64_t>(ctx, dx,dy);
2649     store4((uint16_t*)ptr,tail, to_half(r)
2650                               , to_half(g)
2651                               , to_half(b)
2652                               , to_half(a));
2653 }
2654 
STAGE(store_u16_be,const SkRasterPipeline_MemoryCtx * ctx)2655 STAGE(store_u16_be, const SkRasterPipeline_MemoryCtx* ctx) {
2656     auto ptr = ptr_at_xy<uint16_t>(ctx, 4*dx,dy);
2657 
2658     U16 R = bswap(pack(to_unorm(r, 65535))),
2659         G = bswap(pack(to_unorm(g, 65535))),
2660         B = bswap(pack(to_unorm(b, 65535))),
2661         A = bswap(pack(to_unorm(a, 65535)));
2662 
2663     store4(ptr,tail, R,G,B,A);
2664 }
2665 
STAGE(load_af16,const SkRasterPipeline_MemoryCtx * ctx)2666 STAGE(load_af16, const SkRasterPipeline_MemoryCtx* ctx) {
2667     auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
2668 
2669     U16 A = load<U16>((const uint16_t*)ptr, tail);
2670     r = 0;
2671     g = 0;
2672     b = 0;
2673     a = from_half(A);
2674 }
STAGE(load_af16_dst,const SkRasterPipeline_MemoryCtx * ctx)2675 STAGE(load_af16_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2676     auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy);
2677 
2678     U16 A = load<U16>((const uint16_t*)ptr, tail);
2679     dr = dg = db = 0.0f;
2680     da = from_half(A);
2681 }
STAGE(gather_af16,const SkRasterPipeline_GatherCtx * ctx)2682 STAGE(gather_af16, const SkRasterPipeline_GatherCtx* ctx) {
2683     const uint16_t* ptr;
2684     U32 ix = ix_and_ptr(&ptr, ctx, r, g);
2685     r = g = b = 0.0f;
2686     a = from_half(gather(ptr, ix));
2687 }
STAGE(store_af16,const SkRasterPipeline_MemoryCtx * ctx)2688 STAGE(store_af16, const SkRasterPipeline_MemoryCtx* ctx) {
2689     auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy);
2690     store(ptr, to_half(a), tail);
2691 }
2692 
STAGE(load_rgf16,const SkRasterPipeline_MemoryCtx * ctx)2693 STAGE(load_rgf16, const SkRasterPipeline_MemoryCtx* ctx) {
2694     auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy);
2695 
2696     U16 R,G;
2697     load2((const uint16_t*)ptr, tail, &R, &G);
2698     r = from_half(R);
2699     g = from_half(G);
2700     b = 0;
2701     a = 1;
2702 }
STAGE(load_rgf16_dst,const SkRasterPipeline_MemoryCtx * ctx)2703 STAGE(load_rgf16_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2704     auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy);
2705 
2706     U16 R,G;
2707     load2((const uint16_t*)ptr, tail, &R, &G);
2708     dr = from_half(R);
2709     dg = from_half(G);
2710     db = 0;
2711     da = 1;
2712 }
STAGE(gather_rgf16,const SkRasterPipeline_GatherCtx * ctx)2713 STAGE(gather_rgf16, const SkRasterPipeline_GatherCtx* ctx) {
2714     const uint32_t* ptr;
2715     U32 ix = ix_and_ptr(&ptr, ctx, r, g);
2716     auto px = gather(ptr, ix);
2717 
2718     U16 R,G;
2719     load2((const uint16_t*)&px, 0, &R, &G);
2720     r = from_half(R);
2721     g = from_half(G);
2722     b = 0;
2723     a = 1;
2724 }
STAGE(store_rgf16,const SkRasterPipeline_MemoryCtx * ctx)2725 STAGE(store_rgf16, const SkRasterPipeline_MemoryCtx* ctx) {
2726     auto ptr = ptr_at_xy<uint32_t>(ctx, dx, dy);
2727     store2((uint16_t*)ptr, tail, to_half(r)
2728                                , to_half(g));
2729 }
2730 
STAGE(load_f32,const SkRasterPipeline_MemoryCtx * ctx)2731 STAGE(load_f32, const SkRasterPipeline_MemoryCtx* ctx) {
2732     auto ptr = ptr_at_xy<const float>(ctx, 4*dx,4*dy);
2733     load4(ptr,tail, &r,&g,&b,&a);
2734 }
STAGE(load_f32_dst,const SkRasterPipeline_MemoryCtx * ctx)2735 STAGE(load_f32_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2736     auto ptr = ptr_at_xy<const float>(ctx, 4*dx,4*dy);
2737     load4(ptr,tail, &dr,&dg,&db,&da);
2738 }
STAGE(gather_f32,const SkRasterPipeline_GatherCtx * ctx)2739 STAGE(gather_f32, const SkRasterPipeline_GatherCtx* ctx) {
2740     const float* ptr;
2741     U32 ix = ix_and_ptr(&ptr, ctx, r,g);
2742     r = gather(ptr, 4*ix + 0);
2743     g = gather(ptr, 4*ix + 1);
2744     b = gather(ptr, 4*ix + 2);
2745     a = gather(ptr, 4*ix + 3);
2746 }
STAGE(store_f32,const SkRasterPipeline_MemoryCtx * ctx)2747 STAGE(store_f32, const SkRasterPipeline_MemoryCtx* ctx) {
2748     auto ptr = ptr_at_xy<float>(ctx, 4*dx,4*dy);
2749     store4(ptr,tail, r,g,b,a);
2750 }
2751 
STAGE(load_rgf32,const SkRasterPipeline_MemoryCtx * ctx)2752 STAGE(load_rgf32, const SkRasterPipeline_MemoryCtx* ctx) {
2753     auto ptr = ptr_at_xy<const float>(ctx, 2*dx,2*dy);
2754     load2(ptr, tail, &r, &g);
2755     b = 0;
2756     a = 1;
2757 }
STAGE(store_rgf32,const SkRasterPipeline_MemoryCtx * ctx)2758 STAGE(store_rgf32, const SkRasterPipeline_MemoryCtx* ctx) {
2759     auto ptr = ptr_at_xy<float>(ctx, 2*dx,2*dy);
2760     store2(ptr, tail, r, g);
2761 }
2762 
exclusive_repeat(F v,const SkRasterPipeline_TileCtx * ctx)2763 SI F exclusive_repeat(F v, const SkRasterPipeline_TileCtx* ctx) {
2764     return v - floor_(v*ctx->invScale)*ctx->scale;
2765 }
exclusive_mirror(F v,const SkRasterPipeline_TileCtx * ctx)2766 SI F exclusive_mirror(F v, const SkRasterPipeline_TileCtx* ctx) {
2767     auto limit = ctx->scale;
2768     auto invLimit = ctx->invScale;
2769 
2770     // This is "repeat" over the range 0..2*limit
2771     auto u = v - floor_(v*invLimit*0.5f)*2*limit;
2772     // s will be 0 when moving forward (e.g. [0, limit)) and 1 when moving backward (e.g.
2773     // [limit, 2*limit)).
2774     auto s = floor_(u*invLimit);
2775     // This is the mirror result.
2776     auto m = u - 2*s*(u - limit);
2777     // Apply a bias to m if moving backwards so that we snap consistently at exact integer coords in
2778     // the logical infinite image. This is tested by mirror_tile GM. Note that all values
2779     // that have a non-zero bias applied are > 0.
2780     auto biasInUlps = trunc_(s);
2781     return sk_bit_cast<F>(sk_bit_cast<U32>(m) + ctx->mirrorBiasDir*biasInUlps);
2782 }
2783 // Tile x or y to [0,limit) == [0,limit - 1 ulp] (think, sampling from images).
2784 // The gather stages will hard clamp the output of these stages to [0,limit)...
2785 // we just need to do the basic repeat or mirroring.
STAGE(repeat_x,const SkRasterPipeline_TileCtx * ctx)2786 STAGE(repeat_x, const SkRasterPipeline_TileCtx* ctx) { r = exclusive_repeat(r, ctx); }
STAGE(repeat_y,const SkRasterPipeline_TileCtx * ctx)2787 STAGE(repeat_y, const SkRasterPipeline_TileCtx* ctx) { g = exclusive_repeat(g, ctx); }
STAGE(mirror_x,const SkRasterPipeline_TileCtx * ctx)2788 STAGE(mirror_x, const SkRasterPipeline_TileCtx* ctx) { r = exclusive_mirror(r, ctx); }
STAGE(mirror_y,const SkRasterPipeline_TileCtx * ctx)2789 STAGE(mirror_y, const SkRasterPipeline_TileCtx* ctx) { g = exclusive_mirror(g, ctx); }
2790 
STAGE(clamp_x_1,NoCtx)2791 STAGE( clamp_x_1, NoCtx) { r = clamp_01_(r); }
STAGE(repeat_x_1,NoCtx)2792 STAGE(repeat_x_1, NoCtx) { r = clamp_01_(r - floor_(r)); }
STAGE(mirror_x_1,NoCtx)2793 STAGE(mirror_x_1, NoCtx) { r = clamp_01_(abs_( (r-1.0f) - two(floor_((r-1.0f)*0.5f)) - 1.0f )); }
2794 
STAGE(clamp_x_and_y,const SkRasterPipeline_CoordClampCtx * ctx)2795 STAGE(clamp_x_and_y, const SkRasterPipeline_CoordClampCtx* ctx) {
2796     r = min(ctx->max_x, max(ctx->min_x, r));
2797     g = min(ctx->max_y, max(ctx->min_y, g));
2798 }
2799 
2800 // Decal stores a 32bit mask after checking the coordinate (x and/or y) against its domain:
2801 //      mask == 0x00000000 if the coordinate(s) are out of bounds
2802 //      mask == 0xFFFFFFFF if the coordinate(s) are in bounds
2803 // After the gather stage, the r,g,b,a values are AND'd with this mask, setting them to 0
2804 // if either of the coordinates were out of bounds.
2805 
STAGE(decal_x,SkRasterPipeline_DecalTileCtx * ctx)2806 STAGE(decal_x, SkRasterPipeline_DecalTileCtx* ctx) {
2807     auto w = ctx->limit_x;
2808     auto e = ctx->inclusiveEdge_x;
2809     auto cond = ((0 < r) & (r < w)) | (r == e);
2810     sk_unaligned_store(ctx->mask, cond_to_mask(cond));
2811 }
STAGE(decal_y,SkRasterPipeline_DecalTileCtx * ctx)2812 STAGE(decal_y, SkRasterPipeline_DecalTileCtx* ctx) {
2813     auto h = ctx->limit_y;
2814     auto e = ctx->inclusiveEdge_y;
2815     auto cond = ((0 < g) & (g < h)) | (g == e);
2816     sk_unaligned_store(ctx->mask, cond_to_mask(cond));
2817 }
STAGE(decal_x_and_y,SkRasterPipeline_DecalTileCtx * ctx)2818 STAGE(decal_x_and_y, SkRasterPipeline_DecalTileCtx* ctx) {
2819     auto w = ctx->limit_x;
2820     auto h = ctx->limit_y;
2821     auto ex = ctx->inclusiveEdge_x;
2822     auto ey = ctx->inclusiveEdge_y;
2823     auto cond = (((0 < r) & (r < w)) | (r == ex))
2824               & (((0 < g) & (g < h)) | (g == ey));
2825     sk_unaligned_store(ctx->mask, cond_to_mask(cond));
2826 }
STAGE(check_decal_mask,SkRasterPipeline_DecalTileCtx * ctx)2827 STAGE(check_decal_mask, SkRasterPipeline_DecalTileCtx* ctx) {
2828     auto mask = sk_unaligned_load<U32>(ctx->mask);
2829     r = sk_bit_cast<F>(sk_bit_cast<U32>(r) & mask);
2830     g = sk_bit_cast<F>(sk_bit_cast<U32>(g) & mask);
2831     b = sk_bit_cast<F>(sk_bit_cast<U32>(b) & mask);
2832     a = sk_bit_cast<F>(sk_bit_cast<U32>(a) & mask);
2833 }
2834 
STAGE(alpha_to_gray,NoCtx)2835 STAGE(alpha_to_gray, NoCtx) {
2836     r = g = b = a;
2837     a = 1;
2838 }
STAGE(alpha_to_gray_dst,NoCtx)2839 STAGE(alpha_to_gray_dst, NoCtx) {
2840     dr = dg = db = da;
2841     da = 1;
2842 }
STAGE(alpha_to_red,NoCtx)2843 STAGE(alpha_to_red, NoCtx) {
2844     r = a;
2845     a = 1;
2846 }
STAGE(alpha_to_red_dst,NoCtx)2847 STAGE(alpha_to_red_dst, NoCtx) {
2848     dr = da;
2849     da = 1;
2850 }
2851 
STAGE(bt709_luminance_or_luma_to_alpha,NoCtx)2852 STAGE(bt709_luminance_or_luma_to_alpha, NoCtx) {
2853     a = r*0.2126f + g*0.7152f + b*0.0722f;
2854     r = g = b = 0;
2855 }
STAGE(bt709_luminance_or_luma_to_rgb,NoCtx)2856 STAGE(bt709_luminance_or_luma_to_rgb, NoCtx) {
2857     r = g = b = r*0.2126f + g*0.7152f + b*0.0722f;
2858 }
2859 
STAGE(matrix_translate,const float * m)2860 STAGE(matrix_translate, const float* m) {
2861     r += m[0];
2862     g += m[1];
2863 }
STAGE(matrix_scale_translate,const float * m)2864 STAGE(matrix_scale_translate, const float* m) {
2865     r = mad(r,m[0], m[2]);
2866     g = mad(g,m[1], m[3]);
2867 }
STAGE(matrix_2x3,const float * m)2868 STAGE(matrix_2x3, const float* m) {
2869     auto R = mad(r,m[0], mad(g,m[1], m[2])),
2870          G = mad(r,m[3], mad(g,m[4], m[5]));
2871     r = R;
2872     g = G;
2873 }
STAGE(matrix_3x3,const float * m)2874 STAGE(matrix_3x3, const float* m) {
2875     auto R = mad(r,m[0], mad(g,m[3], b*m[6])),
2876          G = mad(r,m[1], mad(g,m[4], b*m[7])),
2877          B = mad(r,m[2], mad(g,m[5], b*m[8]));
2878     r = R;
2879     g = G;
2880     b = B;
2881 }
STAGE(matrix_3x4,const float * m)2882 STAGE(matrix_3x4, const float* m) {
2883     auto R = mad(r,m[0], mad(g,m[3], mad(b,m[6], m[ 9]))),
2884          G = mad(r,m[1], mad(g,m[4], mad(b,m[7], m[10]))),
2885          B = mad(r,m[2], mad(g,m[5], mad(b,m[8], m[11])));
2886     r = R;
2887     g = G;
2888     b = B;
2889 }
STAGE(matrix_4x5,const float * m)2890 STAGE(matrix_4x5, const float* m) {
2891     auto R = mad(r,m[ 0], mad(g,m[ 1], mad(b,m[ 2], mad(a,m[ 3], m[ 4])))),
2892          G = mad(r,m[ 5], mad(g,m[ 6], mad(b,m[ 7], mad(a,m[ 8], m[ 9])))),
2893          B = mad(r,m[10], mad(g,m[11], mad(b,m[12], mad(a,m[13], m[14])))),
2894          A = mad(r,m[15], mad(g,m[16], mad(b,m[17], mad(a,m[18], m[19]))));
2895     r = R;
2896     g = G;
2897     b = B;
2898     a = A;
2899 }
STAGE(matrix_4x3,const float * m)2900 STAGE(matrix_4x3, const float* m) {
2901     auto X = r,
2902          Y = g;
2903 
2904     r = mad(X, m[0], mad(Y, m[4], m[ 8]));
2905     g = mad(X, m[1], mad(Y, m[5], m[ 9]));
2906     b = mad(X, m[2], mad(Y, m[6], m[10]));
2907     a = mad(X, m[3], mad(Y, m[7], m[11]));
2908 }
STAGE(matrix_perspective,const float * m)2909 STAGE(matrix_perspective, const float* m) {
2910     // N.B. Unlike the other matrix_ stages, this matrix is row-major.
2911     auto R = mad(r,m[0], mad(g,m[1], m[2])),
2912          G = mad(r,m[3], mad(g,m[4], m[5])),
2913          Z = mad(r,m[6], mad(g,m[7], m[8]));
2914     r = R * rcp_precise(Z);
2915     g = G * rcp_precise(Z);
2916 }
2917 
gradient_lookup(const SkRasterPipeline_GradientCtx * c,U32 idx,F t,F * r,F * g,F * b,F * a)2918 SI void gradient_lookup(const SkRasterPipeline_GradientCtx* c, U32 idx, F t,
2919                         F* r, F* g, F* b, F* a) {
2920     F fr, br, fg, bg, fb, bb, fa, ba;
2921 #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
2922     if (c->stopCount <=8) {
2923         fr = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), idx);
2924         br = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), idx);
2925         fg = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), idx);
2926         bg = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), idx);
2927         fb = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), idx);
2928         bb = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), idx);
2929         fa = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), idx);
2930         ba = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), idx);
2931     } else
2932 #endif
2933     {
2934         fr = gather(c->fs[0], idx);
2935         br = gather(c->bs[0], idx);
2936         fg = gather(c->fs[1], idx);
2937         bg = gather(c->bs[1], idx);
2938         fb = gather(c->fs[2], idx);
2939         bb = gather(c->bs[2], idx);
2940         fa = gather(c->fs[3], idx);
2941         ba = gather(c->bs[3], idx);
2942     }
2943 
2944     *r = mad(t, fr, br);
2945     *g = mad(t, fg, bg);
2946     *b = mad(t, fb, bb);
2947     *a = mad(t, fa, ba);
2948 }
2949 
STAGE(evenly_spaced_gradient,const SkRasterPipeline_GradientCtx * c)2950 STAGE(evenly_spaced_gradient, const SkRasterPipeline_GradientCtx* c) {
2951     auto t = r;
2952     auto idx = trunc_(t * (c->stopCount-1));
2953     gradient_lookup(c, idx, t, &r, &g, &b, &a);
2954 }
2955 
STAGE(gradient,const SkRasterPipeline_GradientCtx * c)2956 STAGE(gradient, const SkRasterPipeline_GradientCtx* c) {
2957     auto t = r;
2958     U32 idx = 0;
2959 
2960     // N.B. The loop starts at 1 because idx 0 is the color to use before the first stop.
2961     for (size_t i = 1; i < c->stopCount; i++) {
2962         idx += if_then_else(t >= c->ts[i], U32(1), U32(0));
2963     }
2964 
2965     gradient_lookup(c, idx, t, &r, &g, &b, &a);
2966 }
2967 
STAGE(evenly_spaced_2_stop_gradient,const SkRasterPipeline_EvenlySpaced2StopGradientCtx * c)2968 STAGE(evenly_spaced_2_stop_gradient, const SkRasterPipeline_EvenlySpaced2StopGradientCtx* c) {
2969     auto t = r;
2970     r = mad(t, c->f[0], c->b[0]);
2971     g = mad(t, c->f[1], c->b[1]);
2972     b = mad(t, c->f[2], c->b[2]);
2973     a = mad(t, c->f[3], c->b[3]);
2974 }
2975 
STAGE(xy_to_unit_angle,NoCtx)2976 STAGE(xy_to_unit_angle, NoCtx) {
2977     F X = r,
2978       Y = g;
2979     F xabs = abs_(X),
2980       yabs = abs_(Y);
2981 
2982     F slope = min(xabs, yabs)/max(xabs, yabs);
2983     F s = slope * slope;
2984 
2985     // Use a 7th degree polynomial to approximate atan.
2986     // This was generated using sollya.gforge.inria.fr.
2987     // A float optimized polynomial was generated using the following command.
2988     // P1 = fpminimax((1/(2*Pi))*atan(x),[|1,3,5,7|],[|24...|],[2^(-40),1],relative);
2989     F phi = slope
2990              * (0.15912117063999176025390625f     + s
2991              * (-5.185396969318389892578125e-2f   + s
2992              * (2.476101927459239959716796875e-2f + s
2993              * (-7.0547382347285747528076171875e-3f))));
2994 
2995     phi = if_then_else(xabs < yabs, 1.0f/4.0f - phi, phi);
2996     phi = if_then_else(X < 0.0f   , 1.0f/2.0f - phi, phi);
2997     phi = if_then_else(Y < 0.0f   , 1.0f - phi     , phi);
2998     phi = if_then_else(phi != phi , 0              , phi);  // Check for NaN.
2999     r = phi;
3000 }
3001 
STAGE(xy_to_radius,NoCtx)3002 STAGE(xy_to_radius, NoCtx) {
3003     F X2 = r * r,
3004       Y2 = g * g;
3005     r = sqrt_(X2 + Y2);
3006 }
3007 
3008 // Please see https://skia.org/dev/design/conical for how our 2pt conical shader works.
3009 
STAGE(negate_x,NoCtx)3010 STAGE(negate_x, NoCtx) { r = -r; }
3011 
STAGE(xy_to_2pt_conical_strip,const SkRasterPipeline_2PtConicalCtx * ctx)3012 STAGE(xy_to_2pt_conical_strip, const SkRasterPipeline_2PtConicalCtx* ctx) {
3013     F x = r, y = g, &t = r;
3014     t = x + sqrt_(ctx->fP0 - y*y); // ctx->fP0 = r0 * r0
3015 }
3016 
STAGE(xy_to_2pt_conical_focal_on_circle,NoCtx)3017 STAGE(xy_to_2pt_conical_focal_on_circle, NoCtx) {
3018     F x = r, y = g, &t = r;
3019     t = x + y*y / x; // (x^2 + y^2) / x
3020 }
3021 
STAGE(xy_to_2pt_conical_well_behaved,const SkRasterPipeline_2PtConicalCtx * ctx)3022 STAGE(xy_to_2pt_conical_well_behaved, const SkRasterPipeline_2PtConicalCtx* ctx) {
3023     F x = r, y = g, &t = r;
3024     t = sqrt_(x*x + y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1
3025 }
3026 
STAGE(xy_to_2pt_conical_greater,const SkRasterPipeline_2PtConicalCtx * ctx)3027 STAGE(xy_to_2pt_conical_greater, const SkRasterPipeline_2PtConicalCtx* ctx) {
3028     F x = r, y = g, &t = r;
3029     t = sqrt_(x*x - y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1
3030 }
3031 
STAGE(xy_to_2pt_conical_smaller,const SkRasterPipeline_2PtConicalCtx * ctx)3032 STAGE(xy_to_2pt_conical_smaller, const SkRasterPipeline_2PtConicalCtx* ctx) {
3033     F x = r, y = g, &t = r;
3034     t = -sqrt_(x*x - y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1
3035 }
3036 
STAGE(alter_2pt_conical_compensate_focal,const SkRasterPipeline_2PtConicalCtx * ctx)3037 STAGE(alter_2pt_conical_compensate_focal, const SkRasterPipeline_2PtConicalCtx* ctx) {
3038     F& t = r;
3039     t = t + ctx->fP1; // ctx->fP1 = f
3040 }
3041 
STAGE(alter_2pt_conical_unswap,NoCtx)3042 STAGE(alter_2pt_conical_unswap, NoCtx) {
3043     F& t = r;
3044     t = 1 - t;
3045 }
3046 
STAGE(mask_2pt_conical_nan,SkRasterPipeline_2PtConicalCtx * c)3047 STAGE(mask_2pt_conical_nan, SkRasterPipeline_2PtConicalCtx* c) {
3048     F& t = r;
3049     auto is_degenerate = (t != t); // NaN
3050     t = if_then_else(is_degenerate, F(0), t);
3051     sk_unaligned_store(&c->fMask, cond_to_mask(!is_degenerate));
3052 }
3053 
STAGE(mask_2pt_conical_degenerates,SkRasterPipeline_2PtConicalCtx * c)3054 STAGE(mask_2pt_conical_degenerates, SkRasterPipeline_2PtConicalCtx* c) {
3055     F& t = r;
3056     auto is_degenerate = (t <= 0) | (t != t);
3057     t = if_then_else(is_degenerate, F(0), t);
3058     sk_unaligned_store(&c->fMask, cond_to_mask(!is_degenerate));
3059 }
3060 
STAGE(apply_vector_mask,const uint32_t * ctx)3061 STAGE(apply_vector_mask, const uint32_t* ctx) {
3062     const U32 mask = sk_unaligned_load<U32>(ctx);
3063     r = sk_bit_cast<F>(sk_bit_cast<U32>(r) & mask);
3064     g = sk_bit_cast<F>(sk_bit_cast<U32>(g) & mask);
3065     b = sk_bit_cast<F>(sk_bit_cast<U32>(b) & mask);
3066     a = sk_bit_cast<F>(sk_bit_cast<U32>(a) & mask);
3067 }
3068 
save_xy(F * r,F * g,SkRasterPipeline_SamplerCtx * c)3069 SI void save_xy(F* r, F* g, SkRasterPipeline_SamplerCtx* c) {
3070     // Whether bilinear or bicubic, all sample points are at the same fractional offset (fx,fy).
3071     // They're either the 4 corners of a logical 1x1 pixel or the 16 corners of a 3x3 grid
3072     // surrounding (x,y) at (0.5,0.5) off-center.
3073     F fx = fract(*r + 0.5f),
3074       fy = fract(*g + 0.5f);
3075 
3076     // Samplers will need to load x and fx, or y and fy.
3077     sk_unaligned_store(c->x,  *r);
3078     sk_unaligned_store(c->y,  *g);
3079     sk_unaligned_store(c->fx, fx);
3080     sk_unaligned_store(c->fy, fy);
3081 }
3082 
STAGE(accumulate,const SkRasterPipeline_SamplerCtx * c)3083 STAGE(accumulate, const SkRasterPipeline_SamplerCtx* c) {
3084     // Bilinear and bicubic filters are both separable, so we produce independent contributions
3085     // from x and y, multiplying them together here to get each pixel's total scale factor.
3086     auto scale = sk_unaligned_load<F>(c->scalex)
3087                * sk_unaligned_load<F>(c->scaley);
3088     dr = mad(scale, r, dr);
3089     dg = mad(scale, g, dg);
3090     db = mad(scale, b, db);
3091     da = mad(scale, a, da);
3092 }
3093 
3094 // In bilinear interpolation, the 4 pixels at +/- 0.5 offsets from the sample pixel center
3095 // are combined in direct proportion to their area overlapping that logical query pixel.
3096 // At positive offsets, the x-axis contribution to that rectangle is fx, or (1-fx) at negative x.
3097 // The y-axis is symmetric.
3098 
3099 template <int kScale>
bilinear_x(SkRasterPipeline_SamplerCtx * ctx,F * x)3100 SI void bilinear_x(SkRasterPipeline_SamplerCtx* ctx, F* x) {
3101     *x = sk_unaligned_load<F>(ctx->x) + (kScale * 0.5f);
3102     F fx = sk_unaligned_load<F>(ctx->fx);
3103 
3104     F scalex;
3105     if (kScale == -1) { scalex = 1.0f - fx; }
3106     if (kScale == +1) { scalex =        fx; }
3107     sk_unaligned_store(ctx->scalex, scalex);
3108 }
3109 template <int kScale>
bilinear_y(SkRasterPipeline_SamplerCtx * ctx,F * y)3110 SI void bilinear_y(SkRasterPipeline_SamplerCtx* ctx, F* y) {
3111     *y = sk_unaligned_load<F>(ctx->y) + (kScale * 0.5f);
3112     F fy = sk_unaligned_load<F>(ctx->fy);
3113 
3114     F scaley;
3115     if (kScale == -1) { scaley = 1.0f - fy; }
3116     if (kScale == +1) { scaley =        fy; }
3117     sk_unaligned_store(ctx->scaley, scaley);
3118 }
3119 
STAGE(bilinear_setup,SkRasterPipeline_SamplerCtx * ctx)3120 STAGE(bilinear_setup, SkRasterPipeline_SamplerCtx* ctx) {
3121     save_xy(&r, &g, ctx);
3122     // Init for accumulate
3123     dr = dg = db = da = 0;
3124 }
3125 
STAGE(bilinear_nx,SkRasterPipeline_SamplerCtx * ctx)3126 STAGE(bilinear_nx, SkRasterPipeline_SamplerCtx* ctx) { bilinear_x<-1>(ctx, &r); }
STAGE(bilinear_px,SkRasterPipeline_SamplerCtx * ctx)3127 STAGE(bilinear_px, SkRasterPipeline_SamplerCtx* ctx) { bilinear_x<+1>(ctx, &r); }
STAGE(bilinear_ny,SkRasterPipeline_SamplerCtx * ctx)3128 STAGE(bilinear_ny, SkRasterPipeline_SamplerCtx* ctx) { bilinear_y<-1>(ctx, &g); }
STAGE(bilinear_py,SkRasterPipeline_SamplerCtx * ctx)3129 STAGE(bilinear_py, SkRasterPipeline_SamplerCtx* ctx) { bilinear_y<+1>(ctx, &g); }
3130 
3131 
3132 // In bicubic interpolation, the 16 pixels and +/- 0.5 and +/- 1.5 offsets from the sample
3133 // pixel center are combined with a non-uniform cubic filter, with higher values near the center.
3134 //
3135 // This helper computes the total weight along one axis (our bicubic filter is separable), given one
3136 // column of the sampling matrix, and a fractional pixel offset. See SkCubicResampler for details.
3137 
bicubic_wts(F t,float A,float B,float C,float D)3138 SI F bicubic_wts(F t, float A, float B, float C, float D) {
3139     return mad(t, mad(t, mad(t, D, C), B), A);
3140 }
3141 
3142 template <int kScale>
bicubic_x(SkRasterPipeline_SamplerCtx * ctx,F * x)3143 SI void bicubic_x(SkRasterPipeline_SamplerCtx* ctx, F* x) {
3144     *x = sk_unaligned_load<F>(ctx->x) + (kScale * 0.5f);
3145 
3146     F scalex;
3147     if (kScale == -3) { scalex = sk_unaligned_load<F>(ctx->wx[0]); }
3148     if (kScale == -1) { scalex = sk_unaligned_load<F>(ctx->wx[1]); }
3149     if (kScale == +1) { scalex = sk_unaligned_load<F>(ctx->wx[2]); }
3150     if (kScale == +3) { scalex = sk_unaligned_load<F>(ctx->wx[3]); }
3151     sk_unaligned_store(ctx->scalex, scalex);
3152 }
3153 template <int kScale>
bicubic_y(SkRasterPipeline_SamplerCtx * ctx,F * y)3154 SI void bicubic_y(SkRasterPipeline_SamplerCtx* ctx, F* y) {
3155     *y = sk_unaligned_load<F>(ctx->y) + (kScale * 0.5f);
3156 
3157     F scaley;
3158     if (kScale == -3) { scaley = sk_unaligned_load<F>(ctx->wy[0]); }
3159     if (kScale == -1) { scaley = sk_unaligned_load<F>(ctx->wy[1]); }
3160     if (kScale == +1) { scaley = sk_unaligned_load<F>(ctx->wy[2]); }
3161     if (kScale == +3) { scaley = sk_unaligned_load<F>(ctx->wy[3]); }
3162     sk_unaligned_store(ctx->scaley, scaley);
3163 }
3164 
STAGE(bicubic_setup,SkRasterPipeline_SamplerCtx * ctx)3165 STAGE(bicubic_setup, SkRasterPipeline_SamplerCtx* ctx) {
3166     save_xy(&r, &g, ctx);
3167 
3168     const float* w = ctx->weights;
3169 
3170     F fx = sk_unaligned_load<F>(ctx->fx);
3171     sk_unaligned_store(ctx->wx[0], bicubic_wts(fx, w[0], w[4], w[ 8], w[12]));
3172     sk_unaligned_store(ctx->wx[1], bicubic_wts(fx, w[1], w[5], w[ 9], w[13]));
3173     sk_unaligned_store(ctx->wx[2], bicubic_wts(fx, w[2], w[6], w[10], w[14]));
3174     sk_unaligned_store(ctx->wx[3], bicubic_wts(fx, w[3], w[7], w[11], w[15]));
3175 
3176     F fy = sk_unaligned_load<F>(ctx->fy);
3177     sk_unaligned_store(ctx->wy[0], bicubic_wts(fy, w[0], w[4], w[ 8], w[12]));
3178     sk_unaligned_store(ctx->wy[1], bicubic_wts(fy, w[1], w[5], w[ 9], w[13]));
3179     sk_unaligned_store(ctx->wy[2], bicubic_wts(fy, w[2], w[6], w[10], w[14]));
3180     sk_unaligned_store(ctx->wy[3], bicubic_wts(fy, w[3], w[7], w[11], w[15]));
3181 
3182     // Init for accumulate
3183     dr = dg = db = da = 0;
3184 }
3185 
STAGE(bicubic_n3x,SkRasterPipeline_SamplerCtx * ctx)3186 STAGE(bicubic_n3x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<-3>(ctx, &r); }
STAGE(bicubic_n1x,SkRasterPipeline_SamplerCtx * ctx)3187 STAGE(bicubic_n1x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<-1>(ctx, &r); }
STAGE(bicubic_p1x,SkRasterPipeline_SamplerCtx * ctx)3188 STAGE(bicubic_p1x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<+1>(ctx, &r); }
STAGE(bicubic_p3x,SkRasterPipeline_SamplerCtx * ctx)3189 STAGE(bicubic_p3x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<+3>(ctx, &r); }
3190 
STAGE(bicubic_n3y,SkRasterPipeline_SamplerCtx * ctx)3191 STAGE(bicubic_n3y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<-3>(ctx, &g); }
STAGE(bicubic_n1y,SkRasterPipeline_SamplerCtx * ctx)3192 STAGE(bicubic_n1y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<-1>(ctx, &g); }
STAGE(bicubic_p1y,SkRasterPipeline_SamplerCtx * ctx)3193 STAGE(bicubic_p1y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<+1>(ctx, &g); }
STAGE(bicubic_p3y,SkRasterPipeline_SamplerCtx * ctx)3194 STAGE(bicubic_p3y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<+3>(ctx, &g); }
3195 
STAGE(mipmap_linear_init,SkRasterPipeline_MipmapCtx * ctx)3196 STAGE(mipmap_linear_init, SkRasterPipeline_MipmapCtx* ctx) {
3197     sk_unaligned_store(ctx->x, r);
3198     sk_unaligned_store(ctx->y, g);
3199 }
3200 
STAGE(mipmap_linear_update,SkRasterPipeline_MipmapCtx * ctx)3201 STAGE(mipmap_linear_update, SkRasterPipeline_MipmapCtx* ctx) {
3202     sk_unaligned_store(ctx->r, r);
3203     sk_unaligned_store(ctx->g, g);
3204     sk_unaligned_store(ctx->b, b);
3205     sk_unaligned_store(ctx->a, a);
3206 
3207     r = sk_unaligned_load<F>(ctx->x) * ctx->scaleX;
3208     g = sk_unaligned_load<F>(ctx->y) * ctx->scaleY;
3209 }
3210 
STAGE(mipmap_linear_finish,SkRasterPipeline_MipmapCtx * ctx)3211 STAGE(mipmap_linear_finish, SkRasterPipeline_MipmapCtx* ctx) {
3212     r = lerp(sk_unaligned_load<F>(ctx->r), r, ctx->lowerWeight);
3213     g = lerp(sk_unaligned_load<F>(ctx->g), g, ctx->lowerWeight);
3214     b = lerp(sk_unaligned_load<F>(ctx->b), b, ctx->lowerWeight);
3215     a = lerp(sk_unaligned_load<F>(ctx->a), a, ctx->lowerWeight);
3216 }
3217 
STAGE(callback,SkRasterPipeline_CallbackCtx * c)3218 STAGE(callback, SkRasterPipeline_CallbackCtx* c) {
3219     store4(c->rgba,0, r,g,b,a);
3220     c->fn(c, tail ? tail : N);
3221     load4(c->read_from,0, &r,&g,&b,&a);
3222 }
3223 
3224 // All control flow stages used by SkSL maintain some state in the common registers:
3225 //   dr: condition mask
3226 //   dg: loop mask
3227 //   db: return mask
3228 //   da: execution mask (intersection of all three masks)
3229 // After updating dr/dg/db, you must invoke update_execution_mask().
3230 #define execution_mask()        sk_bit_cast<I32>(da)
3231 #define update_execution_mask() da = sk_bit_cast<F>(sk_bit_cast<I32>(dr) & \
3232                                                     sk_bit_cast<I32>(dg) & \
3233                                                     sk_bit_cast<I32>(db))
3234 
STAGE_TAIL(init_lane_masks,NoCtx)3235 STAGE_TAIL(init_lane_masks, NoCtx) {
3236     uint32_t iota[] = {0,1,2,3,4,5,6,7};
3237     I32 mask = tail ? cond_to_mask(sk_unaligned_load<U32>(iota) < tail) : I32(~0);
3238     dr = dg = db = da = sk_bit_cast<F>(mask);
3239 }
3240 
STAGE_TAIL(load_condition_mask,F * ctx)3241 STAGE_TAIL(load_condition_mask, F* ctx) {
3242     dr = sk_unaligned_load<F>(ctx);
3243     update_execution_mask();
3244 }
3245 
STAGE_TAIL(store_condition_mask,F * ctx)3246 STAGE_TAIL(store_condition_mask, F* ctx) {
3247     sk_unaligned_store(ctx, dr);
3248 }
3249 
STAGE_TAIL(merge_condition_mask,I32 * ptr)3250 STAGE_TAIL(merge_condition_mask, I32* ptr) {
3251     // Set the condition-mask to the intersection of two adjacent masks at the pointer.
3252     dr = sk_bit_cast<F>(ptr[0] & ptr[1]);
3253     update_execution_mask();
3254 }
3255 
STAGE_TAIL(load_loop_mask,F * ctx)3256 STAGE_TAIL(load_loop_mask, F* ctx) {
3257     dg = sk_unaligned_load<F>(ctx);
3258     update_execution_mask();
3259 }
3260 
STAGE_TAIL(store_loop_mask,F * ctx)3261 STAGE_TAIL(store_loop_mask, F* ctx) {
3262     sk_unaligned_store(ctx, dg);
3263 }
3264 
STAGE_TAIL(mask_off_loop_mask,NoCtx)3265 STAGE_TAIL(mask_off_loop_mask, NoCtx) {
3266     // We encountered a break statement. If a lane was active, it should be masked off now, and stay
3267     // masked-off until the termination of the loop.
3268     dg = sk_bit_cast<F>(sk_bit_cast<I32>(dg) & ~execution_mask());
3269     update_execution_mask();
3270 }
3271 
STAGE_TAIL(reenable_loop_mask,I32 * ptr)3272 STAGE_TAIL(reenable_loop_mask, I32* ptr) {
3273     // Set the loop-mask to the union of the current loop-mask with the mask at the pointer.
3274     dg = sk_bit_cast<F>(sk_bit_cast<I32>(dg) | ptr[0]);
3275     update_execution_mask();
3276 }
3277 
STAGE_TAIL(merge_loop_mask,I32 * ptr)3278 STAGE_TAIL(merge_loop_mask, I32* ptr) {
3279     // Set the loop-mask to the intersection of the current loop-mask with the mask at the pointer.
3280     // (Note: this behavior subtly differs from merge_condition_mask!)
3281     dg = sk_bit_cast<F>(sk_bit_cast<I32>(dg) & ptr[0]);
3282     update_execution_mask();
3283 }
3284 
STAGE_TAIL(case_op,SkRasterPipeline_CaseOpCtx * ctx)3285 STAGE_TAIL(case_op, SkRasterPipeline_CaseOpCtx* ctx) {
3286     // Check each lane to see if the case value matches the expectation.
3287     I32* actualValue = (I32*)ctx->ptr;
3288     I32 caseMatches = cond_to_mask(*actualValue == ctx->expectedValue);
3289 
3290     // In lanes where we found a match, enable the loop mask...
3291     dg = sk_bit_cast<F>(sk_bit_cast<I32>(dg) | caseMatches);
3292     update_execution_mask();
3293 
3294     // ... and clear the default-case mask.
3295     I32* defaultMask = actualValue + 1;
3296     *defaultMask &= ~caseMatches;
3297 }
3298 
STAGE_TAIL(load_return_mask,F * ctx)3299 STAGE_TAIL(load_return_mask, F* ctx) {
3300     db = sk_unaligned_load<F>(ctx);
3301     update_execution_mask();
3302 }
3303 
STAGE_TAIL(store_return_mask,F * ctx)3304 STAGE_TAIL(store_return_mask, F* ctx) {
3305     sk_unaligned_store(ctx, db);
3306 }
3307 
STAGE_TAIL(mask_off_return_mask,NoCtx)3308 STAGE_TAIL(mask_off_return_mask, NoCtx) {
3309     // We encountered a return statement. If a lane was active, it should be masked off now, and
3310     // stay masked-off until the end of the function.
3311     db = sk_bit_cast<F>(sk_bit_cast<I32>(db) & ~execution_mask());
3312     update_execution_mask();
3313 }
3314 
STAGE_BRANCH(branch_if_any_active_lanes,SkRasterPipeline_BranchCtx * ctx)3315 STAGE_BRANCH(branch_if_any_active_lanes, SkRasterPipeline_BranchCtx* ctx) {
3316     return any(execution_mask()) ? ctx->offset : 1;
3317 }
3318 
STAGE_BRANCH(branch_if_no_active_lanes,SkRasterPipeline_BranchCtx * ctx)3319 STAGE_BRANCH(branch_if_no_active_lanes, SkRasterPipeline_BranchCtx* ctx) {
3320     return any(execution_mask()) ? 1 : ctx->offset;
3321 }
3322 
STAGE_BRANCH(jump,SkRasterPipeline_BranchCtx * ctx)3323 STAGE_BRANCH(jump, SkRasterPipeline_BranchCtx* ctx) {
3324     return ctx->offset;
3325 }
3326 
STAGE_BRANCH(branch_if_no_active_lanes_eq,SkRasterPipeline_BranchIfEqualCtx * ctx)3327 STAGE_BRANCH(branch_if_no_active_lanes_eq, SkRasterPipeline_BranchIfEqualCtx* ctx) {
3328     // Compare each lane against the expected value...
3329     I32 match = cond_to_mask(*(I32*)ctx->ptr == ctx->value);
3330     // ... but mask off lanes that aren't executing.
3331     match &= execution_mask();
3332     // If any lanes matched, don't take the branch.
3333     return any(match) ? 1 : ctx->offset;
3334 }
3335 
STAGE_TAIL(zero_slot_unmasked,F * dst)3336 STAGE_TAIL(zero_slot_unmasked, F* dst) {
3337     // We don't even bother masking off the tail; we're filling slots, not the destination surface.
3338     sk_bzero(dst, sizeof(F) * 1);
3339 }
STAGE_TAIL(zero_2_slots_unmasked,F * dst)3340 STAGE_TAIL(zero_2_slots_unmasked, F* dst) {
3341     sk_bzero(dst, sizeof(F) * 2);
3342 }
STAGE_TAIL(zero_3_slots_unmasked,F * dst)3343 STAGE_TAIL(zero_3_slots_unmasked, F* dst) {
3344     sk_bzero(dst, sizeof(F) * 3);
3345 }
STAGE_TAIL(zero_4_slots_unmasked,F * dst)3346 STAGE_TAIL(zero_4_slots_unmasked, F* dst) {
3347     sk_bzero(dst, sizeof(F) * 4);
3348 }
3349 
STAGE_TAIL(copy_constant,SkRasterPipeline_BinaryOpCtx * ctx)3350 STAGE_TAIL(copy_constant, SkRasterPipeline_BinaryOpCtx* ctx) {
3351     const float* src = ctx->src;
3352     F* dst = (F*)ctx->dst;
3353     dst[0] = src[0];
3354 }
STAGE_TAIL(copy_2_constants,SkRasterPipeline_BinaryOpCtx * ctx)3355 STAGE_TAIL(copy_2_constants, SkRasterPipeline_BinaryOpCtx* ctx) {
3356     const float* src = ctx->src;
3357     F* dst = (F*)ctx->dst;
3358     dst[0] = src[0];
3359     dst[1] = src[1];
3360 }
STAGE_TAIL(copy_3_constants,SkRasterPipeline_BinaryOpCtx * ctx)3361 STAGE_TAIL(copy_3_constants, SkRasterPipeline_BinaryOpCtx* ctx) {
3362     const float* src = ctx->src;
3363     F* dst = (F*)ctx->dst;
3364     dst[0] = src[0];
3365     dst[1] = src[1];
3366     dst[2] = src[2];
3367 }
STAGE_TAIL(copy_4_constants,SkRasterPipeline_BinaryOpCtx * ctx)3368 STAGE_TAIL(copy_4_constants, SkRasterPipeline_BinaryOpCtx* ctx) {
3369     const float* src = ctx->src;
3370     F* dst = (F*)ctx->dst;
3371     dst[0] = src[0];
3372     dst[1] = src[1];
3373     dst[2] = src[2];
3374     dst[3] = src[3];
3375 }
3376 
STAGE_TAIL(copy_slot_unmasked,SkRasterPipeline_BinaryOpCtx * ctx)3377 STAGE_TAIL(copy_slot_unmasked, SkRasterPipeline_BinaryOpCtx* ctx) {
3378     // We don't even bother masking off the tail; we're filling slots, not the destination surface.
3379     memcpy(ctx->dst, ctx->src, sizeof(F) * 1);
3380 }
STAGE_TAIL(copy_2_slots_unmasked,SkRasterPipeline_BinaryOpCtx * ctx)3381 STAGE_TAIL(copy_2_slots_unmasked, SkRasterPipeline_BinaryOpCtx* ctx) {
3382     memcpy(ctx->dst, ctx->src, sizeof(F) * 2);
3383 }
STAGE_TAIL(copy_3_slots_unmasked,SkRasterPipeline_BinaryOpCtx * ctx)3384 STAGE_TAIL(copy_3_slots_unmasked, SkRasterPipeline_BinaryOpCtx* ctx) {
3385     memcpy(ctx->dst, ctx->src, sizeof(F) * 3);
3386 }
STAGE_TAIL(copy_4_slots_unmasked,SkRasterPipeline_BinaryOpCtx * ctx)3387 STAGE_TAIL(copy_4_slots_unmasked, SkRasterPipeline_BinaryOpCtx* ctx) {
3388     memcpy(ctx->dst, ctx->src, sizeof(F) * 4);
3389 }
3390 
3391 template <int NumSlots>
copy_n_slots_masked_fn(SkRasterPipeline_BinaryOpCtx * ctx,I32 mask)3392 SI void copy_n_slots_masked_fn(SkRasterPipeline_BinaryOpCtx* ctx, I32 mask) {
3393     if (any(mask)) {
3394         // Get pointers to our slots.
3395         F* dst = (F*)ctx->dst;
3396         F* src = (F*)ctx->src;
3397 
3398         // Mask off and copy slots.
3399         for (int count = 0; count < NumSlots; ++count) {
3400             *dst = if_then_else(mask, *src, *dst);
3401             dst += 1;
3402             src += 1;
3403         }
3404     }
3405 }
3406 
STAGE_TAIL(copy_slot_masked,SkRasterPipeline_BinaryOpCtx * ctx)3407 STAGE_TAIL(copy_slot_masked, SkRasterPipeline_BinaryOpCtx* ctx) {
3408     copy_n_slots_masked_fn<1>(ctx, execution_mask());
3409 }
STAGE_TAIL(copy_2_slots_masked,SkRasterPipeline_BinaryOpCtx * ctx)3410 STAGE_TAIL(copy_2_slots_masked, SkRasterPipeline_BinaryOpCtx* ctx) {
3411     copy_n_slots_masked_fn<2>(ctx, execution_mask());
3412 }
STAGE_TAIL(copy_3_slots_masked,SkRasterPipeline_BinaryOpCtx * ctx)3413 STAGE_TAIL(copy_3_slots_masked, SkRasterPipeline_BinaryOpCtx* ctx) {
3414     copy_n_slots_masked_fn<3>(ctx, execution_mask());
3415 }
STAGE_TAIL(copy_4_slots_masked,SkRasterPipeline_BinaryOpCtx * ctx)3416 STAGE_TAIL(copy_4_slots_masked, SkRasterPipeline_BinaryOpCtx* ctx) {
3417     copy_n_slots_masked_fn<4>(ctx, execution_mask());
3418 }
3419 
3420 template <int LoopCount>
shuffle_fn(F * dst,uint16_t * offsets,int numSlots)3421 SI void shuffle_fn(F* dst, uint16_t* offsets, int numSlots) {
3422     F scratch[16];
3423     std::byte* src = (std::byte*)dst;
3424     for (int count = 0; count < LoopCount; ++count) {
3425         scratch[count] = *(F*)(src + offsets[count]);
3426     }
3427     // Surprisingly, this switch generates significantly better code than a memcpy (on x86-64) when
3428     // the number of slots is unknown at compile time, and generates roughly identical code when the
3429     // number of slots is hardcoded. Using a switch allows `scratch` to live in ymm0-ymm15 instead
3430     // of being written out to the stack and then read back in. Also, the intrinsic memcpy assumes
3431     // that `numSlots` could be arbitrarily large, and so it emits more code than we need.
3432     switch (numSlots) {
3433         case 16: dst[15] = scratch[15]; [[fallthrough]];
3434         case 15: dst[14] = scratch[14]; [[fallthrough]];
3435         case 14: dst[13] = scratch[13]; [[fallthrough]];
3436         case 13: dst[12] = scratch[12]; [[fallthrough]];
3437         case 12: dst[11] = scratch[11]; [[fallthrough]];
3438         case 11: dst[10] = scratch[10]; [[fallthrough]];
3439         case 10: dst[ 9] = scratch[ 9]; [[fallthrough]];
3440         case  9: dst[ 8] = scratch[ 8]; [[fallthrough]];
3441         case  8: dst[ 7] = scratch[ 7]; [[fallthrough]];
3442         case  7: dst[ 6] = scratch[ 6]; [[fallthrough]];
3443         case  6: dst[ 5] = scratch[ 5]; [[fallthrough]];
3444         case  5: dst[ 4] = scratch[ 4]; [[fallthrough]];
3445         case  4: dst[ 3] = scratch[ 3]; [[fallthrough]];
3446         case  3: dst[ 2] = scratch[ 2]; [[fallthrough]];
3447         case  2: dst[ 1] = scratch[ 1]; [[fallthrough]];
3448         case  1: dst[ 0] = scratch[ 0];
3449     }
3450 }
3451 
STAGE_TAIL(swizzle_1,SkRasterPipeline_SwizzleCtx * ctx)3452 STAGE_TAIL(swizzle_1, SkRasterPipeline_SwizzleCtx* ctx) {
3453     shuffle_fn<1>((F*)ctx->ptr, ctx->offsets, 1);
3454 }
STAGE_TAIL(swizzle_2,SkRasterPipeline_SwizzleCtx * ctx)3455 STAGE_TAIL(swizzle_2, SkRasterPipeline_SwizzleCtx* ctx) {
3456     shuffle_fn<2>((F*)ctx->ptr, ctx->offsets, 2);
3457 }
STAGE_TAIL(swizzle_3,SkRasterPipeline_SwizzleCtx * ctx)3458 STAGE_TAIL(swizzle_3, SkRasterPipeline_SwizzleCtx* ctx) {
3459     shuffle_fn<3>((F*)ctx->ptr, ctx->offsets, 3);
3460 }
STAGE_TAIL(swizzle_4,SkRasterPipeline_SwizzleCtx * ctx)3461 STAGE_TAIL(swizzle_4, SkRasterPipeline_SwizzleCtx* ctx) {
3462     shuffle_fn<4>((F*)ctx->ptr, ctx->offsets, 4);
3463 }
STAGE_TAIL(shuffle,SkRasterPipeline_ShuffleCtx * ctx)3464 STAGE_TAIL(shuffle, SkRasterPipeline_ShuffleCtx* ctx) {
3465     shuffle_fn<16>((F*)ctx->ptr, ctx->offsets, ctx->count);
3466 }
3467 
3468 template <int NumSlots>
swizzle_copy_masked_fn(F * dst,const F * src,uint16_t * offsets,I32 mask)3469 SI void swizzle_copy_masked_fn(F* dst, const F* src, uint16_t* offsets, I32 mask) {
3470     std::byte* dstB = (std::byte*)dst;
3471     for (int count = 0; count < NumSlots; ++count) {
3472         F* dstS = (F*)(dstB + *offsets);
3473         *dstS = if_then_else(mask, *src, *dstS);
3474         offsets += 1;
3475         src     += 1;
3476     }
3477 }
3478 
STAGE_TAIL(swizzle_copy_slot_masked,SkRasterPipeline_SwizzleCopyCtx * ctx)3479 STAGE_TAIL(swizzle_copy_slot_masked, SkRasterPipeline_SwizzleCopyCtx* ctx) {
3480     swizzle_copy_masked_fn<1>((F*)ctx->dst, (F*)ctx->src, ctx->offsets, execution_mask());
3481 }
STAGE_TAIL(swizzle_copy_2_slots_masked,SkRasterPipeline_SwizzleCopyCtx * ctx)3482 STAGE_TAIL(swizzle_copy_2_slots_masked, SkRasterPipeline_SwizzleCopyCtx* ctx) {
3483     swizzle_copy_masked_fn<2>((F*)ctx->dst, (F*)ctx->src, ctx->offsets, execution_mask());
3484 }
STAGE_TAIL(swizzle_copy_3_slots_masked,SkRasterPipeline_SwizzleCopyCtx * ctx)3485 STAGE_TAIL(swizzle_copy_3_slots_masked, SkRasterPipeline_SwizzleCopyCtx* ctx) {
3486     swizzle_copy_masked_fn<3>((F*)ctx->dst, (F*)ctx->src, ctx->offsets, execution_mask());
3487 }
STAGE_TAIL(swizzle_copy_4_slots_masked,SkRasterPipeline_SwizzleCopyCtx * ctx)3488 STAGE_TAIL(swizzle_copy_4_slots_masked, SkRasterPipeline_SwizzleCopyCtx* ctx) {
3489     swizzle_copy_masked_fn<4>((F*)ctx->dst, (F*)ctx->src, ctx->offsets, execution_mask());
3490 }
3491 
STAGE_TAIL(copy_from_indirect_masked,SkRasterPipeline_CopyIndirectCtx * ctx)3492 STAGE_TAIL(copy_from_indirect_masked, SkRasterPipeline_CopyIndirectCtx* ctx) {
3493     // Clamp the indirect offsets to stay within the limit.
3494     U32 offsets = *(U32*)ctx->indirectOffset;
3495     offsets = min(offsets, ctx->indirectLimit);
3496 
3497     // Scale up the offsets to account for the N lanes per value.
3498     offsets *= N;
3499 
3500     // Adjust the offsets forward so that they fetch from the correct lane.
3501     static constexpr uint32_t iota[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
3502     offsets += sk_unaligned_load<I32>(iota);
3503 
3504     // Use gather to perform indirect lookups; write the results into `dst`.
3505     const float* src = ctx->src;
3506     F*           dst = (F*)ctx->dst;
3507     F*           end = dst + ctx->slots;
3508     I32          mask = execution_mask();
3509     do {
3510         *dst = if_then_else(mask, gather(src, offsets), *dst);
3511         dst += 1;
3512         src += N;
3513     } while (dst != end);
3514 }
3515 
3516 // Unary operations take a single input, and overwrite it with their output.
3517 // Unlike binary or ternary operations, we provide variations of 1-4 slots, but don't provide
3518 // an arbitrary-width "n-slot" variation; the Builder can chain together longer sequences manually.
3519 template <typename T, void (*ApplyFn)(T*)>
apply_adjacent_unary(T * dst,T * end)3520 SI void apply_adjacent_unary(T* dst, T* end) {
3521     do {
3522         ApplyFn(dst);
3523         dst += 1;
3524     } while (dst != end);
3525 }
3526 
bitwise_not_fn(I32 * dst)3527 SI void bitwise_not_fn(I32* dst) {
3528     *dst = ~*dst;
3529 }
3530 
3531 #if defined(JUMPER_IS_SCALAR)
3532 template <typename T>
cast_to_float_from_fn(T * dst)3533 SI void cast_to_float_from_fn(T* dst) {
3534     *dst = sk_bit_cast<T>((F)*dst);
3535 }
cast_to_int_from_fn(F * dst)3536 SI void cast_to_int_from_fn(F* dst) {
3537     *dst = sk_bit_cast<F>((I32)*dst);
3538 }
cast_to_uint_from_fn(F * dst)3539 SI void cast_to_uint_from_fn(F* dst) {
3540     *dst = sk_bit_cast<F>((U32)*dst);
3541 }
3542 #else
3543 template <typename T>
cast_to_float_from_fn(T * dst)3544 SI void cast_to_float_from_fn(T* dst) {
3545     *dst = sk_bit_cast<T>(__builtin_convertvector(*dst, F));
3546 }
cast_to_int_from_fn(F * dst)3547 SI void cast_to_int_from_fn(F* dst) {
3548     *dst = sk_bit_cast<F>(__builtin_convertvector(*dst, I32));
3549 }
cast_to_uint_from_fn(F * dst)3550 SI void cast_to_uint_from_fn(F* dst) {
3551     *dst = sk_bit_cast<F>(__builtin_convertvector(*dst, U32));
3552 }
3553 #endif
3554 
3555 template <typename T>
abs_fn(T * dst)3556 SI void abs_fn(T* dst) {
3557     *dst = abs_(*dst);
3558 }
3559 
floor_fn(F * dst)3560 SI void floor_fn(F* dst) {
3561     *dst = floor_(*dst);
3562 }
3563 
ceil_fn(F * dst)3564 SI void ceil_fn(F* dst) {
3565     *dst = ceil_(*dst);
3566 }
3567 
3568 #define DECLARE_UNARY_FLOAT(name)                                                              \
3569     STAGE_TAIL(name##_float, F* dst) { apply_adjacent_unary<F, &name##_fn>(dst, dst + 1); }    \
3570     STAGE_TAIL(name##_2_floats, F* dst) { apply_adjacent_unary<F, &name##_fn>(dst, dst + 2); } \
3571     STAGE_TAIL(name##_3_floats, F* dst) { apply_adjacent_unary<F, &name##_fn>(dst, dst + 3); } \
3572     STAGE_TAIL(name##_4_floats, F* dst) { apply_adjacent_unary<F, &name##_fn>(dst, dst + 4); }
3573 
3574 #define DECLARE_UNARY_INT(name)                                                                  \
3575     STAGE_TAIL(name##_int, I32* dst) { apply_adjacent_unary<I32, &name##_fn>(dst, dst + 1); }    \
3576     STAGE_TAIL(name##_2_ints, I32* dst) { apply_adjacent_unary<I32, &name##_fn>(dst, dst + 2); } \
3577     STAGE_TAIL(name##_3_ints, I32* dst) { apply_adjacent_unary<I32, &name##_fn>(dst, dst + 3); } \
3578     STAGE_TAIL(name##_4_ints, I32* dst) { apply_adjacent_unary<I32, &name##_fn>(dst, dst + 4); }
3579 
3580 #define DECLARE_UNARY_UINT(name)                                                                  \
3581     STAGE_TAIL(name##_uint, U32* dst) { apply_adjacent_unary<U32, &name##_fn>(dst, dst + 1); }    \
3582     STAGE_TAIL(name##_2_uints, U32* dst) { apply_adjacent_unary<U32, &name##_fn>(dst, dst + 2); } \
3583     STAGE_TAIL(name##_3_uints, U32* dst) { apply_adjacent_unary<U32, &name##_fn>(dst, dst + 3); } \
3584     STAGE_TAIL(name##_4_uints, U32* dst) { apply_adjacent_unary<U32, &name##_fn>(dst, dst + 4); }
3585 
3586 DECLARE_UNARY_INT(bitwise_not)
DECLARE_UNARY_INT(cast_to_float_from)3587 DECLARE_UNARY_INT(cast_to_float_from) DECLARE_UNARY_UINT(cast_to_float_from)
3588 DECLARE_UNARY_FLOAT(cast_to_int_from)
3589 DECLARE_UNARY_FLOAT(cast_to_uint_from)
3590 DECLARE_UNARY_FLOAT(abs) DECLARE_UNARY_INT(abs)
3591 DECLARE_UNARY_FLOAT(floor)
3592 DECLARE_UNARY_FLOAT(ceil)
3593 
3594 #undef DECLARE_UNARY_FLOAT
3595 #undef DECLARE_UNARY_INT
3596 #undef DECLARE_UNARY_UINT
3597 
3598 // For complex unary ops, we only provide a 1-slot version to reduce code bloat.
3599 STAGE_TAIL(sin_float, F* dst)  { *dst = sin_(*dst); }
STAGE_TAIL(cos_float,F * dst)3600 STAGE_TAIL(cos_float, F* dst)  { *dst = cos_(*dst); }
STAGE_TAIL(tan_float,F * dst)3601 STAGE_TAIL(tan_float, F* dst)  { *dst = tan_(*dst); }
STAGE_TAIL(atan_float,F * dst)3602 STAGE_TAIL(atan_float, F* dst) { *dst = atan_(*dst); }
STAGE_TAIL(sqrt_float,F * dst)3603 STAGE_TAIL(sqrt_float, F* dst) { *dst = sqrt_(*dst); }
STAGE_TAIL(exp_float,F * dst)3604 STAGE_TAIL(exp_float, F* dst)  { *dst = approx_exp(*dst); }
3605 
3606 // Binary operations take two adjacent inputs, and write their output in the first position.
3607 template <typename T, void (*ApplyFn)(T*, T*)>
apply_adjacent_binary(T * dst,T * src)3608 SI void apply_adjacent_binary(T* dst, T* src) {
3609     T* end = src;
3610     do {
3611         ApplyFn(dst, src);
3612         dst += 1;
3613         src += 1;
3614     } while (dst != end);
3615 }
3616 
3617 template <typename T>
add_fn(T * dst,T * src)3618 SI void add_fn(T* dst, T* src) {
3619     *dst += *src;
3620 }
3621 
3622 template <typename T>
sub_fn(T * dst,T * src)3623 SI void sub_fn(T* dst, T* src) {
3624     *dst -= *src;
3625 }
3626 
3627 template <typename T>
mul_fn(T * dst,T * src)3628 SI void mul_fn(T* dst, T* src) {
3629     *dst *= *src;
3630 }
3631 
3632 template <typename T>
div_fn(T * dst,T * src)3633 SI void div_fn(T* dst, T* src) {
3634     *dst /= *src;
3635 }
3636 
bitwise_and_fn(I32 * dst,I32 * src)3637 SI void bitwise_and_fn(I32* dst, I32* src) {
3638     *dst &= *src;
3639 }
3640 
bitwise_or_fn(I32 * dst,I32 * src)3641 SI void bitwise_or_fn(I32* dst, I32* src) {
3642     *dst |= *src;
3643 }
3644 
bitwise_xor_fn(I32 * dst,I32 * src)3645 SI void bitwise_xor_fn(I32* dst, I32* src) {
3646     *dst ^= *src;
3647 }
3648 
3649 template <typename T>
max_fn(T * dst,T * src)3650 SI void max_fn(T* dst, T* src) {
3651     *dst = max(*dst, *src);
3652 }
3653 
3654 template <typename T>
min_fn(T * dst,T * src)3655 SI void min_fn(T* dst, T* src) {
3656     *dst = min(*dst, *src);
3657 }
3658 
3659 template <typename T>
cmplt_fn(T * dst,T * src)3660 SI void cmplt_fn(T* dst, T* src) {
3661     static_assert(sizeof(T) == sizeof(I32));
3662     I32 result = cond_to_mask(*dst < *src);
3663     memcpy(dst, &result, sizeof(I32));
3664 }
3665 
3666 template <typename T>
cmple_fn(T * dst,T * src)3667 SI void cmple_fn(T* dst, T* src) {
3668     static_assert(sizeof(T) == sizeof(I32));
3669     I32 result = cond_to_mask(*dst <= *src);
3670     memcpy(dst, &result, sizeof(I32));
3671 }
3672 
3673 template <typename T>
cmpeq_fn(T * dst,T * src)3674 SI void cmpeq_fn(T* dst, T* src) {
3675     static_assert(sizeof(T) == sizeof(I32));
3676     I32 result = cond_to_mask(*dst == *src);
3677     memcpy(dst, &result, sizeof(I32));
3678 }
3679 
3680 template <typename T>
cmpne_fn(T * dst,T * src)3681 SI void cmpne_fn(T* dst, T* src) {
3682     static_assert(sizeof(T) == sizeof(I32));
3683     I32 result = cond_to_mask(*dst != *src);
3684     memcpy(dst, &result, sizeof(I32));
3685 }
3686 
atan2_fn(F * dst,F * src)3687 SI void atan2_fn(F* dst, F* src) {
3688     *dst = atan2_(*dst, *src);
3689 }
3690 
pow_fn(F * dst,F * src)3691 SI void pow_fn(F* dst, F* src) {
3692     *dst = approx_powf(*dst, *src);
3693 }
3694 
3695 #define DECLARE_N_WAY_BINARY_FLOAT(name)                                  \
3696     STAGE_TAIL(name##_n_floats, SkRasterPipeline_BinaryOpCtx* ctx) {      \
3697         apply_adjacent_binary<F, &name##_fn>((F*)ctx->dst, (F*)ctx->src); \
3698     }
3699 
3700 #define DECLARE_BINARY_FLOAT(name)                                                              \
3701     STAGE_TAIL(name##_float, F* dst) { apply_adjacent_binary<F, &name##_fn>(dst, dst + 1); }    \
3702     STAGE_TAIL(name##_2_floats, F* dst) { apply_adjacent_binary<F, &name##_fn>(dst, dst + 2); } \
3703     STAGE_TAIL(name##_3_floats, F* dst) { apply_adjacent_binary<F, &name##_fn>(dst, dst + 3); } \
3704     STAGE_TAIL(name##_4_floats, F* dst) { apply_adjacent_binary<F, &name##_fn>(dst, dst + 4); } \
3705     DECLARE_N_WAY_BINARY_FLOAT(name)
3706 
3707 #define DECLARE_N_WAY_BINARY_INT(name)                                          \
3708     STAGE_TAIL(name##_n_ints, SkRasterPipeline_BinaryOpCtx* ctx) {              \
3709         apply_adjacent_binary<I32, &name##_fn>((I32*)ctx->dst, (I32*)ctx->src); \
3710     }
3711 
3712 #define DECLARE_BINARY_INT(name)                                                                  \
3713     STAGE_TAIL(name##_int, I32* dst) { apply_adjacent_binary<I32, &name##_fn>(dst, dst + 1); }    \
3714     STAGE_TAIL(name##_2_ints, I32* dst) { apply_adjacent_binary<I32, &name##_fn>(dst, dst + 2); } \
3715     STAGE_TAIL(name##_3_ints, I32* dst) { apply_adjacent_binary<I32, &name##_fn>(dst, dst + 3); } \
3716     STAGE_TAIL(name##_4_ints, I32* dst) { apply_adjacent_binary<I32, &name##_fn>(dst, dst + 4); } \
3717     DECLARE_N_WAY_BINARY_INT(name)
3718 
3719 #define DECLARE_N_WAY_BINARY_UINT(name)                                         \
3720     STAGE_TAIL(name##_n_uints, SkRasterPipeline_BinaryOpCtx* ctx) {             \
3721         apply_adjacent_binary<U32, &name##_fn>((U32*)ctx->dst, (U32*)ctx->src); \
3722     }
3723 
3724 #define DECLARE_BINARY_UINT(name)                                                                  \
3725     STAGE_TAIL(name##_uint, U32* dst) { apply_adjacent_binary<U32, &name##_fn>(dst, dst + 1); }    \
3726     STAGE_TAIL(name##_2_uints, U32* dst) { apply_adjacent_binary<U32, &name##_fn>(dst, dst + 2); } \
3727     STAGE_TAIL(name##_3_uints, U32* dst) { apply_adjacent_binary<U32, &name##_fn>(dst, dst + 3); } \
3728     STAGE_TAIL(name##_4_uints, U32* dst) { apply_adjacent_binary<U32, &name##_fn>(dst, dst + 4); } \
3729     DECLARE_N_WAY_BINARY_UINT(name)
3730 
3731 // Many ops reuse the int stages when performing uint arithmetic, since they're equivalent on a
3732 // two's-complement machine. (Even multiplication is equivalent in the lower 32 bits.)
DECLARE_BINARY_INT(add)3733 DECLARE_BINARY_FLOAT(add)    DECLARE_BINARY_INT(add)
3734 DECLARE_BINARY_FLOAT(sub)    DECLARE_BINARY_INT(sub)
3735 DECLARE_BINARY_FLOAT(mul)    DECLARE_BINARY_INT(mul)
3736 DECLARE_BINARY_FLOAT(div)    DECLARE_BINARY_INT(div)    DECLARE_BINARY_UINT(div)
3737                              DECLARE_BINARY_INT(bitwise_and)
3738                              DECLARE_BINARY_INT(bitwise_or)
3739                              DECLARE_BINARY_INT(bitwise_xor)
3740 DECLARE_BINARY_FLOAT(min)    DECLARE_BINARY_INT(min)    DECLARE_BINARY_UINT(min)
3741 DECLARE_BINARY_FLOAT(max)    DECLARE_BINARY_INT(max)    DECLARE_BINARY_UINT(max)
3742 DECLARE_BINARY_FLOAT(cmplt)  DECLARE_BINARY_INT(cmplt)  DECLARE_BINARY_UINT(cmplt)
3743 DECLARE_BINARY_FLOAT(cmple)  DECLARE_BINARY_INT(cmple)  DECLARE_BINARY_UINT(cmple)
3744 DECLARE_BINARY_FLOAT(cmpeq)  DECLARE_BINARY_INT(cmpeq)
3745 DECLARE_BINARY_FLOAT(cmpne)  DECLARE_BINARY_INT(cmpne)
3746 
3747 // Sufficiently complex ops only provide an N-way version, to avoid code bloat from the dedicated
3748 // 1-4 slot versions.
3749 DECLARE_N_WAY_BINARY_FLOAT(atan2)
3750 DECLARE_N_WAY_BINARY_FLOAT(pow)
3751 
3752 #undef DECLARE_BINARY_FLOAT
3753 #undef DECLARE_BINARY_INT
3754 #undef DECLARE_BINARY_UINT
3755 #undef DECLARE_N_WAY_BINARY_FLOAT
3756 #undef DECLARE_N_WAY_BINARY_INT
3757 #undef DECLARE_N_WAY_BINARY_UINT
3758 
3759 // Dots can be represented with multiply and add ops, but they are so foundational that it's worth
3760 // having dedicated ops.
3761 STAGE_TAIL(dot_2_floats, F* dst) {
3762     dst[0] = mad(dst[0],  dst[2],
3763                  dst[1] * dst[3]);
3764 }
3765 
STAGE_TAIL(dot_3_floats,F * dst)3766 STAGE_TAIL(dot_3_floats, F* dst) {
3767     dst[0] = mad(dst[0],  dst[3],
3768              mad(dst[1],  dst[4],
3769                  dst[2] * dst[5]));
3770 }
3771 
STAGE_TAIL(dot_4_floats,F * dst)3772 STAGE_TAIL(dot_4_floats, F* dst) {
3773     dst[0] = mad(dst[0],  dst[4],
3774              mad(dst[1],  dst[5],
3775              mad(dst[2],  dst[6],
3776                  dst[3] * dst[7])));
3777 }
3778 
3779 // Ternary operations work like binary ops (see immediately above) but take two source inputs.
3780 template <typename T, void (*ApplyFn)(T*, T*, T*)>
apply_adjacent_ternary(T * dst,T * src0,T * src1)3781 SI void apply_adjacent_ternary(T* dst, T* src0, T* src1) {
3782     T* end = src0;
3783     do {
3784         ApplyFn(dst, src0, src1);
3785         dst += 1;
3786         src0 += 1;
3787         src1 += 1;
3788     } while (dst != end);
3789 }
3790 
mix_fn(F * a,F * x,F * y)3791 SI void mix_fn(F* a, F* x, F* y) {
3792     // We reorder the arguments here to match lerp's GLSL-style order (interpolation point last).
3793     *a = lerp(*x, *y, *a);
3794 }
3795 
mix_fn(I32 * a,I32 * x,I32 * y)3796 SI void mix_fn(I32* a, I32* x, I32* y) {
3797     // We reorder the arguments here to match if_then_else's expected order (y before x).
3798     *a = if_then_else(*a, *y, *x);
3799 }
3800 
3801 #define DECLARE_TERNARY_FLOAT(name)                                                           \
3802     STAGE_TAIL(name##_float, F* p) { apply_adjacent_ternary<F, &name##_fn>(p, p+1, p+2); }    \
3803     STAGE_TAIL(name##_2_floats, F* p) { apply_adjacent_ternary<F, &name##_fn>(p, p+2, p+4); } \
3804     STAGE_TAIL(name##_3_floats, F* p) { apply_adjacent_ternary<F, &name##_fn>(p, p+3, p+6); } \
3805     STAGE_TAIL(name##_4_floats, F* p) { apply_adjacent_ternary<F, &name##_fn>(p, p+4, p+8); } \
3806     STAGE_TAIL(name##_n_floats, SkRasterPipeline_TernaryOpCtx* ctx) {                         \
3807         apply_adjacent_ternary<F, &name##_fn>((F*)ctx->dst, (F*)ctx->src0, (F*)ctx->src1);    \
3808     }
3809 
3810 #define DECLARE_TERNARY_INT(name)                                                                  \
3811     STAGE_TAIL(name##_int, I32* p) { apply_adjacent_ternary<I32, &name##_fn>(p, p+1, p+2); }       \
3812     STAGE_TAIL(name##_2_ints, I32* p) { apply_adjacent_ternary<I32, &name##_fn>(p, p+2, p+4); }    \
3813     STAGE_TAIL(name##_3_ints, I32* p) { apply_adjacent_ternary<I32, &name##_fn>(p, p+3, p+6); }    \
3814     STAGE_TAIL(name##_4_ints, I32* p) { apply_adjacent_ternary<I32, &name##_fn>(p, p+4, p+8); }    \
3815     STAGE_TAIL(name##_n_ints, SkRasterPipeline_TernaryOpCtx* ctx) {                                \
3816         apply_adjacent_ternary<I32, &name##_fn>((I32*)ctx->dst, (I32*)ctx->src0, (I32*)ctx->src1); \
3817     }
3818 
3819 DECLARE_TERNARY_FLOAT(mix)
DECLARE_TERNARY_INT(mix)3820 DECLARE_TERNARY_INT(mix)
3821 
3822 #undef DECLARE_TERNARY_FLOAT
3823 #undef DECLARE_TERNARY_INT
3824 
3825 STAGE(gauss_a_to_rgba, NoCtx) {
3826     // x = 1 - x;
3827     // exp(-x * x * 4) - 0.018f;
3828     // ... now approximate with quartic
3829     //
3830     const float c4 = -2.26661229133605957031f;
3831     const float c3 = 2.89795351028442382812f;
3832     const float c2 = 0.21345567703247070312f;
3833     const float c1 = 0.15489584207534790039f;
3834     const float c0 = 0.00030726194381713867f;
3835     a = mad(a, mad(a, mad(a, mad(a, c4, c3), c2), c1), c0);
3836     r = a;
3837     g = a;
3838     b = a;
3839 }
3840 
3841 // A specialized fused image shader for clamp-x, clamp-y, non-sRGB sampling.
STAGE(bilerp_clamp_8888,const SkRasterPipeline_GatherCtx * ctx)3842 STAGE(bilerp_clamp_8888, const SkRasterPipeline_GatherCtx* ctx) {
3843     // (cx,cy) are the center of our sample.
3844     F cx = r,
3845       cy = g;
3846 
3847     // All sample points are at the same fractional offset (fx,fy).
3848     // They're the 4 corners of a logical 1x1 pixel surrounding (x,y) at (0.5,0.5) offsets.
3849     F fx = fract(cx + 0.5f),
3850       fy = fract(cy + 0.5f);
3851 
3852     // We'll accumulate the color of all four samples into {r,g,b,a} directly.
3853     r = g = b = a = 0;
3854 
3855     for (float py = -0.5f; py <= +0.5f; py += 1.0f)
3856     for (float px = -0.5f; px <= +0.5f; px += 1.0f) {
3857         // (x,y) are the coordinates of this sample point.
3858         F x = cx + px,
3859           y = cy + py;
3860 
3861         // ix_and_ptr() will clamp to the image's bounds for us.
3862         const uint32_t* ptr;
3863         U32 ix = ix_and_ptr(&ptr, ctx, x,y);
3864 
3865         F sr,sg,sb,sa;
3866         from_8888(gather(ptr, ix), &sr,&sg,&sb,&sa);
3867 
3868         // In bilinear interpolation, the 4 pixels at +/- 0.5 offsets from the sample pixel center
3869         // are combined in direct proportion to their area overlapping that logical query pixel.
3870         // At positive offsets, the x-axis contribution to that rectangle is fx,
3871         // or (1-fx) at negative x.  Same deal for y.
3872         F sx = (px > 0) ? fx : 1.0f - fx,
3873           sy = (py > 0) ? fy : 1.0f - fy,
3874           area = sx * sy;
3875 
3876         r += sr * area;
3877         g += sg * area;
3878         b += sb * area;
3879         a += sa * area;
3880     }
3881 }
3882 
3883 // A specialized fused image shader for clamp-x, clamp-y, non-sRGB sampling.
STAGE(bicubic_clamp_8888,const SkRasterPipeline_GatherCtx * ctx)3884 STAGE(bicubic_clamp_8888, const SkRasterPipeline_GatherCtx* ctx) {
3885     // (cx,cy) are the center of our sample.
3886     F cx = r,
3887       cy = g;
3888 
3889     // All sample points are at the same fractional offset (fx,fy).
3890     // They're the 4 corners of a logical 1x1 pixel surrounding (x,y) at (0.5,0.5) offsets.
3891     F fx = fract(cx + 0.5f),
3892       fy = fract(cy + 0.5f);
3893 
3894     // We'll accumulate the color of all four samples into {r,g,b,a} directly.
3895     r = g = b = a = 0;
3896 
3897     const float* w = ctx->weights;
3898     const F scaley[4] = {bicubic_wts(fy, w[0], w[4], w[ 8], w[12]),
3899                          bicubic_wts(fy, w[1], w[5], w[ 9], w[13]),
3900                          bicubic_wts(fy, w[2], w[6], w[10], w[14]),
3901                          bicubic_wts(fy, w[3], w[7], w[11], w[15])};
3902     const F scalex[4] = {bicubic_wts(fx, w[0], w[4], w[ 8], w[12]),
3903                          bicubic_wts(fx, w[1], w[5], w[ 9], w[13]),
3904                          bicubic_wts(fx, w[2], w[6], w[10], w[14]),
3905                          bicubic_wts(fx, w[3], w[7], w[11], w[15])};
3906 
3907     F sample_y = cy - 1.5f;
3908     for (int yy = 0; yy <= 3; ++yy) {
3909         F sample_x = cx - 1.5f;
3910         for (int xx = 0; xx <= 3; ++xx) {
3911             F scale = scalex[xx] * scaley[yy];
3912 
3913             // ix_and_ptr() will clamp to the image's bounds for us.
3914             const uint32_t* ptr;
3915             U32 ix = ix_and_ptr(&ptr, ctx, sample_x, sample_y);
3916 
3917             F sr,sg,sb,sa;
3918             from_8888(gather(ptr, ix), &sr,&sg,&sb,&sa);
3919 
3920             r = mad(scale, sr, r);
3921             g = mad(scale, sg, g);
3922             b = mad(scale, sb, b);
3923             a = mad(scale, sa, a);
3924 
3925             sample_x += 1;
3926         }
3927         sample_y += 1;
3928     }
3929 }
3930 
3931 // ~~~~~~ skgpu::Swizzle stage ~~~~~~ //
3932 
STAGE(swizzle,void * ctx)3933 STAGE(swizzle, void* ctx) {
3934     auto ir = r, ig = g, ib = b, ia = a;
3935     F* o[] = {&r, &g, &b, &a};
3936     char swiz[4];
3937     memcpy(swiz, &ctx, sizeof(swiz));
3938 
3939     for (int i = 0; i < 4; ++i) {
3940         switch (swiz[i]) {
3941             case 'r': *o[i] = ir;   break;
3942             case 'g': *o[i] = ig;   break;
3943             case 'b': *o[i] = ib;   break;
3944             case 'a': *o[i] = ia;   break;
3945             case '0': *o[i] = F(0); break;
3946             case '1': *o[i] = F(1); break;
3947             default:                break;
3948         }
3949     }
3950 }
3951 
3952 namespace lowp {
3953 #if defined(JUMPER_IS_SCALAR) || defined(SK_DISABLE_LOWP_RASTER_PIPELINE)
3954     // If we're not compiled by Clang, or otherwise switched into scalar mode (old Clang, manually),
3955     // we don't generate lowp stages.  All these nullptrs will tell SkJumper.cpp to always use the
3956     // highp float pipeline.
3957     #define M(st) static void (*st)(void) = nullptr;
3958         SK_RASTER_PIPELINE_OPS_LOWP(M)
3959     #undef M
3960     static void (*just_return)(void) = nullptr;
3961 
start_pipeline(size_t,size_t,size_t,size_t,SkRasterPipelineStage *)3962     static void start_pipeline(size_t,size_t,size_t,size_t, SkRasterPipelineStage*) {}
3963 
3964 #else  // We are compiling vector code with Clang... let's make some lowp stages!
3965 
3966 #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
3967     using U8  = uint8_t  __attribute__((ext_vector_type(16)));
3968     using U16 = uint16_t __attribute__((ext_vector_type(16)));
3969     using I16 =  int16_t __attribute__((ext_vector_type(16)));
3970     using I32 =  int32_t __attribute__((ext_vector_type(16)));
3971     using U32 = uint32_t __attribute__((ext_vector_type(16)));
3972     using I64 =  int64_t __attribute__((ext_vector_type(16)));
3973     using U64 = uint64_t __attribute__((ext_vector_type(16)));
3974     using F   = float    __attribute__((ext_vector_type(16)));
3975 #else
3976     using U8  = uint8_t  __attribute__((ext_vector_type(8)));
3977     using U16 = uint16_t __attribute__((ext_vector_type(8)));
3978     using I16 =  int16_t __attribute__((ext_vector_type(8)));
3979     using I32 =  int32_t __attribute__((ext_vector_type(8)));
3980     using U32 = uint32_t __attribute__((ext_vector_type(8)));
3981     using I64 =  int64_t __attribute__((ext_vector_type(8)));
3982     using U64 = uint64_t __attribute__((ext_vector_type(8)));
3983     using F   = float    __attribute__((ext_vector_type(8)));
3984 #endif
3985 
3986 static constexpr size_t N = sizeof(U16) / sizeof(uint16_t);
3987 
3988 // Once again, some platforms benefit from a restricted Stage calling convention,
3989 // but others can pass tons and tons of registers and we're happy to exploit that.
3990 // It's exactly the same decision and implementation strategy as the F stages above.
3991 #if JUMPER_NARROW_STAGES
3992     struct Params {
3993         size_t dx, dy, tail;
3994         U16 dr,dg,db,da;
3995     };
3996     using Stage = void (ABI*)(Params*, SkRasterPipelineStage* program, U16 r, U16 g, U16 b, U16 a);
3997 #else
3998     using Stage = void (ABI*)(size_t tail, SkRasterPipelineStage* program,
3999                               size_t dx, size_t dy,
4000                               U16  r, U16  g, U16  b, U16  a,
4001                               U16 dr, U16 dg, U16 db, U16 da);
4002 #endif
4003 
4004 static void start_pipeline(const size_t x0,     const size_t y0,
4005                            const size_t xlimit, const size_t ylimit,
4006                            SkRasterPipelineStage* program) {
4007     auto start = (Stage)program->fn;
4008     for (size_t dy = y0; dy < ylimit; dy++) {
4009     #if JUMPER_NARROW_STAGES
4010         Params params = { x0,dy,0, 0,0,0,0 };
4011         for (; params.dx + N <= xlimit; params.dx += N) {
4012             start(&params, program, 0,0,0,0);
4013         }
4014         if (size_t tail = xlimit - params.dx) {
4015             params.tail = tail;
4016             start(&params, program, 0,0,0,0);
4017         }
4018     #else
4019         size_t dx = x0;
4020         for (; dx + N <= xlimit; dx += N) {
4021             start(   0, program, dx,dy, 0,0,0,0, 0,0,0,0);
4022         }
4023         if (size_t tail = xlimit - dx) {
4024             start(tail, program, dx,dy, 0,0,0,0, 0,0,0,0);
4025         }
4026     #endif
4027     }
4028 }
4029 
4030 #if JUMPER_NARROW_STAGES
4031     static void ABI just_return(Params*, SkRasterPipelineStage*, U16,U16,U16,U16) {}
4032 #else
4033     static void ABI just_return(size_t, SkRasterPipelineStage*,size_t,size_t,
4034                                 U16,U16,U16,U16, U16,U16,U16,U16) {}
4035 #endif
4036 
4037 // All stages use the same function call ABI to chain into each other, but there are three types:
4038 //   GG: geometry in, geometry out  -- think, a matrix
4039 //   GP: geometry in, pixels out.   -- think, a memory gather
4040 //   PP: pixels in, pixels out.     -- think, a blend mode
4041 //
4042 // (Some stages ignore their inputs or produce no logical output.  That's perfectly fine.)
4043 //
4044 // These three STAGE_ macros let you define each type of stage,
4045 // and will have (x,y) geometry and/or (r,g,b,a, dr,dg,db,da) pixel arguments as appropriate.
4046 
4047 #if JUMPER_NARROW_STAGES
4048     #define STAGE_GG(name, ARG)                                                                \
4049         SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F& x, F& y);                  \
4050         static void ABI name(Params* params, SkRasterPipelineStage* program,                   \
4051                              U16 r, U16 g, U16 b, U16 a) {                                     \
4052             auto x = join<F>(r,g),                                                             \
4053                  y = join<F>(b,a);                                                             \
4054             name##_k(Ctx{program}, params->dx,params->dy,params->tail, x,y);                   \
4055             split(x, &r,&g);                                                                   \
4056             split(y, &b,&a);                                                                   \
4057             auto fn = (Stage)(++program)->fn;                                                  \
4058             fn(params, program, r,g,b,a);                                                      \
4059         }                                                                                      \
4060         SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F& x, F& y)
4061 
4062     #define STAGE_GP(name, ARG)                                                            \
4063         SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F x, F y,                 \
4064                          U16&  r, U16&  g, U16&  b, U16&  a,                               \
4065                          U16& dr, U16& dg, U16& db, U16& da);                              \
4066         static void ABI name(Params* params, SkRasterPipelineStage* program,               \
4067                              U16 r, U16 g, U16 b, U16 a) {                                 \
4068             auto x = join<F>(r,g),                                                         \
4069                  y = join<F>(b,a);                                                         \
4070             name##_k(Ctx{program}, params->dx,params->dy,params->tail, x,y, r,g,b,a,       \
4071                      params->dr,params->dg,params->db,params->da);                         \
4072             auto fn = (Stage)(++program)->fn;                                              \
4073             fn(params, program, r,g,b,a);                                                  \
4074         }                                                                                  \
4075         SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F x, F y,                 \
4076                          U16&  r, U16&  g, U16&  b, U16&  a,                               \
4077                          U16& dr, U16& dg, U16& db, U16& da)
4078 
4079     #define STAGE_PP(name, ARG)                                                            \
4080         SI void name##_k(ARG, size_t dx, size_t dy, size_t tail,                           \
4081                          U16&  r, U16&  g, U16&  b, U16&  a,                               \
4082                          U16& dr, U16& dg, U16& db, U16& da);                              \
4083         static void ABI name(Params* params, SkRasterPipelineStage* program,               \
4084                              U16 r, U16 g, U16 b, U16 a) {                                 \
4085             name##_k(Ctx{program}, params->dx,params->dy,params->tail, r,g,b,a,            \
4086                      params->dr,params->dg,params->db,params->da);                         \
4087             auto fn = (Stage)(++program)->fn;                                              \
4088             fn(params, program, r,g,b,a);                                                  \
4089         }                                                                                  \
4090         SI void name##_k(ARG, size_t dx, size_t dy, size_t tail,                           \
4091                          U16&  r, U16&  g, U16&  b, U16&  a,                               \
4092                          U16& dr, U16& dg, U16& db, U16& da)
4093 #else
4094     #define STAGE_GG(name, ARG)                                                            \
4095         SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F& x, F& y);              \
4096         static void ABI name(size_t tail, SkRasterPipelineStage* program,                  \
4097                              size_t dx, size_t dy,                                         \
4098                              U16  r, U16  g, U16  b, U16  a,                               \
4099                              U16 dr, U16 dg, U16 db, U16 da) {                             \
4100             auto x = join<F>(r,g),                                                         \
4101                  y = join<F>(b,a);                                                         \
4102             name##_k(Ctx{program}, dx,dy,tail, x,y);                                       \
4103             split(x, &r,&g);                                                               \
4104             split(y, &b,&a);                                                               \
4105             auto fn = (Stage)(++program)->fn;                                              \
4106             fn(tail, program, dx,dy, r,g,b,a, dr,dg,db,da);                                \
4107         }                                                                                  \
4108         SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F& x, F& y)
4109 
4110     #define STAGE_GP(name, ARG)                                                            \
4111         SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F x, F y,                 \
4112                          U16&  r, U16&  g, U16&  b, U16&  a,                               \
4113                          U16& dr, U16& dg, U16& db, U16& da);                              \
4114         static void ABI name(size_t tail, SkRasterPipelineStage* program,                  \
4115                              size_t dx, size_t dy,                                         \
4116                              U16  r, U16  g, U16  b, U16  a,                               \
4117                              U16 dr, U16 dg, U16 db, U16 da) {                             \
4118             auto x = join<F>(r,g),                                                         \
4119                  y = join<F>(b,a);                                                         \
4120             name##_k(Ctx{program}, dx,dy,tail, x,y, r,g,b,a, dr,dg,db,da);                 \
4121             auto fn = (Stage)(++program)->fn;                                              \
4122             fn(tail, program, dx,dy, r,g,b,a, dr,dg,db,da);                                \
4123         }                                                                                  \
4124         SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F x, F y,                 \
4125                          U16&  r, U16&  g, U16&  b, U16&  a,                               \
4126                          U16& dr, U16& dg, U16& db, U16& da)
4127 
4128     #define STAGE_PP(name, ARG)                                                            \
4129         SI void name##_k(ARG, size_t dx, size_t dy, size_t tail,                           \
4130                          U16&  r, U16&  g, U16&  b, U16&  a,                               \
4131                          U16& dr, U16& dg, U16& db, U16& da);                              \
4132         static void ABI name(size_t tail, SkRasterPipelineStage* program,                  \
4133                              size_t dx, size_t dy,                                         \
4134                              U16  r, U16  g, U16  b, U16  a,                               \
4135                              U16 dr, U16 dg, U16 db, U16 da) {                             \
4136             name##_k(Ctx{program}, dx,dy,tail, r,g,b,a, dr,dg,db,da);                      \
4137             auto fn = (Stage)(++program)->fn;                                              \
4138             fn(tail, program, dx,dy, r,g,b,a, dr,dg,db,da);                                \
4139         }                                                                                  \
4140         SI void name##_k(ARG, size_t dx, size_t dy, size_t tail,                           \
4141                          U16&  r, U16&  g, U16&  b, U16&  a,                               \
4142                          U16& dr, U16& dg, U16& db, U16& da)
4143 #endif
4144 
4145 // ~~~~~~ Commonly used helper functions ~~~~~~ //
4146 
4147 /**
4148  * Helpers to to properly rounded division (by 255). The ideal answer we want to compute is slow,
4149  * thanks to a division by a non-power of two:
4150  *   [1]  (v + 127) / 255
4151  *
4152  * There is a two-step process that computes the correct answer for all inputs:
4153  *   [2]  (v + 128 + ((v + 128) >> 8)) >> 8
4154  *
4155  * There is also a single iteration approximation, but it's wrong (+-1) ~25% of the time:
4156  *   [3]  (v + 255) >> 8;
4157  *
4158  * We offer two different implementations here, depending on the requirements of the calling stage.
4159  */
4160 
4161 /**
4162  * div255 favors speed over accuracy. It uses formula [2] on NEON (where we can compute it as fast
4163  * as [3]), and uses [3] elsewhere.
4164  */
4165 SI U16 div255(U16 v) {
4166 #if defined(JUMPER_IS_NEON)
4167     // With NEON we can compute [2] just as fast as [3], so let's be correct.
4168     // First we compute v + ((v+128)>>8), then one more round of (...+128)>>8 to finish up:
4169     return vrshrq_n_u16(vrsraq_n_u16(v, v, 8), 8);
4170 #else
4171     // Otherwise, use [3], which is never wrong by more than 1:
4172     return (v+255)/256;
4173 #endif
4174 }
4175 
4176 /**
4177  * div255_accurate guarantees the right answer on all platforms, at the expense of performance.
4178  */
4179 SI U16 div255_accurate(U16 v) {
4180 #if defined(JUMPER_IS_NEON)
4181     // Our NEON implementation of div255 is already correct for all inputs:
4182     return div255(v);
4183 #else
4184     // This is [2] (the same formulation as NEON), but written without the benefit of intrinsics:
4185     v += 128;
4186     return (v+(v/256))/256;
4187 #endif
4188 }
4189 
4190 SI U16 inv(U16 v) { return 255-v; }
4191 
4192 SI U16 if_then_else(I16 c, U16 t, U16 e) { return (t & c) | (e & ~c); }
4193 SI U32 if_then_else(I32 c, U32 t, U32 e) { return (t & c) | (e & ~c); }
4194 
4195 SI U16 max(U16 x, U16 y) { return if_then_else(x < y, y, x); }
4196 SI U16 min(U16 x, U16 y) { return if_then_else(x < y, x, y); }
4197 
4198 SI U16 from_float(float f) { return f * 255.0f + 0.5f; }
4199 
4200 SI U16 lerp(U16 from, U16 to, U16 t) { return div255( from*inv(t) + to*t ); }
4201 
4202 template <typename D, typename S>
4203 SI D cast(S src) {
4204     return __builtin_convertvector(src, D);
4205 }
4206 
4207 template <typename D, typename S>
4208 SI void split(S v, D* lo, D* hi) {
4209     static_assert(2*sizeof(D) == sizeof(S), "");
4210     memcpy(lo, (const char*)&v + 0*sizeof(D), sizeof(D));
4211     memcpy(hi, (const char*)&v + 1*sizeof(D), sizeof(D));
4212 }
4213 template <typename D, typename S>
4214 SI D join(S lo, S hi) {
4215     static_assert(sizeof(D) == 2*sizeof(S), "");
4216     D v;
4217     memcpy((char*)&v + 0*sizeof(S), &lo, sizeof(S));
4218     memcpy((char*)&v + 1*sizeof(S), &hi, sizeof(S));
4219     return v;
4220 }
4221 
4222 SI F if_then_else(I32 c, F t, F e) {
4223     return sk_bit_cast<F>( (sk_bit_cast<I32>(t) & c) | (sk_bit_cast<I32>(e) & ~c) );
4224 }
4225 SI F max(F x, F y) { return if_then_else(x < y, y, x); }
4226 SI F min(F x, F y) { return if_then_else(x < y, x, y); }
4227 
4228 SI I32 if_then_else(I32 c, I32 t, I32 e) {
4229     return (t & c) | (e & ~c);
4230 }
4231 SI I32 max(I32 x, I32 y) { return if_then_else(x < y, y, x); }
4232 SI I32 min(I32 x, I32 y) { return if_then_else(x < y, x, y); }
4233 
4234 SI F mad(F f, F m, F a) { return f*m+a; }
4235 SI U32 trunc_(F x) { return (U32)cast<I32>(x); }
4236 
4237 // Use approximate instructions and one Newton-Raphson step to calculate 1/x.
4238 SI F rcp_precise(F x) {
4239 #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
4240     __m256 lo,hi;
4241     split(x, &lo,&hi);
4242     return join<F>(SK_OPTS_NS::rcp_precise(lo), SK_OPTS_NS::rcp_precise(hi));
4243 #elif defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
4244     __m128 lo,hi;
4245     split(x, &lo,&hi);
4246     return join<F>(SK_OPTS_NS::rcp_precise(lo), SK_OPTS_NS::rcp_precise(hi));
4247 #elif defined(JUMPER_IS_NEON)
4248     float32x4_t lo,hi;
4249     split(x, &lo,&hi);
4250     return join<F>(SK_OPTS_NS::rcp_precise(lo), SK_OPTS_NS::rcp_precise(hi));
4251 #else
4252     return 1.0f / x;
4253 #endif
4254 }
4255 SI F sqrt_(F x) {
4256 #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
4257     __m256 lo,hi;
4258     split(x, &lo,&hi);
4259     return join<F>(_mm256_sqrt_ps(lo), _mm256_sqrt_ps(hi));
4260 #elif defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
4261     __m128 lo,hi;
4262     split(x, &lo,&hi);
4263     return join<F>(_mm_sqrt_ps(lo), _mm_sqrt_ps(hi));
4264 #elif defined(SK_CPU_ARM64)
4265     float32x4_t lo,hi;
4266     split(x, &lo,&hi);
4267     return join<F>(vsqrtq_f32(lo), vsqrtq_f32(hi));
4268 #elif defined(JUMPER_IS_NEON)
4269     auto sqrt = [](float32x4_t v) {
4270         auto est = vrsqrteq_f32(v);  // Estimate and two refinement steps for est = rsqrt(v).
4271         est *= vrsqrtsq_f32(v,est*est);
4272         est *= vrsqrtsq_f32(v,est*est);
4273         return v*est;                // sqrt(v) == v*rsqrt(v).
4274     };
4275     float32x4_t lo,hi;
4276     split(x, &lo,&hi);
4277     return join<F>(sqrt(lo), sqrt(hi));
4278 #else
4279     return F{
4280         sqrtf(x[0]), sqrtf(x[1]), sqrtf(x[2]), sqrtf(x[3]),
4281         sqrtf(x[4]), sqrtf(x[5]), sqrtf(x[6]), sqrtf(x[7]),
4282     };
4283 #endif
4284 }
4285 
4286 SI F floor_(F x) {
4287 #if defined(SK_CPU_ARM64)
4288     float32x4_t lo,hi;
4289     split(x, &lo,&hi);
4290     return join<F>(vrndmq_f32(lo), vrndmq_f32(hi));
4291 #elif defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
4292     __m256 lo,hi;
4293     split(x, &lo,&hi);
4294     return join<F>(_mm256_floor_ps(lo), _mm256_floor_ps(hi));
4295 #elif defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
4296     __m128 lo,hi;
4297     split(x, &lo,&hi);
4298     return join<F>(_mm_floor_ps(lo), _mm_floor_ps(hi));
4299 #else
4300     F roundtrip = cast<F>(cast<I32>(x));
4301     return roundtrip - if_then_else(roundtrip > x, F(1), F(0));
4302 #endif
4303 }
4304 
4305 // scaled_mult interprets a and b as number on [-1, 1) which are numbers in Q15 format. Functionally
4306 // this multiply is:
4307 //     (2 * a * b + (1 << 15)) >> 16
4308 // The result is a number on [-1, 1).
4309 // Note: on neon this is a saturating multiply while the others are not.
4310 SI I16 scaled_mult(I16 a, I16 b) {
4311 #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
4312     return _mm256_mulhrs_epi16(a, b);
4313 #elif defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
4314     return _mm_mulhrs_epi16(a, b);
4315 #elif defined(SK_CPU_ARM64)
4316     return vqrdmulhq_s16(a, b);
4317 #elif defined(JUMPER_IS_NEON)
4318     return vqrdmulhq_s16(a, b);
4319 #else
4320     const I32 roundingTerm = 1 << 14;
4321     return cast<I16>((cast<I32>(a) * cast<I32>(b) + roundingTerm) >> 15);
4322 #endif
4323 }
4324 
4325 // This sum is to support lerp where the result will always be a positive number. In general,
4326 // a sum like this would require an additional bit, but because we know the range of the result
4327 // we know that the extra bit will always be zero.
4328 SI U16 constrained_add(I16 a, U16 b) {
4329     #if defined(SK_DEBUG)
4330         for (size_t i = 0; i < N; i++) {
4331             // Ensure that a + b is on the interval [0, UINT16_MAX]
4332             int ia = a[i],
4333                 ib = b[i];
4334             // Use 65535 here because fuchsia's compiler evaluates UINT16_MAX - ib, which is
4335             // 65536U - ib, as an uint32_t instead of an int32_t. This was forcing ia to be
4336             // interpreted as an uint32_t.
4337             SkASSERT(-ib <= ia && ia <= 65535 - ib);
4338         }
4339     #endif
4340     return b + a;
4341 }
4342 
4343 SI F fract(F x) { return x - floor_(x); }
4344 SI F abs_(F x) { return sk_bit_cast<F>( sk_bit_cast<I32>(x) & 0x7fffffff ); }
4345 
4346 // ~~~~~~ Basic / misc. stages ~~~~~~ //
4347 
4348 STAGE_GG(seed_shader, NoCtx) {
4349     static constexpr float iota[] = {
4350         0.5f, 1.5f, 2.5f, 3.5f, 4.5f, 5.5f, 6.5f, 7.5f,
4351         8.5f, 9.5f,10.5f,11.5f,12.5f,13.5f,14.5f,15.5f,
4352     };
4353     x = cast<F>(I32(dx)) + sk_unaligned_load<F>(iota);
4354     y = cast<F>(I32(dy)) + 0.5f;
4355 }
4356 
4357 STAGE_GG(matrix_translate, const float* m) {
4358     x += m[0];
4359     y += m[1];
4360 }
4361 STAGE_GG(matrix_scale_translate, const float* m) {
4362     x = mad(x,m[0], m[2]);
4363     y = mad(y,m[1], m[3]);
4364 }
4365 STAGE_GG(matrix_2x3, const float* m) {
4366     auto X = mad(x,m[0], mad(y,m[1], m[2])),
4367          Y = mad(x,m[3], mad(y,m[4], m[5]));
4368     x = X;
4369     y = Y;
4370 }
4371 STAGE_GG(matrix_perspective, const float* m) {
4372     // N.B. Unlike the other matrix_ stages, this matrix is row-major.
4373     auto X = mad(x,m[0], mad(y,m[1], m[2])),
4374          Y = mad(x,m[3], mad(y,m[4], m[5])),
4375          Z = mad(x,m[6], mad(y,m[7], m[8]));
4376     x = X * rcp_precise(Z);
4377     y = Y * rcp_precise(Z);
4378 }
4379 
4380 STAGE_PP(uniform_color, const SkRasterPipeline_UniformColorCtx* c) {
4381     r = c->rgba[0];
4382     g = c->rgba[1];
4383     b = c->rgba[2];
4384     a = c->rgba[3];
4385 }
4386 STAGE_PP(uniform_color_dst, const SkRasterPipeline_UniformColorCtx* c) {
4387     dr = c->rgba[0];
4388     dg = c->rgba[1];
4389     db = c->rgba[2];
4390     da = c->rgba[3];
4391 }
4392 STAGE_PP(black_color, NoCtx) { r = g = b =   0; a = 255; }
4393 STAGE_PP(white_color, NoCtx) { r = g = b = 255; a = 255; }
4394 
4395 STAGE_PP(set_rgb, const float rgb[3]) {
4396     r = from_float(rgb[0]);
4397     g = from_float(rgb[1]);
4398     b = from_float(rgb[2]);
4399 }
4400 
4401 // No need to clamp against 0 here (values are unsigned)
4402 STAGE_PP(clamp_01, NoCtx) {
4403     r = min(r, 255);
4404     g = min(g, 255);
4405     b = min(b, 255);
4406     a = min(a, 255);
4407 }
4408 
4409 STAGE_PP(clamp_gamut, NoCtx) {
4410     a = min(a, 255);
4411     r = min(r, a);
4412     g = min(g, a);
4413     b = min(b, a);
4414 }
4415 
4416 STAGE_PP(premul, NoCtx) {
4417     r = div255_accurate(r * a);
4418     g = div255_accurate(g * a);
4419     b = div255_accurate(b * a);
4420 }
4421 STAGE_PP(premul_dst, NoCtx) {
4422     dr = div255_accurate(dr * da);
4423     dg = div255_accurate(dg * da);
4424     db = div255_accurate(db * da);
4425 }
4426 
4427 STAGE_PP(force_opaque    , NoCtx) {  a = 255; }
4428 STAGE_PP(force_opaque_dst, NoCtx) { da = 255; }
4429 
4430 STAGE_PP(swap_rb, NoCtx) {
4431     auto tmp = r;
4432     r = b;
4433     b = tmp;
4434 }
4435 STAGE_PP(swap_rb_dst, NoCtx) {
4436     auto tmp = dr;
4437     dr = db;
4438     db = tmp;
4439 }
4440 
4441 STAGE_PP(move_src_dst, NoCtx) {
4442     dr = r;
4443     dg = g;
4444     db = b;
4445     da = a;
4446 }
4447 
4448 STAGE_PP(move_dst_src, NoCtx) {
4449     r = dr;
4450     g = dg;
4451     b = db;
4452     a = da;
4453 }
4454 
4455 STAGE_PP(swap_src_dst, NoCtx) {
4456     std::swap(r, dr);
4457     std::swap(g, dg);
4458     std::swap(b, db);
4459     std::swap(a, da);
4460 }
4461 
4462 // ~~~~~~ Blend modes ~~~~~~ //
4463 
4464 // The same logic applied to all 4 channels.
4465 #define BLEND_MODE(name)                                 \
4466     SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da); \
4467     STAGE_PP(name, NoCtx) {                          \
4468         r = name##_channel(r,dr,a,da);                   \
4469         g = name##_channel(g,dg,a,da);                   \
4470         b = name##_channel(b,db,a,da);                   \
4471         a = name##_channel(a,da,a,da);                   \
4472     }                                                    \
4473     SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da)
4474 
4475     BLEND_MODE(clear)    { return 0; }
4476     BLEND_MODE(srcatop)  { return div255( s*da + d*inv(sa) ); }
4477     BLEND_MODE(dstatop)  { return div255( d*sa + s*inv(da) ); }
4478     BLEND_MODE(srcin)    { return div255( s*da ); }
4479     BLEND_MODE(dstin)    { return div255( d*sa ); }
4480     BLEND_MODE(srcout)   { return div255( s*inv(da) ); }
4481     BLEND_MODE(dstout)   { return div255( d*inv(sa) ); }
4482     BLEND_MODE(srcover)  { return s + div255( d*inv(sa) ); }
4483     BLEND_MODE(dstover)  { return d + div255( s*inv(da) ); }
4484     BLEND_MODE(modulate) { return div255( s*d ); }
4485     BLEND_MODE(multiply) { return div255( s*inv(da) + d*inv(sa) + s*d ); }
4486     BLEND_MODE(plus_)    { return min(s+d, 255); }
4487     BLEND_MODE(screen)   { return s + d - div255( s*d ); }
4488     BLEND_MODE(xor_)     { return div255( s*inv(da) + d*inv(sa) ); }
4489 #undef BLEND_MODE
4490 
4491 // The same logic applied to color, and srcover for alpha.
4492 #define BLEND_MODE(name)                                 \
4493     SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da); \
4494     STAGE_PP(name, NoCtx) {                          \
4495         r = name##_channel(r,dr,a,da);                   \
4496         g = name##_channel(g,dg,a,da);                   \
4497         b = name##_channel(b,db,a,da);                   \
4498         a = a + div255( da*inv(a) );                     \
4499     }                                                    \
4500     SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da)
4501 
4502     BLEND_MODE(darken)     { return s + d -   div255( max(s*da, d*sa) ); }
4503     BLEND_MODE(lighten)    { return s + d -   div255( min(s*da, d*sa) ); }
4504     BLEND_MODE(difference) { return s + d - 2*div255( min(s*da, d*sa) ); }
4505     BLEND_MODE(exclusion)  { return s + d - 2*div255( s*d ); }
4506 
4507     BLEND_MODE(hardlight) {
4508         return div255( s*inv(da) + d*inv(sa) +
4509                        if_then_else(2*s <= sa, 2*s*d, sa*da - 2*(sa-s)*(da-d)) );
4510     }
4511     BLEND_MODE(overlay) {
4512         return div255( s*inv(da) + d*inv(sa) +
4513                        if_then_else(2*d <= da, 2*s*d, sa*da - 2*(sa-s)*(da-d)) );
4514     }
4515 #undef BLEND_MODE
4516 
4517 // ~~~~~~ Helpers for interacting with memory ~~~~~~ //
4518 
4519 template <typename T>
4520 SI T* ptr_at_xy(const SkRasterPipeline_MemoryCtx* ctx, size_t dx, size_t dy) {
4521     return (T*)ctx->pixels + dy*ctx->stride + dx;
4522 }
4523 
4524 template <typename T>
4525 SI U32 ix_and_ptr(T** ptr, const SkRasterPipeline_GatherCtx* ctx, F x, F y) {
4526     // Exclusive -> inclusive.
4527     const F w = sk_bit_cast<float>( sk_bit_cast<uint32_t>(ctx->width ) - 1),
4528             h = sk_bit_cast<float>( sk_bit_cast<uint32_t>(ctx->height) - 1);
4529 
4530     const F z = std::numeric_limits<float>::min();
4531 
4532     x = min(max(z, x), w);
4533     y = min(max(z, y), h);
4534 
4535     x = sk_bit_cast<F>(sk_bit_cast<U32>(x) - (uint32_t)ctx->roundDownAtInteger);
4536     y = sk_bit_cast<F>(sk_bit_cast<U32>(y) - (uint32_t)ctx->roundDownAtInteger);
4537 
4538     *ptr = (const T*)ctx->pixels;
4539     return trunc_(y)*ctx->stride + trunc_(x);
4540 }
4541 
4542 template <typename T>
4543 SI U32 ix_and_ptr(T** ptr, const SkRasterPipeline_GatherCtx* ctx, I32 x, I32 y) {
4544     // This flag doesn't make sense when the coords are integers.
4545     SkASSERT(ctx->roundDownAtInteger == 0);
4546     // Exclusive -> inclusive.
4547     const I32 w =  ctx->width - 1,
4548               h = ctx->height - 1;
4549 
4550     U32 ax = cast<U32>(min(max(0, x), w)),
4551         ay = cast<U32>(min(max(0, y), h));
4552 
4553     *ptr = (const T*)ctx->pixels;
4554     return ay * ctx->stride + ax;
4555 }
4556 
4557 template <typename V, typename T>
4558 SI V load(const T* ptr, size_t tail) {
4559     V v = 0;
4560     switch (tail & (N-1)) {
4561         case  0: memcpy(&v, ptr, sizeof(v)); break;
4562     #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
4563         case 15: v[14] = ptr[14]; [[fallthrough]];
4564         case 14: v[13] = ptr[13]; [[fallthrough]];
4565         case 13: v[12] = ptr[12]; [[fallthrough]];
4566         case 12: memcpy(&v, ptr, 12*sizeof(T)); break;
4567         case 11: v[10] = ptr[10]; [[fallthrough]];
4568         case 10: v[ 9] = ptr[ 9]; [[fallthrough]];
4569         case  9: v[ 8] = ptr[ 8]; [[fallthrough]];
4570         case  8: memcpy(&v, ptr,  8*sizeof(T)); break;
4571     #endif
4572         case  7: v[ 6] = ptr[ 6]; [[fallthrough]];
4573         case  6: v[ 5] = ptr[ 5]; [[fallthrough]];
4574         case  5: v[ 4] = ptr[ 4]; [[fallthrough]];
4575         case  4: memcpy(&v, ptr,  4*sizeof(T)); break;
4576         case  3: v[ 2] = ptr[ 2]; [[fallthrough]];
4577         case  2: memcpy(&v, ptr,  2*sizeof(T)); break;
4578         case  1: v[ 0] = ptr[ 0];
4579     }
4580     return v;
4581 }
4582 template <typename V, typename T>
4583 SI void store(T* ptr, size_t tail, V v) {
4584     switch (tail & (N-1)) {
4585         case  0: memcpy(ptr, &v, sizeof(v)); break;
4586     #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
4587         case 15: ptr[14] = v[14]; [[fallthrough]];
4588         case 14: ptr[13] = v[13]; [[fallthrough]];
4589         case 13: ptr[12] = v[12]; [[fallthrough]];
4590         case 12: memcpy(ptr, &v, 12*sizeof(T)); break;
4591         case 11: ptr[10] = v[10]; [[fallthrough]];
4592         case 10: ptr[ 9] = v[ 9]; [[fallthrough]];
4593         case  9: ptr[ 8] = v[ 8]; [[fallthrough]];
4594         case  8: memcpy(ptr, &v,  8*sizeof(T)); break;
4595     #endif
4596         case  7: ptr[ 6] = v[ 6]; [[fallthrough]];
4597         case  6: ptr[ 5] = v[ 5]; [[fallthrough]];
4598         case  5: ptr[ 4] = v[ 4]; [[fallthrough]];
4599         case  4: memcpy(ptr, &v,  4*sizeof(T)); break;
4600         case  3: ptr[ 2] = v[ 2]; [[fallthrough]];
4601         case  2: memcpy(ptr, &v,  2*sizeof(T)); break;
4602         case  1: ptr[ 0] = v[ 0];
4603     }
4604 }
4605 
4606 #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
4607     template <typename V, typename T>
4608     SI V gather(const T* ptr, U32 ix) {
4609         return V{ ptr[ix[ 0]], ptr[ix[ 1]], ptr[ix[ 2]], ptr[ix[ 3]],
4610                   ptr[ix[ 4]], ptr[ix[ 5]], ptr[ix[ 6]], ptr[ix[ 7]],
4611                   ptr[ix[ 8]], ptr[ix[ 9]], ptr[ix[10]], ptr[ix[11]],
4612                   ptr[ix[12]], ptr[ix[13]], ptr[ix[14]], ptr[ix[15]], };
4613     }
4614 
4615     template<>
4616     F gather(const float* ptr, U32 ix) {
4617         __m256i lo, hi;
4618         split(ix, &lo, &hi);
4619 
4620         return join<F>(_mm256_i32gather_ps(ptr, lo, 4),
4621                        _mm256_i32gather_ps(ptr, hi, 4));
4622     }
4623 
4624     template<>
4625     U32 gather(const uint32_t* ptr, U32 ix) {
4626         __m256i lo, hi;
4627         split(ix, &lo, &hi);
4628 
4629         return join<U32>(_mm256_i32gather_epi32(ptr, lo, 4),
4630                          _mm256_i32gather_epi32(ptr, hi, 4));
4631     }
4632 #else
4633     template <typename V, typename T>
4634     SI V gather(const T* ptr, U32 ix) {
4635         return V{ ptr[ix[ 0]], ptr[ix[ 1]], ptr[ix[ 2]], ptr[ix[ 3]],
4636                   ptr[ix[ 4]], ptr[ix[ 5]], ptr[ix[ 6]], ptr[ix[ 7]], };
4637     }
4638 #endif
4639 
4640 
4641 // ~~~~~~ 32-bit memory loads and stores ~~~~~~ //
4642 
4643 SI void from_8888(U32 rgba, U16* r, U16* g, U16* b, U16* a) {
4644 #if 1 && defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
4645     // Swap the middle 128-bit lanes to make _mm256_packus_epi32() in cast_U16() work out nicely.
4646     __m256i _01,_23;
4647     split(rgba, &_01, &_23);
4648     __m256i _02 = _mm256_permute2x128_si256(_01,_23, 0x20),
4649             _13 = _mm256_permute2x128_si256(_01,_23, 0x31);
4650     rgba = join<U32>(_02, _13);
4651 
4652     auto cast_U16 = [](U32 v) -> U16 {
4653         __m256i _02,_13;
4654         split(v, &_02,&_13);
4655         return _mm256_packus_epi32(_02,_13);
4656     };
4657 #else
4658     auto cast_U16 = [](U32 v) -> U16 {
4659         return cast<U16>(v);
4660     };
4661 #endif
4662     *r = cast_U16(rgba & 65535) & 255;
4663     *g = cast_U16(rgba & 65535) >>  8;
4664     *b = cast_U16(rgba >>   16) & 255;
4665     *a = cast_U16(rgba >>   16) >>  8;
4666 }
4667 
4668 SI void load_8888_(const uint32_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
4669 #if 1 && defined(JUMPER_IS_NEON)
4670     uint8x8x4_t rgba;
4671     switch (tail & (N-1)) {
4672         case 0: rgba = vld4_u8     ((const uint8_t*)(ptr+0)         ); break;
4673         case 7: rgba = vld4_lane_u8((const uint8_t*)(ptr+6), rgba, 6); [[fallthrough]];
4674         case 6: rgba = vld4_lane_u8((const uint8_t*)(ptr+5), rgba, 5); [[fallthrough]];
4675         case 5: rgba = vld4_lane_u8((const uint8_t*)(ptr+4), rgba, 4); [[fallthrough]];
4676         case 4: rgba = vld4_lane_u8((const uint8_t*)(ptr+3), rgba, 3); [[fallthrough]];
4677         case 3: rgba = vld4_lane_u8((const uint8_t*)(ptr+2), rgba, 2); [[fallthrough]];
4678         case 2: rgba = vld4_lane_u8((const uint8_t*)(ptr+1), rgba, 1); [[fallthrough]];
4679         case 1: rgba = vld4_lane_u8((const uint8_t*)(ptr+0), rgba, 0);
4680     }
4681     *r = cast<U16>(rgba.val[0]);
4682     *g = cast<U16>(rgba.val[1]);
4683     *b = cast<U16>(rgba.val[2]);
4684     *a = cast<U16>(rgba.val[3]);
4685 #else
4686     from_8888(load<U32>(ptr, tail), r,g,b,a);
4687 #endif
4688 }
4689 SI void store_8888_(uint32_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
4690     r = min(r, 255);
4691     g = min(g, 255);
4692     b = min(b, 255);
4693     a = min(a, 255);
4694 
4695 #if 1 && defined(JUMPER_IS_NEON)
4696     uint8x8x4_t rgba = {{
4697         cast<U8>(r),
4698         cast<U8>(g),
4699         cast<U8>(b),
4700         cast<U8>(a),
4701     }};
4702     switch (tail & (N-1)) {
4703         case 0: vst4_u8     ((uint8_t*)(ptr+0), rgba   ); break;
4704         case 7: vst4_lane_u8((uint8_t*)(ptr+6), rgba, 6); [[fallthrough]];
4705         case 6: vst4_lane_u8((uint8_t*)(ptr+5), rgba, 5); [[fallthrough]];
4706         case 5: vst4_lane_u8((uint8_t*)(ptr+4), rgba, 4); [[fallthrough]];
4707         case 4: vst4_lane_u8((uint8_t*)(ptr+3), rgba, 3); [[fallthrough]];
4708         case 3: vst4_lane_u8((uint8_t*)(ptr+2), rgba, 2); [[fallthrough]];
4709         case 2: vst4_lane_u8((uint8_t*)(ptr+1), rgba, 1); [[fallthrough]];
4710         case 1: vst4_lane_u8((uint8_t*)(ptr+0), rgba, 0);
4711     }
4712 #else
4713     store(ptr, tail, cast<U32>(r | (g<<8)) <<  0
4714                    | cast<U32>(b | (a<<8)) << 16);
4715 #endif
4716 }
4717 
4718 STAGE_PP(load_8888, const SkRasterPipeline_MemoryCtx* ctx) {
4719     load_8888_(ptr_at_xy<const uint32_t>(ctx, dx,dy), tail, &r,&g,&b,&a);
4720 }
4721 STAGE_PP(load_8888_dst, const SkRasterPipeline_MemoryCtx* ctx) {
4722     load_8888_(ptr_at_xy<const uint32_t>(ctx, dx,dy), tail, &dr,&dg,&db,&da);
4723 }
4724 STAGE_PP(store_8888, const SkRasterPipeline_MemoryCtx* ctx) {
4725     store_8888_(ptr_at_xy<uint32_t>(ctx, dx,dy), tail, r,g,b,a);
4726 }
4727 STAGE_GP(gather_8888, const SkRasterPipeline_GatherCtx* ctx) {
4728     const uint32_t* ptr;
4729     U32 ix = ix_and_ptr(&ptr, ctx, x,y);
4730     from_8888(gather<U32>(ptr, ix), &r, &g, &b, &a);
4731 }
4732 
4733 // ~~~~~~ 16-bit memory loads and stores ~~~~~~ //
4734 
4735 SI void from_565(U16 rgb, U16* r, U16* g, U16* b) {
4736     // Format for 565 buffers: 15|rrrrr gggggg bbbbb|0
4737     U16 R = (rgb >> 11) & 31,
4738         G = (rgb >>  5) & 63,
4739         B = (rgb >>  0) & 31;
4740 
4741     // These bit replications are the same as multiplying by 255/31 or 255/63 to scale to 8-bit.
4742     *r = (R << 3) | (R >> 2);
4743     *g = (G << 2) | (G >> 4);
4744     *b = (B << 3) | (B >> 2);
4745 }
4746 SI void load_565_(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) {
4747     from_565(load<U16>(ptr, tail), r,g,b);
4748 }
4749 SI void store_565_(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b) {
4750     r = min(r, 255);
4751     g = min(g, 255);
4752     b = min(b, 255);
4753 
4754     // Round from [0,255] to [0,31] or [0,63], as if x * (31/255.0f) + 0.5f.
4755     // (Don't feel like you need to find some fundamental truth in these...
4756     // they were brute-force searched.)
4757     U16 R = (r *  9 + 36) / 74,   //  9/74 ≈ 31/255, plus 36/74, about half.
4758         G = (g * 21 + 42) / 85,   // 21/85 = 63/255 exactly.
4759         B = (b *  9 + 36) / 74;
4760     // Pack them back into 15|rrrrr gggggg bbbbb|0.
4761     store(ptr, tail, R << 11
4762                    | G <<  5
4763                    | B <<  0);
4764 }
4765 
4766 STAGE_PP(load_565, const SkRasterPipeline_MemoryCtx* ctx) {
4767     load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &r,&g,&b);
4768     a = 255;
4769 }
4770 STAGE_PP(load_565_dst, const SkRasterPipeline_MemoryCtx* ctx) {
4771     load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &dr,&dg,&db);
4772     da = 255;
4773 }
4774 STAGE_PP(store_565, const SkRasterPipeline_MemoryCtx* ctx) {
4775     store_565_(ptr_at_xy<uint16_t>(ctx, dx,dy), tail, r,g,b);
4776 }
4777 STAGE_GP(gather_565, const SkRasterPipeline_GatherCtx* ctx) {
4778     const uint16_t* ptr;
4779     U32 ix = ix_and_ptr(&ptr, ctx, x,y);
4780     from_565(gather<U16>(ptr, ix), &r, &g, &b);
4781     a = 255;
4782 }
4783 
4784 SI void from_4444(U16 rgba, U16* r, U16* g, U16* b, U16* a) {
4785     // Format for 4444 buffers: 15|rrrr gggg bbbb aaaa|0.
4786     U16 R = (rgba >> 12) & 15,
4787         G = (rgba >>  8) & 15,
4788         B = (rgba >>  4) & 15,
4789         A = (rgba >>  0) & 15;
4790 
4791     // Scale [0,15] to [0,255].
4792     *r = (R << 4) | R;
4793     *g = (G << 4) | G;
4794     *b = (B << 4) | B;
4795     *a = (A << 4) | A;
4796 }
4797 SI void load_4444_(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
4798     from_4444(load<U16>(ptr, tail), r,g,b,a);
4799 }
4800 SI void store_4444_(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
4801     r = min(r, 255);
4802     g = min(g, 255);
4803     b = min(b, 255);
4804     a = min(a, 255);
4805 
4806     // Round from [0,255] to [0,15], producing the same value as (x*(15/255.0f) + 0.5f).
4807     U16 R = (r + 8) / 17,
4808         G = (g + 8) / 17,
4809         B = (b + 8) / 17,
4810         A = (a + 8) / 17;
4811     // Pack them back into 15|rrrr gggg bbbb aaaa|0.
4812     store(ptr, tail, R << 12
4813                    | G <<  8
4814                    | B <<  4
4815                    | A <<  0);
4816 }
4817 
4818 STAGE_PP(load_4444, const SkRasterPipeline_MemoryCtx* ctx) {
4819     load_4444_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &r,&g,&b,&a);
4820 }
4821 STAGE_PP(load_4444_dst, const SkRasterPipeline_MemoryCtx* ctx) {
4822     load_4444_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &dr,&dg,&db,&da);
4823 }
4824 STAGE_PP(store_4444, const SkRasterPipeline_MemoryCtx* ctx) {
4825     store_4444_(ptr_at_xy<uint16_t>(ctx, dx,dy), tail, r,g,b,a);
4826 }
4827 STAGE_GP(gather_4444, const SkRasterPipeline_GatherCtx* ctx) {
4828     const uint16_t* ptr;
4829     U32 ix = ix_and_ptr(&ptr, ctx, x,y);
4830     from_4444(gather<U16>(ptr, ix), &r,&g,&b,&a);
4831 }
4832 
4833 SI void from_88(U16 rg, U16* r, U16* g) {
4834     *r = (rg & 0xFF);
4835     *g = (rg >> 8);
4836 }
4837 
4838 SI void load_88_(const uint16_t* ptr, size_t tail, U16* r, U16* g) {
4839 #if 1 && defined(JUMPER_IS_NEON)
4840     uint8x8x2_t rg;
4841     switch (tail & (N-1)) {
4842         case 0: rg = vld2_u8     ((const uint8_t*)(ptr+0)         ); break;
4843         case 7: rg = vld2_lane_u8((const uint8_t*)(ptr+6), rg, 6); [[fallthrough]];
4844         case 6: rg = vld2_lane_u8((const uint8_t*)(ptr+5), rg, 5); [[fallthrough]];
4845         case 5: rg = vld2_lane_u8((const uint8_t*)(ptr+4), rg, 4); [[fallthrough]];
4846         case 4: rg = vld2_lane_u8((const uint8_t*)(ptr+3), rg, 3); [[fallthrough]];
4847         case 3: rg = vld2_lane_u8((const uint8_t*)(ptr+2), rg, 2); [[fallthrough]];
4848         case 2: rg = vld2_lane_u8((const uint8_t*)(ptr+1), rg, 1); [[fallthrough]];
4849         case 1: rg = vld2_lane_u8((const uint8_t*)(ptr+0), rg, 0);
4850     }
4851     *r = cast<U16>(rg.val[0]);
4852     *g = cast<U16>(rg.val[1]);
4853 #else
4854     from_88(load<U16>(ptr, tail), r,g);
4855 #endif
4856 }
4857 
4858 SI void store_88_(uint16_t* ptr, size_t tail, U16 r, U16 g) {
4859     r = min(r, 255);
4860     g = min(g, 255);
4861 
4862 #if 1 && defined(JUMPER_IS_NEON)
4863     uint8x8x2_t rg = {{
4864         cast<U8>(r),
4865         cast<U8>(g),
4866     }};
4867     switch (tail & (N-1)) {
4868         case 0: vst2_u8     ((uint8_t*)(ptr+0), rg   ); break;
4869         case 7: vst2_lane_u8((uint8_t*)(ptr+6), rg, 6); [[fallthrough]];
4870         case 6: vst2_lane_u8((uint8_t*)(ptr+5), rg, 5); [[fallthrough]];
4871         case 5: vst2_lane_u8((uint8_t*)(ptr+4), rg, 4); [[fallthrough]];
4872         case 4: vst2_lane_u8((uint8_t*)(ptr+3), rg, 3); [[fallthrough]];
4873         case 3: vst2_lane_u8((uint8_t*)(ptr+2), rg, 2); [[fallthrough]];
4874         case 2: vst2_lane_u8((uint8_t*)(ptr+1), rg, 1); [[fallthrough]];
4875         case 1: vst2_lane_u8((uint8_t*)(ptr+0), rg, 0);
4876     }
4877 #else
4878     store(ptr, tail, cast<U16>(r | (g<<8)) <<  0);
4879 #endif
4880 }
4881 
4882 STAGE_PP(load_rg88, const SkRasterPipeline_MemoryCtx* ctx) {
4883     load_88_(ptr_at_xy<const uint16_t>(ctx, dx, dy), tail, &r, &g);
4884     b = 0;
4885     a = 255;
4886 }
4887 STAGE_PP(load_rg88_dst, const SkRasterPipeline_MemoryCtx* ctx) {
4888     load_88_(ptr_at_xy<const uint16_t>(ctx, dx, dy), tail, &dr, &dg);
4889     db = 0;
4890     da = 255;
4891 }
4892 STAGE_PP(store_rg88, const SkRasterPipeline_MemoryCtx* ctx) {
4893     store_88_(ptr_at_xy<uint16_t>(ctx, dx, dy), tail, r, g);
4894 }
4895 STAGE_GP(gather_rg88, const SkRasterPipeline_GatherCtx* ctx) {
4896     const uint16_t* ptr;
4897     U32 ix = ix_and_ptr(&ptr, ctx, x, y);
4898     from_88(gather<U16>(ptr, ix), &r, &g);
4899     b = 0;
4900     a = 255;
4901 }
4902 
4903 // ~~~~~~ 8-bit memory loads and stores ~~~~~~ //
4904 
4905 SI U16 load_8(const uint8_t* ptr, size_t tail) {
4906     return cast<U16>(load<U8>(ptr, tail));
4907 }
4908 SI void store_8(uint8_t* ptr, size_t tail, U16 v) {
4909     v = min(v, 255);
4910     store(ptr, tail, cast<U8>(v));
4911 }
4912 
4913 STAGE_PP(load_a8, const SkRasterPipeline_MemoryCtx* ctx) {
4914     r = g = b = 0;
4915     a = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy), tail);
4916 }
4917 STAGE_PP(load_a8_dst, const SkRasterPipeline_MemoryCtx* ctx) {
4918     dr = dg = db = 0;
4919     da = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy), tail);
4920 }
4921 STAGE_PP(store_a8, const SkRasterPipeline_MemoryCtx* ctx) {
4922     store_8(ptr_at_xy<uint8_t>(ctx, dx,dy), tail, a);
4923 }
4924 STAGE_GP(gather_a8, const SkRasterPipeline_GatherCtx* ctx) {
4925     const uint8_t* ptr;
4926     U32 ix = ix_and_ptr(&ptr, ctx, x,y);
4927     r = g = b = 0;
4928     a = cast<U16>(gather<U8>(ptr, ix));
4929 }
4930 STAGE_PP(store_r8, const SkRasterPipeline_MemoryCtx* ctx) {
4931     store_8(ptr_at_xy<uint8_t>(ctx, dx,dy), tail, r);
4932 }
4933 
4934 STAGE_PP(alpha_to_gray, NoCtx) {
4935     r = g = b = a;
4936     a = 255;
4937 }
4938 STAGE_PP(alpha_to_gray_dst, NoCtx) {
4939     dr = dg = db = da;
4940     da = 255;
4941 }
4942 STAGE_PP(alpha_to_red, NoCtx) {
4943     r = a;
4944     a = 255;
4945 }
4946 STAGE_PP(alpha_to_red_dst, NoCtx) {
4947     dr = da;
4948     da = 255;
4949 }
4950 
4951 STAGE_PP(bt709_luminance_or_luma_to_alpha, NoCtx) {
4952     a = (r*54 + g*183 + b*19)/256;  // 0.2126, 0.7152, 0.0722 with 256 denominator.
4953     r = g = b = 0;
4954 }
4955 STAGE_PP(bt709_luminance_or_luma_to_rgb, NoCtx) {
4956     r = g = b =(r*54 + g*183 + b*19)/256;  // 0.2126, 0.7152, 0.0722 with 256 denominator.
4957 }
4958 
4959 // ~~~~~~ Coverage scales / lerps ~~~~~~ //
4960 
4961 STAGE_PP(load_src, const uint16_t* ptr) {
4962     r = sk_unaligned_load<U16>(ptr + 0*N);
4963     g = sk_unaligned_load<U16>(ptr + 1*N);
4964     b = sk_unaligned_load<U16>(ptr + 2*N);
4965     a = sk_unaligned_load<U16>(ptr + 3*N);
4966 }
4967 STAGE_PP(store_src, uint16_t* ptr) {
4968     sk_unaligned_store(ptr + 0*N, r);
4969     sk_unaligned_store(ptr + 1*N, g);
4970     sk_unaligned_store(ptr + 2*N, b);
4971     sk_unaligned_store(ptr + 3*N, a);
4972 }
4973 STAGE_PP(store_src_a, uint16_t* ptr) {
4974     sk_unaligned_store(ptr, a);
4975 }
4976 STAGE_PP(load_dst, const uint16_t* ptr) {
4977     dr = sk_unaligned_load<U16>(ptr + 0*N);
4978     dg = sk_unaligned_load<U16>(ptr + 1*N);
4979     db = sk_unaligned_load<U16>(ptr + 2*N);
4980     da = sk_unaligned_load<U16>(ptr + 3*N);
4981 }
4982 STAGE_PP(store_dst, uint16_t* ptr) {
4983     sk_unaligned_store(ptr + 0*N, dr);
4984     sk_unaligned_store(ptr + 1*N, dg);
4985     sk_unaligned_store(ptr + 2*N, db);
4986     sk_unaligned_store(ptr + 3*N, da);
4987 }
4988 
4989 // ~~~~~~ Coverage scales / lerps ~~~~~~ //
4990 
4991 STAGE_PP(scale_1_float, const float* f) {
4992     U16 c = from_float(*f);
4993     r = div255( r * c );
4994     g = div255( g * c );
4995     b = div255( b * c );
4996     a = div255( a * c );
4997 }
4998 STAGE_PP(lerp_1_float, const float* f) {
4999     U16 c = from_float(*f);
5000     r = lerp(dr, r, c);
5001     g = lerp(dg, g, c);
5002     b = lerp(db, b, c);
5003     a = lerp(da, a, c);
5004 }
5005 STAGE_PP(scale_native, const uint16_t scales[]) {
5006     auto c = sk_unaligned_load<U16>(scales);
5007     r = div255( r * c );
5008     g = div255( g * c );
5009     b = div255( b * c );
5010     a = div255( a * c );
5011 }
5012 
5013 STAGE_PP(lerp_native, const uint16_t scales[]) {
5014     auto c = sk_unaligned_load<U16>(scales);
5015     r = lerp(dr, r, c);
5016     g = lerp(dg, g, c);
5017     b = lerp(db, b, c);
5018     a = lerp(da, a, c);
5019 }
5020 
5021 STAGE_PP(scale_u8, const SkRasterPipeline_MemoryCtx* ctx) {
5022     U16 c = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy), tail);
5023     r = div255( r * c );
5024     g = div255( g * c );
5025     b = div255( b * c );
5026     a = div255( a * c );
5027 }
5028 STAGE_PP(lerp_u8, const SkRasterPipeline_MemoryCtx* ctx) {
5029     U16 c = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy), tail);
5030     r = lerp(dr, r, c);
5031     g = lerp(dg, g, c);
5032     b = lerp(db, b, c);
5033     a = lerp(da, a, c);
5034 }
5035 
5036 // Derive alpha's coverage from rgb coverage and the values of src and dst alpha.
5037 SI U16 alpha_coverage_from_rgb_coverage(U16 a, U16 da, U16 cr, U16 cg, U16 cb) {
5038     return if_then_else(a < da, min(cr, min(cg,cb))
5039                               , max(cr, max(cg,cb)));
5040 }
5041 STAGE_PP(scale_565, const SkRasterPipeline_MemoryCtx* ctx) {
5042     U16 cr,cg,cb;
5043     load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &cr,&cg,&cb);
5044     U16 ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
5045 
5046     r = div255( r * cr );
5047     g = div255( g * cg );
5048     b = div255( b * cb );
5049     a = div255( a * ca );
5050 }
5051 STAGE_PP(lerp_565, const SkRasterPipeline_MemoryCtx* ctx) {
5052     U16 cr,cg,cb;
5053     load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &cr,&cg,&cb);
5054     U16 ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
5055 
5056     r = lerp(dr, r, cr);
5057     g = lerp(dg, g, cg);
5058     b = lerp(db, b, cb);
5059     a = lerp(da, a, ca);
5060 }
5061 
5062 STAGE_PP(emboss, const SkRasterPipeline_EmbossCtx* ctx) {
5063     U16 mul = load_8(ptr_at_xy<const uint8_t>(&ctx->mul, dx,dy), tail),
5064         add = load_8(ptr_at_xy<const uint8_t>(&ctx->add, dx,dy), tail);
5065 
5066     r = min(div255(r*mul) + add, a);
5067     g = min(div255(g*mul) + add, a);
5068     b = min(div255(b*mul) + add, a);
5069 }
5070 
5071 
5072 // ~~~~~~ Gradient stages ~~~~~~ //
5073 
5074 // Clamp x to [0,1], both sides inclusive (think, gradients).
5075 // Even repeat and mirror funnel through a clamp to handle bad inputs like +Inf, NaN.
5076 SI F clamp_01_(F v) { return min(max(0, v), 1); }
5077 
5078 STAGE_GG(clamp_x_1 , NoCtx) { x = clamp_01_(x); }
5079 STAGE_GG(repeat_x_1, NoCtx) { x = clamp_01_(x - floor_(x)); }
5080 STAGE_GG(mirror_x_1, NoCtx) {
5081     auto two = [](F x){ return x+x; };
5082     x = clamp_01_(abs_( (x-1.0f) - two(floor_((x-1.0f)*0.5f)) - 1.0f ));
5083 }
5084 
5085 SI I16 cond_to_mask_16(I32 cond) { return cast<I16>(cond); }
5086 
5087 STAGE_GG(decal_x, SkRasterPipeline_DecalTileCtx* ctx) {
5088     auto w = ctx->limit_x;
5089     sk_unaligned_store(ctx->mask, cond_to_mask_16((0 <= x) & (x < w)));
5090 }
5091 STAGE_GG(decal_y, SkRasterPipeline_DecalTileCtx* ctx) {
5092     auto h = ctx->limit_y;
5093     sk_unaligned_store(ctx->mask, cond_to_mask_16((0 <= y) & (y < h)));
5094 }
5095 STAGE_GG(decal_x_and_y, SkRasterPipeline_DecalTileCtx* ctx) {
5096     auto w = ctx->limit_x;
5097     auto h = ctx->limit_y;
5098     sk_unaligned_store(ctx->mask, cond_to_mask_16((0 <= x) & (x < w) & (0 <= y) & (y < h)));
5099 }
5100 STAGE_GG(clamp_x_and_y, SkRasterPipeline_CoordClampCtx* ctx) {
5101     x = min(ctx->max_x, max(ctx->min_x, x));
5102     y = min(ctx->max_y, max(ctx->min_y, y));
5103 }
5104 STAGE_PP(check_decal_mask, SkRasterPipeline_DecalTileCtx* ctx) {
5105     auto mask = sk_unaligned_load<U16>(ctx->mask);
5106     r = r & mask;
5107     g = g & mask;
5108     b = b & mask;
5109     a = a & mask;
5110 }
5111 
5112 SI void round_F_to_U16(F R, F G, F B, F A, U16* r, U16* g, U16* b, U16* a) {
5113     auto round = [](F x) { return cast<U16>(x * 255.0f + 0.5f); };
5114 
5115     *r = round(min(max(0, R), 1));
5116     *g = round(min(max(0, G), 1));
5117     *b = round(min(max(0, B), 1));
5118     *a = round(A);  // we assume alpha is already in [0,1].
5119 }
5120 
5121 SI void gradient_lookup(const SkRasterPipeline_GradientCtx* c, U32 idx, F t,
5122                         U16* r, U16* g, U16* b, U16* a) {
5123 
5124     F fr, fg, fb, fa, br, bg, bb, ba;
5125 #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
5126     if (c->stopCount <=8) {
5127         __m256i lo, hi;
5128         split(idx, &lo, &hi);
5129 
5130         fr = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), lo),
5131                      _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), hi));
5132         br = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), lo),
5133                      _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), hi));
5134         fg = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), lo),
5135                      _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), hi));
5136         bg = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), lo),
5137                      _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), hi));
5138         fb = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), lo),
5139                      _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), hi));
5140         bb = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), lo),
5141                      _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), hi));
5142         fa = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), lo),
5143                      _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), hi));
5144         ba = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), lo),
5145                      _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), hi));
5146     } else
5147 #endif
5148     {
5149         fr = gather<F>(c->fs[0], idx);
5150         fg = gather<F>(c->fs[1], idx);
5151         fb = gather<F>(c->fs[2], idx);
5152         fa = gather<F>(c->fs[3], idx);
5153         br = gather<F>(c->bs[0], idx);
5154         bg = gather<F>(c->bs[1], idx);
5155         bb = gather<F>(c->bs[2], idx);
5156         ba = gather<F>(c->bs[3], idx);
5157     }
5158     round_F_to_U16(mad(t, fr, br),
5159                    mad(t, fg, bg),
5160                    mad(t, fb, bb),
5161                    mad(t, fa, ba),
5162                    r,g,b,a);
5163 }
5164 
5165 STAGE_GP(gradient, const SkRasterPipeline_GradientCtx* c) {
5166     auto t = x;
5167     U32 idx = 0;
5168 
5169     // N.B. The loop starts at 1 because idx 0 is the color to use before the first stop.
5170     for (size_t i = 1; i < c->stopCount; i++) {
5171         idx += if_then_else(t >= c->ts[i], U32(1), U32(0));
5172     }
5173 
5174     gradient_lookup(c, idx, t, &r, &g, &b, &a);
5175 }
5176 
5177 STAGE_GP(evenly_spaced_gradient, const SkRasterPipeline_GradientCtx* c) {
5178     auto t = x;
5179     auto idx = trunc_(t * (c->stopCount-1));
5180     gradient_lookup(c, idx, t, &r, &g, &b, &a);
5181 }
5182 
5183 STAGE_GP(evenly_spaced_2_stop_gradient, const SkRasterPipeline_EvenlySpaced2StopGradientCtx* c) {
5184     auto t = x;
5185     round_F_to_U16(mad(t, c->f[0], c->b[0]),
5186                    mad(t, c->f[1], c->b[1]),
5187                    mad(t, c->f[2], c->b[2]),
5188                    mad(t, c->f[3], c->b[3]),
5189                    &r,&g,&b,&a);
5190 }
5191 
5192 STAGE_GP(bilerp_clamp_8888, const SkRasterPipeline_GatherCtx* ctx) {
5193     // Quantize sample point and transform into lerp coordinates converting them to 16.16 fixed
5194     // point number.
5195     I32 qx = cast<I32>(floor_(65536.0f * x + 0.5f)) - 32768,
5196         qy = cast<I32>(floor_(65536.0f * y + 0.5f)) - 32768;
5197 
5198     // Calculate screen coordinates sx & sy by flooring qx and qy.
5199     I32 sx = qx >> 16,
5200         sy = qy >> 16;
5201 
5202     // We are going to perform a change of parameters for qx on [0, 1) to tx on [-1, 1).
5203     // This will put tx in Q15 format for use with q_mult.
5204     // Calculate tx and ty on the interval of [-1, 1). Give {qx} and {qy} are on the interval
5205     // [0, 1), where {v} is fract(v), we can transform to tx in the following manner ty follows
5206     // the same math:
5207     //     tx = 2 * {qx} - 1, so
5208     //     {qx} = (tx + 1) / 2.
5209     // Calculate {qx} - 1 and {qy} - 1 where the {} operation is handled by the cast, and the - 1
5210     // is handled by the ^ 0x8000, dividing by 2 is deferred and handled in lerpX and lerpY in
5211     // order to use the full 16-bit resolution.
5212     I16 tx = cast<I16>(qx ^ 0x8000),
5213         ty = cast<I16>(qy ^ 0x8000);
5214 
5215     // Substituting the {qx} by the equation for tx from above into the lerp equation where v is
5216     // the lerped value:
5217     //         v = {qx}*(R - L) + L,
5218     //         v = 1/2*(tx + 1)*(R - L) + L
5219     //     2 * v = (tx + 1)*(R - L) + 2*L
5220     //           = tx*R - tx*L + R - L + 2*L
5221     //           = tx*(R - L) + (R + L).
5222     // Since R and L are on [0, 255] we need them on the interval [0, 1/2] to get them into form
5223     // for Q15_mult. If L and R where in 16.16 format, this would be done by dividing by 2^9. In
5224     // code, we can multiply by 2^7 to get the value directly.
5225     //            2 * v = tx*(R - L) + (R + L)
5226     //     2^-9 * 2 * v = tx*(R - L)*2^-9 + (R + L)*2^-9
5227     //         2^-8 * v = 2^-9 * (tx*(R - L) + (R + L))
5228     //                v = 1/2 * (tx*(R - L) + (R + L))
5229     auto lerpX = [&](U16 left, U16 right) -> U16 {
5230         I16 width  = (I16)(right - left) << 7;
5231         U16 middle = (right + left) << 7;
5232         // The constrained_add is the most subtle part of lerp. The first term is on the interval
5233         // [-1, 1), and the second term is on the interval is on the interval [0, 1) because
5234         // both terms are too high by a factor of 2 which will be handled below. (Both R and L are
5235         // on [0, 1/2), but the sum R + L is on the interval [0, 1).) Generally, the sum below
5236         // should overflow, but because we know that sum produces an output on the
5237         // interval [0, 1) we know that the extra bit that would be needed will always be 0. So
5238         // we need to be careful to treat this sum as an unsigned positive number in the divide
5239         // by 2 below. Add +1 for rounding.
5240         U16 v2  = constrained_add(scaled_mult(tx, width), middle) + 1;
5241         // Divide by 2 to calculate v and at the same time bring the intermediate value onto the
5242         // interval [0, 1/2] to set up for the lerpY.
5243         return v2 >> 1;
5244     };
5245 
5246     const uint32_t* ptr;
5247     U32 ix = ix_and_ptr(&ptr, ctx, sx, sy);
5248     U16 leftR, leftG, leftB, leftA;
5249     from_8888(gather<U32>(ptr, ix), &leftR,&leftG,&leftB,&leftA);
5250 
5251     ix = ix_and_ptr(&ptr, ctx, sx+1, sy);
5252     U16 rightR, rightG, rightB, rightA;
5253     from_8888(gather<U32>(ptr, ix), &rightR,&rightG,&rightB,&rightA);
5254 
5255     U16 topR = lerpX(leftR, rightR),
5256         topG = lerpX(leftG, rightG),
5257         topB = lerpX(leftB, rightB),
5258         topA = lerpX(leftA, rightA);
5259 
5260     ix = ix_and_ptr(&ptr, ctx, sx, sy+1);
5261     from_8888(gather<U32>(ptr, ix), &leftR,&leftG,&leftB,&leftA);
5262 
5263     ix = ix_and_ptr(&ptr, ctx, sx+1, sy+1);
5264     from_8888(gather<U32>(ptr, ix), &rightR,&rightG,&rightB,&rightA);
5265 
5266     U16 bottomR = lerpX(leftR, rightR),
5267         bottomG = lerpX(leftG, rightG),
5268         bottomB = lerpX(leftB, rightB),
5269         bottomA = lerpX(leftA, rightA);
5270 
5271     // lerpY plays the same mathematical tricks as lerpX, but the final divide is by 256 resulting
5272     // in a value on [0, 255].
5273     auto lerpY = [&](U16 top, U16 bottom) -> U16 {
5274         I16 width  = (I16)bottom - top;
5275         U16 middle = bottom + top;
5276         // Add + 0x80 for rounding.
5277         U16 blend  = constrained_add(scaled_mult(ty, width), middle) + 0x80;
5278 
5279         return blend >> 8;
5280     };
5281 
5282     r = lerpY(topR, bottomR);
5283     g = lerpY(topG, bottomG);
5284     b = lerpY(topB, bottomB);
5285     a = lerpY(topA, bottomA);
5286 }
5287 
5288 STAGE_GG(xy_to_unit_angle, NoCtx) {
5289     F xabs = abs_(x),
5290       yabs = abs_(y);
5291 
5292     F slope = min(xabs, yabs)/max(xabs, yabs);
5293     F s = slope * slope;
5294 
5295     // Use a 7th degree polynomial to approximate atan.
5296     // This was generated using sollya.gforge.inria.fr.
5297     // A float optimized polynomial was generated using the following command.
5298     // P1 = fpminimax((1/(2*Pi))*atan(x),[|1,3,5,7|],[|24...|],[2^(-40),1],relative);
5299     F phi = slope
5300              * (0.15912117063999176025390625f     + s
5301              * (-5.185396969318389892578125e-2f   + s
5302              * (2.476101927459239959716796875e-2f + s
5303              * (-7.0547382347285747528076171875e-3f))));
5304 
5305     phi = if_then_else(xabs < yabs, 1.0f/4.0f - phi, phi);
5306     phi = if_then_else(x < 0.0f   , 1.0f/2.0f - phi, phi);
5307     phi = if_then_else(y < 0.0f   , 1.0f - phi     , phi);
5308     phi = if_then_else(phi != phi , 0              , phi);  // Check for NaN.
5309     x = phi;
5310 }
5311 STAGE_GG(xy_to_radius, NoCtx) {
5312     x = sqrt_(x*x + y*y);
5313 }
5314 
5315 // ~~~~~~ Compound stages ~~~~~~ //
5316 
5317 STAGE_PP(srcover_rgba_8888, const SkRasterPipeline_MemoryCtx* ctx) {
5318     auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
5319 
5320     load_8888_(ptr, tail, &dr,&dg,&db,&da);
5321     r = r + div255( dr*inv(a) );
5322     g = g + div255( dg*inv(a) );
5323     b = b + div255( db*inv(a) );
5324     a = a + div255( da*inv(a) );
5325     store_8888_(ptr, tail, r,g,b,a);
5326 }
5327 
5328 // ~~~~~~ skgpu::Swizzle stage ~~~~~~ //
5329 
5330 STAGE_PP(swizzle, void* ctx) {
5331     auto ir = r, ig = g, ib = b, ia = a;
5332     U16* o[] = {&r, &g, &b, &a};
5333     char swiz[4];
5334     memcpy(swiz, &ctx, sizeof(swiz));
5335 
5336     for (int i = 0; i < 4; ++i) {
5337         switch (swiz[i]) {
5338             case 'r': *o[i] = ir;       break;
5339             case 'g': *o[i] = ig;       break;
5340             case 'b': *o[i] = ib;       break;
5341             case 'a': *o[i] = ia;       break;
5342             case '0': *o[i] = U16(0);   break;
5343             case '1': *o[i] = U16(255); break;
5344             default:                    break;
5345         }
5346     }
5347 }
5348 
5349 #endif//defined(JUMPER_IS_SCALAR) controlling whether we build lowp stages
5350 }  // namespace lowp
5351 
5352 /* This gives us SK_OPTS::lowp::N if lowp::N has been set, or SK_OPTS::N if it hasn't. */
5353 namespace lowp { static constexpr size_t lowp_N = N; }
5354 
5355 /** Allow outside code to access the Raster Pipeline pixel stride. */
raster_pipeline_lowp_stride()5356 constexpr size_t raster_pipeline_lowp_stride() { return lowp::lowp_N; }
raster_pipeline_highp_stride()5357 constexpr size_t raster_pipeline_highp_stride() { return N; }
5358 
5359 }  // namespace SK_OPTS_NS
5360 
5361 #undef SI
5362 
5363 #endif//SkRasterPipeline_opts_DEFINED
5364