1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "image_writer.h"
18
19 #include <lz4.h>
20 #include <lz4hc.h>
21 #include <sys/stat.h>
22 #include <zlib.h>
23
24 #include <charconv>
25 #include <memory>
26 #include <numeric>
27 #include <vector>
28
29 #include "android-base/strings.h"
30 #include "art_field-inl.h"
31 #include "art_method-inl.h"
32 #include "base/callee_save_type.h"
33 #include "base/enums.h"
34 #include "base/globals.h"
35 #include "base/logging.h" // For VLOG.
36 #include "base/stl_util.h"
37 #include "base/unix_file/fd_file.h"
38 #include "class_linker-inl.h"
39 #include "class_root-inl.h"
40 #include "dex/dex_file-inl.h"
41 #include "dex/dex_file_types.h"
42 #include "driver/compiler_options.h"
43 #include "elf/elf_utils.h"
44 #include "elf_file.h"
45 #include "entrypoints/entrypoint_utils-inl.h"
46 #include "gc/accounting/card_table-inl.h"
47 #include "gc/accounting/heap_bitmap.h"
48 #include "gc/accounting/space_bitmap-inl.h"
49 #include "gc/collector/concurrent_copying.h"
50 #include "gc/heap-visit-objects-inl.h"
51 #include "gc/heap.h"
52 #include "gc/space/large_object_space.h"
53 #include "gc/space/region_space.h"
54 #include "gc/space/space-inl.h"
55 #include "gc/verification.h"
56 #include "handle_scope-inl.h"
57 #include "image-inl.h"
58 #include "imt_conflict_table.h"
59 #include "indirect_reference_table-inl.h"
60 #include "intern_table-inl.h"
61 #include "jni/java_vm_ext-inl.h"
62 #include "jni/jni_internal.h"
63 #include "linear_alloc.h"
64 #include "lock_word.h"
65 #include "mirror/array-inl.h"
66 #include "mirror/class-inl.h"
67 #include "mirror/class_ext-inl.h"
68 #include "mirror/class_loader.h"
69 #include "mirror/dex_cache-inl.h"
70 #include "mirror/dex_cache.h"
71 #include "mirror/executable.h"
72 #include "mirror/method.h"
73 #include "mirror/object-inl.h"
74 #include "mirror/object-refvisitor-inl.h"
75 #include "mirror/object_array-alloc-inl.h"
76 #include "mirror/object_array-inl.h"
77 #include "mirror/string-inl.h"
78 #include "mirror/var_handle.h"
79 #include "nterp_helpers.h"
80 #include "oat.h"
81 #include "oat_file.h"
82 #include "oat_file_manager.h"
83 #include "optimizing/intrinsic_objects.h"
84 #include "runtime.h"
85 #include "scoped_thread_state_change-inl.h"
86 #include "subtype_check.h"
87 #include "well_known_classes-inl.h"
88
89 using ::art::mirror::Class;
90 using ::art::mirror::DexCache;
91 using ::art::mirror::Object;
92 using ::art::mirror::ObjectArray;
93 using ::art::mirror::String;
94
95 namespace art {
96 namespace linker {
97
98 // The actual value of `kImageClassTableMinLoadFactor` is irrelevant because image class tables
99 // are never resized, but we still need to pass a reasonable value to the constructor.
100 constexpr double kImageClassTableMinLoadFactor = 0.5;
101 // We use `kImageClassTableMaxLoadFactor` to determine the buffer size for image class tables
102 // to make them full. We never insert additional elements to them, so we do not want to waste
103 // extra memory. And unlike runtime class tables, we do not want this to depend on runtime
104 // properties (see `Runtime::GetHashTableMaxLoadFactor()` checking for low memory mode).
105 constexpr double kImageClassTableMaxLoadFactor = 0.6;
106
107 // The actual value of `kImageInternTableMinLoadFactor` is irrelevant because image intern tables
108 // are never resized, but we still need to pass a reasonable value to the constructor.
109 constexpr double kImageInternTableMinLoadFactor = 0.5;
110 // We use `kImageInternTableMaxLoadFactor` to determine the buffer size for image intern tables
111 // to make them full. We never insert additional elements to them, so we do not want to waste
112 // extra memory. And unlike runtime intern tables, we do not want this to depend on runtime
113 // properties (see `Runtime::GetHashTableMaxLoadFactor()` checking for low memory mode).
114 constexpr double kImageInternTableMaxLoadFactor = 0.6;
115
116 // Separate objects into multiple bins to optimize dirty memory use.
117 static constexpr bool kBinObjects = true;
118
AllocateBootImageLiveObjects(Thread * self,Runtime * runtime)119 static ObjPtr<mirror::ObjectArray<mirror::Object>> AllocateBootImageLiveObjects(
120 Thread* self, Runtime* runtime) REQUIRES_SHARED(Locks::mutator_lock_) {
121 ClassLinker* class_linker = runtime->GetClassLinker();
122 // The objects used for the Integer.valueOf() intrinsic must remain live even if references
123 // to them are removed using reflection. Image roots are not accessible through reflection,
124 // so the array we construct here shall keep them alive.
125 StackHandleScope<1> hs(self);
126 Handle<mirror::ObjectArray<mirror::Object>> integer_cache =
127 hs.NewHandle(IntrinsicObjects::LookupIntegerCache(self, class_linker));
128 size_t live_objects_size =
129 enum_cast<size_t>(ImageHeader::kIntrinsicObjectsStart) +
130 ((integer_cache != nullptr) ? (/* cache */ 1u + integer_cache->GetLength()) : 0u);
131 ObjPtr<mirror::ObjectArray<mirror::Object>> live_objects =
132 mirror::ObjectArray<mirror::Object>::Alloc(
133 self, GetClassRoot<mirror::ObjectArray<mirror::Object>>(class_linker), live_objects_size);
134 if (live_objects == nullptr) {
135 return nullptr;
136 }
137 int32_t index = 0u;
138 auto set_entry = [&](ImageHeader::BootImageLiveObjects entry,
139 ObjPtr<mirror::Object> value) REQUIRES_SHARED(Locks::mutator_lock_) {
140 DCHECK_EQ(index, enum_cast<int32_t>(entry));
141 live_objects->Set</*kTransacrionActive=*/ false>(index, value);
142 ++index;
143 };
144 set_entry(ImageHeader::kOomeWhenThrowingException,
145 runtime->GetPreAllocatedOutOfMemoryErrorWhenThrowingException());
146 set_entry(ImageHeader::kOomeWhenThrowingOome,
147 runtime->GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME());
148 set_entry(ImageHeader::kOomeWhenHandlingStackOverflow,
149 runtime->GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow());
150 set_entry(ImageHeader::kNoClassDefFoundError, runtime->GetPreAllocatedNoClassDefFoundError());
151 set_entry(ImageHeader::kClearedJniWeakSentinel, runtime->GetSentinel().Read());
152
153 DCHECK_EQ(index, enum_cast<int32_t>(ImageHeader::kIntrinsicObjectsStart));
154 if (integer_cache != nullptr) {
155 live_objects->Set(index++, integer_cache.Get());
156 for (int32_t i = 0, length = integer_cache->GetLength(); i != length; ++i) {
157 live_objects->Set(index++, integer_cache->Get(i));
158 }
159 }
160 CHECK_EQ(index, live_objects->GetLength());
161
162 if (kIsDebugBuild && integer_cache != nullptr) {
163 CHECK_EQ(integer_cache.Get(), IntrinsicObjects::GetIntegerValueOfCache(live_objects));
164 for (int32_t i = 0, len = integer_cache->GetLength(); i != len; ++i) {
165 CHECK_EQ(integer_cache->GetWithoutChecks(i),
166 IntrinsicObjects::GetIntegerValueOfObject(live_objects, i));
167 }
168 }
169 return live_objects;
170 }
171
172 template <typename MirrorType>
DecodeGlobalWithoutRB(JavaVMExt * vm,jobject obj)173 ObjPtr<MirrorType> ImageWriter::DecodeGlobalWithoutRB(JavaVMExt* vm, jobject obj) {
174 DCHECK_EQ(IndirectReferenceTable::GetIndirectRefKind(obj), kGlobal);
175 return ObjPtr<MirrorType>::DownCast(vm->globals_.Get<kWithoutReadBarrier>(obj));
176 }
177
178 template <typename MirrorType>
DecodeWeakGlobalWithoutRB(JavaVMExt * vm,Thread * self,jobject obj)179 ObjPtr<MirrorType> ImageWriter::DecodeWeakGlobalWithoutRB(
180 JavaVMExt* vm, Thread* self, jobject obj) {
181 DCHECK_EQ(IndirectReferenceTable::GetIndirectRefKind(obj), kWeakGlobal);
182 DCHECK(vm->MayAccessWeakGlobals(self));
183 return ObjPtr<MirrorType>::DownCast(vm->weak_globals_.Get<kWithoutReadBarrier>(obj));
184 }
185
GetAppClassLoader() const186 ObjPtr<mirror::ClassLoader> ImageWriter::GetAppClassLoader() const
187 REQUIRES_SHARED(Locks::mutator_lock_) {
188 return compiler_options_.IsAppImage()
189 ? ObjPtr<mirror::ClassLoader>::DownCast(Thread::Current()->DecodeJObject(app_class_loader_))
190 : nullptr;
191 }
192
IsImageDexCache(ObjPtr<mirror::DexCache> dex_cache) const193 bool ImageWriter::IsImageDexCache(ObjPtr<mirror::DexCache> dex_cache) const {
194 // For boot image, we keep all dex caches.
195 if (compiler_options_.IsBootImage()) {
196 return true;
197 }
198 // Dex caches already in the boot image do not belong to the image being written.
199 if (IsInBootImage(dex_cache.Ptr())) {
200 return false;
201 }
202 // Dex caches for the boot class path components that are not part of the boot image
203 // cannot be garbage collected in PrepareImageAddressSpace() but we do not want to
204 // include them in the app image.
205 if (!ContainsElement(compiler_options_.GetDexFilesForOatFile(), dex_cache->GetDexFile())) {
206 return false;
207 }
208 return true;
209 }
210
ClearDexFileCookies()211 static void ClearDexFileCookies() REQUIRES_SHARED(Locks::mutator_lock_) {
212 auto visitor = [](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
213 DCHECK(obj != nullptr);
214 Class* klass = obj->GetClass();
215 if (klass == WellKnownClasses::dalvik_system_DexFile) {
216 ArtField* field = WellKnownClasses::dalvik_system_DexFile_cookie;
217 // Null out the cookie to enable determinism. b/34090128
218 field->SetObject</*kTransactionActive*/false>(obj, nullptr);
219 }
220 };
221 Runtime::Current()->GetHeap()->VisitObjects(visitor);
222 }
223
PrepareImageAddressSpace(TimingLogger * timings)224 bool ImageWriter::PrepareImageAddressSpace(TimingLogger* timings) {
225 target_ptr_size_ = InstructionSetPointerSize(compiler_options_.GetInstructionSet());
226
227 Thread* const self = Thread::Current();
228
229 gc::Heap* const heap = Runtime::Current()->GetHeap();
230 {
231 ScopedObjectAccess soa(self);
232 {
233 TimingLogger::ScopedTiming t("PruneNonImageClasses", timings);
234 PruneNonImageClasses(); // Remove junk
235 }
236
237 if (UNLIKELY(!CreateImageRoots())) {
238 self->AssertPendingOOMException();
239 self->ClearException();
240 return false;
241 }
242
243 if (compiler_options_.IsAppImage()) {
244 TimingLogger::ScopedTiming t("ClearDexFileCookies", timings);
245 // Clear dex file cookies for app images to enable app image determinism. This is required
246 // since the cookie field contains long pointers to DexFiles which are not deterministic.
247 // b/34090128
248 ClearDexFileCookies();
249 }
250 }
251
252 {
253 TimingLogger::ScopedTiming t("CollectGarbage", timings);
254 heap->CollectGarbage(/* clear_soft_references */ false); // Remove garbage.
255 }
256
257 if (kIsDebugBuild) {
258 ScopedObjectAccess soa(self);
259 CheckNonImageClassesRemoved();
260 }
261
262 // From this point on, there should be no GC, so we should not use unnecessary read barriers.
263 ScopedDebugDisallowReadBarriers sddrb(self);
264
265 {
266 // All remaining weak interns are referenced. Promote them to strong interns. Whether a
267 // string was strongly or weakly interned, we shall make it strongly interned in the image.
268 TimingLogger::ScopedTiming t("PromoteInterns", timings);
269 ScopedObjectAccess soa(self);
270 PromoteWeakInternsToStrong(self);
271 }
272
273 {
274 TimingLogger::ScopedTiming t("CalculateNewObjectOffsets", timings);
275 ScopedObjectAccess soa(self);
276 CalculateNewObjectOffsets();
277
278 // If dirty_image_objects_ is present - try optimizing object layout.
279 // It can only be done after the first CalculateNewObjectOffsets,
280 // because calculated offsets are used to match dirty objects between imgdiag and dex2oat.
281 if (compiler_options_.IsBootImage() && dirty_image_objects_ != nullptr) {
282 TryRecalculateOffsetsWithDirtyObjects();
283 }
284 }
285
286 // This needs to happen after CalculateNewObjectOffsets since it relies on intern_table_bytes_ and
287 // bin size sums being calculated.
288 TimingLogger::ScopedTiming t("AllocMemory", timings);
289 return AllocMemory();
290 }
291
CopyMetadata()292 void ImageWriter::CopyMetadata() {
293 DCHECK(compiler_options_.IsAppImage());
294 CHECK_EQ(image_infos_.size(), 1u);
295
296 const ImageInfo& image_info = image_infos_.back();
297 dchecked_vector<ImageSection> image_sections = image_info.CreateImageSections().second;
298
299 auto* sfo_section_base = reinterpret_cast<AppImageReferenceOffsetInfo*>(
300 image_info.image_.Begin() +
301 image_sections[ImageHeader::kSectionStringReferenceOffsets].Offset());
302
303 std::copy(image_info.string_reference_offsets_.begin(),
304 image_info.string_reference_offsets_.end(),
305 sfo_section_base);
306 }
307
308 // NO_THREAD_SAFETY_ANALYSIS: Avoid locking the `Locks::intern_table_lock_` while single-threaded.
IsStronglyInternedString(ObjPtr<mirror::String> str)309 bool ImageWriter::IsStronglyInternedString(ObjPtr<mirror::String> str) NO_THREAD_SAFETY_ANALYSIS {
310 uint32_t hash = static_cast<uint32_t>(str->GetStoredHashCode());
311 if (hash == 0u && str->ComputeHashCode() != 0) {
312 // A string with uninitialized hash code cannot be interned.
313 return false;
314 }
315 InternTable* intern_table = Runtime::Current()->GetInternTable();
316 for (InternTable::Table::InternalTable& table : intern_table->strong_interns_.tables_) {
317 auto it = table.set_.FindWithHash(GcRoot<mirror::String>(str), hash);
318 if (it != table.set_.end()) {
319 return it->Read<kWithoutReadBarrier>() == str;
320 }
321 }
322 return false;
323 }
324
IsInternedAppImageStringReference(ObjPtr<mirror::Object> referred_obj) const325 bool ImageWriter::IsInternedAppImageStringReference(ObjPtr<mirror::Object> referred_obj) const {
326 return referred_obj != nullptr &&
327 !IsInBootImage(referred_obj.Ptr()) &&
328 referred_obj->IsString() &&
329 IsStronglyInternedString(referred_obj->AsString());
330 }
331
Write(int image_fd,const std::vector<std::string> & image_filenames,size_t component_count)332 bool ImageWriter::Write(int image_fd,
333 const std::vector<std::string>& image_filenames,
334 size_t component_count) {
335 // If image_fd or oat_fd are not File::kInvalidFd then we may have empty strings in
336 // image_filenames or oat_filenames.
337 CHECK(!image_filenames.empty());
338 if (image_fd != File::kInvalidFd) {
339 CHECK_EQ(image_filenames.size(), 1u);
340 }
341 DCHECK(!oat_filenames_.empty());
342 CHECK_EQ(image_filenames.size(), oat_filenames_.size());
343
344 Thread* const self = Thread::Current();
345 ScopedDebugDisallowReadBarriers sddrb(self);
346 {
347 ScopedObjectAccess soa(self);
348 for (size_t i = 0; i < oat_filenames_.size(); ++i) {
349 CreateHeader(i, component_count);
350 CopyAndFixupNativeData(i);
351 }
352 }
353
354 {
355 // TODO: heap validation can't handle these fix up passes.
356 ScopedObjectAccess soa(self);
357 Runtime::Current()->GetHeap()->DisableObjectValidation();
358 CopyAndFixupObjects();
359 }
360
361 if (compiler_options_.IsAppImage()) {
362 CopyMetadata();
363 }
364
365 // Primary image header shall be written last for two reasons. First, this ensures
366 // that we shall not end up with a valid primary image and invalid secondary image.
367 // Second, its checksum shall include the checksums of the secondary images (XORed).
368 // This way only the primary image checksum needs to be checked to determine whether
369 // any of the images or oat files are out of date. (Oat file checksums are included
370 // in the image checksum calculation.)
371 ImageHeader* primary_header = reinterpret_cast<ImageHeader*>(image_infos_[0].image_.Begin());
372 ImageFileGuard primary_image_file;
373 for (size_t i = 0; i < image_filenames.size(); ++i) {
374 const std::string& image_filename = image_filenames[i];
375 ImageInfo& image_info = GetImageInfo(i);
376 ImageFileGuard image_file;
377 if (image_fd != File::kInvalidFd) {
378 // Ignore image_filename, it is supplied only for better diagnostic.
379 image_file.reset(new File(image_fd, unix_file::kCheckSafeUsage));
380 // Empty the file in case it already exists.
381 if (image_file != nullptr) {
382 TEMP_FAILURE_RETRY(image_file->SetLength(0));
383 TEMP_FAILURE_RETRY(image_file->Flush());
384 }
385 } else {
386 image_file.reset(OS::CreateEmptyFile(image_filename.c_str()));
387 }
388
389 if (image_file == nullptr) {
390 LOG(ERROR) << "Failed to open image file " << image_filename;
391 return false;
392 }
393
394 // Make file world readable if we have created it, i.e. when not passed as file descriptor.
395 if (image_fd == -1 && !compiler_options_.IsAppImage() && fchmod(image_file->Fd(), 0644) != 0) {
396 PLOG(ERROR) << "Failed to make image file world readable: " << image_filename;
397 return false;
398 }
399
400 // Image data size excludes the bitmap and the header.
401 ImageHeader* const image_header = reinterpret_cast<ImageHeader*>(image_info.image_.Begin());
402 std::string error_msg;
403 if (!image_header->WriteData(image_file,
404 image_info.image_.Begin(),
405 reinterpret_cast<const uint8_t*>(image_info.image_bitmap_.Begin()),
406 image_storage_mode_,
407 compiler_options_.MaxImageBlockSize(),
408 /* update_checksum= */ true,
409 &error_msg)) {
410 LOG(ERROR) << error_msg;
411 return false;
412 }
413
414 // Write header last in case the compiler gets killed in the middle of image writing.
415 // We do not want to have a corrupted image with a valid header.
416 // Delay the writing of the primary image header until after writing secondary images.
417 if (i == 0u) {
418 primary_image_file = std::move(image_file);
419 } else {
420 if (!image_file.WriteHeaderAndClose(image_filename, image_header, &error_msg)) {
421 LOG(ERROR) << error_msg;
422 return false;
423 }
424 // Update the primary image checksum with the secondary image checksum.
425 primary_header->SetImageChecksum(
426 primary_header->GetImageChecksum() ^ image_header->GetImageChecksum());
427 }
428 }
429 DCHECK(primary_image_file != nullptr);
430 std::string error_msg;
431 if (!primary_image_file.WriteHeaderAndClose(image_filenames[0], primary_header, &error_msg)) {
432 LOG(ERROR) << error_msg;
433 return false;
434 }
435
436 return true;
437 }
438
GetImageOffset(mirror::Object * object,size_t oat_index) const439 size_t ImageWriter::GetImageOffset(mirror::Object* object, size_t oat_index) const {
440 BinSlot bin_slot = GetImageBinSlot(object, oat_index);
441 const ImageInfo& image_info = GetImageInfo(oat_index);
442 size_t offset = image_info.GetBinSlotOffset(bin_slot.GetBin()) + bin_slot.GetOffset();
443 DCHECK_LT(offset, image_info.image_end_);
444 return offset;
445 }
446
SetImageBinSlot(mirror::Object * object,BinSlot bin_slot)447 void ImageWriter::SetImageBinSlot(mirror::Object* object, BinSlot bin_slot) {
448 DCHECK(object != nullptr);
449 DCHECK(!IsImageBinSlotAssigned(object));
450
451 // Before we stomp over the lock word, save the hash code for later.
452 LockWord lw(object->GetLockWord(false));
453 switch (lw.GetState()) {
454 case LockWord::kFatLocked:
455 FALLTHROUGH_INTENDED;
456 case LockWord::kThinLocked: {
457 std::ostringstream oss;
458 bool thin = (lw.GetState() == LockWord::kThinLocked);
459 oss << (thin ? "Thin" : "Fat")
460 << " locked object " << object << "(" << object->PrettyTypeOf()
461 << ") found during object copy";
462 if (thin) {
463 oss << ". Lock owner:" << lw.ThinLockOwner();
464 }
465 LOG(FATAL) << oss.str();
466 UNREACHABLE();
467 }
468 case LockWord::kUnlocked:
469 // No hash, don't need to save it.
470 break;
471 case LockWord::kHashCode:
472 DCHECK(saved_hashcode_map_.find(object) == saved_hashcode_map_.end());
473 saved_hashcode_map_.insert(std::make_pair(object, lw.GetHashCode()));
474 break;
475 default:
476 LOG(FATAL) << "UNREACHABLE";
477 UNREACHABLE();
478 }
479 object->SetLockWord(LockWord::FromForwardingAddress(bin_slot.Uint32Value()),
480 /*as_volatile=*/ false);
481 DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
482 DCHECK(IsImageBinSlotAssigned(object));
483 }
484
AssignImageBinSlot(mirror::Object * object,size_t oat_index)485 ImageWriter::Bin ImageWriter::AssignImageBinSlot(mirror::Object* object, size_t oat_index) {
486 DCHECK(object != nullptr);
487
488 // The magic happens here. We segregate objects into different bins based
489 // on how likely they are to get dirty at runtime.
490 //
491 // Likely-to-dirty objects get packed together into the same bin so that
492 // at runtime their page dirtiness ratio (how many dirty objects a page has) is
493 // maximized.
494 //
495 // This means more pages will stay either clean or shared dirty (with zygote) and
496 // the app will use less of its own (private) memory.
497 Bin bin = Bin::kRegular;
498
499 if (kBinObjects) {
500 //
501 // Changing the bin of an object is purely a memory-use tuning.
502 // It has no change on runtime correctness.
503 //
504 // Memory analysis has determined that the following types of objects get dirtied
505 // the most:
506 //
507 // * Class'es which are verified [their clinit runs only at runtime]
508 // - classes in general [because their static fields get overwritten]
509 // - initialized classes with all-final statics are unlikely to be ever dirty,
510 // so bin them separately
511 // * Art Methods that are:
512 // - native [their native entry point is not looked up until runtime]
513 // - have declaring classes that aren't initialized
514 // [their interpreter/quick entry points are trampolines until the class
515 // becomes initialized]
516 //
517 // We also assume the following objects get dirtied either never or extremely rarely:
518 // * Strings (they are immutable)
519 // * Art methods that aren't native and have initialized declared classes
520 //
521 // We assume that "regular" bin objects are highly unlikely to become dirtied,
522 // so packing them together will not result in a noticeably tighter dirty-to-clean ratio.
523 //
524 ObjPtr<mirror::Class> klass = object->GetClass<kVerifyNone, kWithoutReadBarrier>();
525 if (klass->IsStringClass<kVerifyNone>()) {
526 // Assign strings to their bin before checking dirty objects, because
527 // string intern processing expects strings to be in Bin::kString.
528 bin = Bin::kString; // Strings are almost always immutable (except for object header).
529 } else if (dirty_objects_.find(object) != dirty_objects_.end()) {
530 bin = Bin::kKnownDirty;
531 } else if (klass->IsClassClass()) {
532 bin = Bin::kClassVerified;
533 ObjPtr<mirror::Class> as_klass = object->AsClass<kVerifyNone>();
534
535 // Move known dirty objects into their own sections. This includes:
536 // - classes with dirty static fields.
537 auto is_dirty = [&](ObjPtr<mirror::Class> k) REQUIRES_SHARED(Locks::mutator_lock_) {
538 std::string temp;
539 std::string_view descriptor = k->GetDescriptor(&temp);
540 return dirty_image_objects_->find(descriptor) != dirty_image_objects_->end();
541 };
542 if (dirty_image_objects_ != nullptr && is_dirty(as_klass)) {
543 bin = Bin::kKnownDirty;
544 } else if (as_klass->IsVisiblyInitialized<kVerifyNone>()) {
545 bin = Bin::kClassInitialized;
546
547 // If the class's static fields are all final, put it into a separate bin
548 // since it's very likely it will stay clean.
549 uint32_t num_static_fields = as_klass->NumStaticFields();
550 if (num_static_fields == 0) {
551 bin = Bin::kClassInitializedFinalStatics;
552 } else {
553 // Maybe all the statics are final?
554 bool all_final = true;
555 for (uint32_t i = 0; i < num_static_fields; ++i) {
556 ArtField* field = as_klass->GetStaticField(i);
557 if (!field->IsFinal()) {
558 all_final = false;
559 break;
560 }
561 }
562
563 if (all_final) {
564 bin = Bin::kClassInitializedFinalStatics;
565 }
566 }
567 }
568 } else if (!klass->HasSuperClass()) {
569 // Only `j.l.Object` and primitive classes lack the superclass and
570 // there are no instances of primitive classes.
571 DCHECK(klass->IsObjectClass());
572 // Instance of java lang object, probably a lock object. This means it will be dirty when we
573 // synchronize on it.
574 bin = Bin::kMiscDirty;
575 } else if (klass->IsDexCacheClass<kVerifyNone>()) {
576 // Dex file field becomes dirty when the image is loaded.
577 bin = Bin::kMiscDirty;
578 }
579 // else bin = kBinRegular
580 }
581
582 AssignImageBinSlot(object, oat_index, bin);
583 return bin;
584 }
585
AssignImageBinSlot(mirror::Object * object,size_t oat_index,Bin bin)586 void ImageWriter::AssignImageBinSlot(mirror::Object* object, size_t oat_index, Bin bin) {
587 DCHECK(object != nullptr);
588 size_t object_size = object->SizeOf();
589
590 // Assign the oat index too.
591 if (IsMultiImage()) {
592 DCHECK(oat_index_map_.find(object) == oat_index_map_.end());
593 oat_index_map_.insert(std::make_pair(object, oat_index));
594 } else {
595 DCHECK(oat_index_map_.empty());
596 }
597
598 ImageInfo& image_info = GetImageInfo(oat_index);
599
600 size_t offset_delta = RoundUp(object_size, kObjectAlignment); // 64-bit alignment
601 // How many bytes the current bin is at (aligned).
602 size_t current_offset = image_info.GetBinSlotSize(bin);
603 // Move the current bin size up to accommodate the object we just assigned a bin slot.
604 image_info.IncrementBinSlotSize(bin, offset_delta);
605
606 BinSlot new_bin_slot(bin, current_offset);
607 SetImageBinSlot(object, new_bin_slot);
608
609 image_info.IncrementBinSlotCount(bin, 1u);
610
611 // Grow the image closer to the end by the object we just assigned.
612 image_info.image_end_ += offset_delta;
613 }
614
WillMethodBeDirty(ArtMethod * m) const615 bool ImageWriter::WillMethodBeDirty(ArtMethod* m) const {
616 if (m->IsNative()) {
617 return true;
618 }
619 ObjPtr<mirror::Class> declaring_class = m->GetDeclaringClass<kWithoutReadBarrier>();
620 // Initialized is highly unlikely to dirty since there's no entry points to mutate.
621 return declaring_class == nullptr ||
622 declaring_class->GetStatus() != ClassStatus::kVisiblyInitialized;
623 }
624
IsImageBinSlotAssigned(mirror::Object * object) const625 bool ImageWriter::IsImageBinSlotAssigned(mirror::Object* object) const {
626 DCHECK(object != nullptr);
627
628 // We always stash the bin slot into a lockword, in the 'forwarding address' state.
629 // If it's in some other state, then we haven't yet assigned an image bin slot.
630 if (object->GetLockWord(false).GetState() != LockWord::kForwardingAddress) {
631 return false;
632 } else if (kIsDebugBuild) {
633 LockWord lock_word = object->GetLockWord(false);
634 size_t offset = lock_word.ForwardingAddress();
635 BinSlot bin_slot(offset);
636 size_t oat_index = GetOatIndex(object);
637 const ImageInfo& image_info = GetImageInfo(oat_index);
638 DCHECK_LT(bin_slot.GetOffset(), image_info.GetBinSlotSize(bin_slot.GetBin()))
639 << "bin slot offset should not exceed the size of that bin";
640 }
641 return true;
642 }
643
GetImageBinSlot(mirror::Object * object,size_t oat_index) const644 ImageWriter::BinSlot ImageWriter::GetImageBinSlot(mirror::Object* object, size_t oat_index) const {
645 DCHECK(object != nullptr);
646 DCHECK(IsImageBinSlotAssigned(object));
647
648 LockWord lock_word = object->GetLockWord(false);
649 size_t offset = lock_word.ForwardingAddress(); // TODO: ForwardingAddress should be uint32_t
650 DCHECK_LE(offset, std::numeric_limits<uint32_t>::max());
651
652 BinSlot bin_slot(static_cast<uint32_t>(offset));
653 DCHECK_LT(bin_slot.GetOffset(), GetImageInfo(oat_index).GetBinSlotSize(bin_slot.GetBin()));
654
655 return bin_slot;
656 }
657
UpdateImageBinSlotOffset(mirror::Object * object,size_t oat_index,size_t new_offset)658 void ImageWriter::UpdateImageBinSlotOffset(mirror::Object* object,
659 size_t oat_index,
660 size_t new_offset) {
661 BinSlot old_bin_slot = GetImageBinSlot(object, oat_index);
662 DCHECK_LT(new_offset, GetImageInfo(oat_index).GetBinSlotSize(old_bin_slot.GetBin()));
663 BinSlot new_bin_slot(old_bin_slot.GetBin(), new_offset);
664 object->SetLockWord(LockWord::FromForwardingAddress(new_bin_slot.Uint32Value()),
665 /*as_volatile=*/ false);
666 DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
667 DCHECK(IsImageBinSlotAssigned(object));
668 }
669
AllocMemory()670 bool ImageWriter::AllocMemory() {
671 for (ImageInfo& image_info : image_infos_) {
672 const size_t length = RoundUp(image_info.CreateImageSections().first, kPageSize);
673
674 std::string error_msg;
675 image_info.image_ = MemMap::MapAnonymous("image writer image",
676 length,
677 PROT_READ | PROT_WRITE,
678 /*low_4gb=*/ false,
679 &error_msg);
680 if (UNLIKELY(!image_info.image_.IsValid())) {
681 LOG(ERROR) << "Failed to allocate memory for image file generation: " << error_msg;
682 return false;
683 }
684
685 // Create the image bitmap, only needs to cover mirror object section which is up to image_end_.
686 CHECK_LE(image_info.image_end_, length);
687 image_info.image_bitmap_ = gc::accounting::ContinuousSpaceBitmap::Create(
688 "image bitmap", image_info.image_.Begin(), RoundUp(image_info.image_end_, kPageSize));
689 if (!image_info.image_bitmap_.IsValid()) {
690 LOG(ERROR) << "Failed to allocate memory for image bitmap";
691 return false;
692 }
693 }
694 return true;
695 }
696
697 // This visitor follows the references of an instance, recursively then prune this class
698 // if a type of any field is pruned.
699 class ImageWriter::PruneObjectReferenceVisitor {
700 public:
PruneObjectReferenceVisitor(ImageWriter * image_writer,bool * early_exit,HashSet<mirror::Object * > * visited,bool * result)701 PruneObjectReferenceVisitor(ImageWriter* image_writer,
702 bool* early_exit,
703 HashSet<mirror::Object*>* visited,
704 bool* result)
705 : image_writer_(image_writer), early_exit_(early_exit), visited_(visited), result_(result) {}
706
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const707 ALWAYS_INLINE void VisitRootIfNonNull(
708 mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const
709 REQUIRES_SHARED(Locks::mutator_lock_) { }
710
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const711 ALWAYS_INLINE void VisitRoot(
712 mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const
713 REQUIRES_SHARED(Locks::mutator_lock_) { }
714
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const715 ALWAYS_INLINE void operator() (ObjPtr<mirror::Object> obj,
716 MemberOffset offset,
717 bool is_static ATTRIBUTE_UNUSED) const
718 REQUIRES_SHARED(Locks::mutator_lock_) {
719 mirror::Object* ref =
720 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
721 if (ref == nullptr || visited_->find(ref) != visited_->end()) {
722 return;
723 }
724
725 ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots =
726 Runtime::Current()->GetClassLinker()->GetClassRoots();
727 ObjPtr<mirror::Class> klass = ref->IsClass() ? ref->AsClass() : ref->GetClass();
728 if (klass == GetClassRoot<mirror::Method>(class_roots) ||
729 klass == GetClassRoot<mirror::Constructor>(class_roots)) {
730 // Prune all classes using reflection because the content they held will not be fixup.
731 *result_ = true;
732 }
733
734 if (ref->IsClass()) {
735 *result_ = *result_ ||
736 image_writer_->PruneImageClassInternal(ref->AsClass(), early_exit_, visited_);
737 } else {
738 // Record the object visited in case of circular reference.
739 visited_->insert(ref);
740 *result_ = *result_ ||
741 image_writer_->PruneImageClassInternal(klass, early_exit_, visited_);
742 ref->VisitReferences(*this, *this);
743 // Clean up before exit for next call of this function.
744 auto it = visited_->find(ref);
745 DCHECK(it != visited_->end());
746 visited_->erase(it);
747 }
748 }
749
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const750 ALWAYS_INLINE void operator() (ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
751 ObjPtr<mirror::Reference> ref) const
752 REQUIRES_SHARED(Locks::mutator_lock_) {
753 operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
754 }
755
756 private:
757 ImageWriter* image_writer_;
758 bool* early_exit_;
759 HashSet<mirror::Object*>* visited_;
760 bool* const result_;
761 };
762
763
PruneImageClass(ObjPtr<mirror::Class> klass)764 bool ImageWriter::PruneImageClass(ObjPtr<mirror::Class> klass) {
765 bool early_exit = false;
766 HashSet<mirror::Object*> visited;
767 return PruneImageClassInternal(klass, &early_exit, &visited);
768 }
769
PruneImageClassInternal(ObjPtr<mirror::Class> klass,bool * early_exit,HashSet<mirror::Object * > * visited)770 bool ImageWriter::PruneImageClassInternal(
771 ObjPtr<mirror::Class> klass,
772 bool* early_exit,
773 HashSet<mirror::Object*>* visited) {
774 DCHECK(early_exit != nullptr);
775 DCHECK(visited != nullptr);
776 DCHECK(compiler_options_.IsAppImage() || compiler_options_.IsBootImageExtension());
777 if (klass == nullptr || IsInBootImage(klass.Ptr())) {
778 return false;
779 }
780 auto found = prune_class_memo_.find(klass.Ptr());
781 if (found != prune_class_memo_.end()) {
782 // Already computed, return the found value.
783 return found->second;
784 }
785 // Circular dependencies, return false but do not store the result in the memoization table.
786 if (visited->find(klass.Ptr()) != visited->end()) {
787 *early_exit = true;
788 return false;
789 }
790 visited->insert(klass.Ptr());
791 bool result = klass->IsBootStrapClassLoaded();
792 std::string temp;
793 // Prune if not an image class, this handles any broken sets of image classes such as having a
794 // class in the set but not it's superclass.
795 result = result || !compiler_options_.IsImageClass(klass->GetDescriptor(&temp));
796 bool my_early_exit = false; // Only for ourselves, ignore caller.
797 // Remove classes that failed to verify since we don't want to have java.lang.VerifyError in the
798 // app image.
799 if (klass->IsErroneous()) {
800 result = true;
801 } else {
802 ObjPtr<mirror::ClassExt> ext(klass->GetExtData());
803 CHECK(ext.IsNull() || ext->GetErroneousStateError() == nullptr) << klass->PrettyClass();
804 }
805 if (!result) {
806 // Check interfaces since these wont be visited through VisitReferences.)
807 ObjPtr<mirror::IfTable> if_table = klass->GetIfTable();
808 for (size_t i = 0, num_interfaces = klass->GetIfTableCount(); i < num_interfaces; ++i) {
809 result = result || PruneImageClassInternal(if_table->GetInterface(i),
810 &my_early_exit,
811 visited);
812 }
813 }
814 if (klass->IsObjectArrayClass()) {
815 result = result || PruneImageClassInternal(klass->GetComponentType(),
816 &my_early_exit,
817 visited);
818 }
819 // Check static fields and their classes.
820 if (klass->IsResolved() && klass->NumReferenceStaticFields() != 0) {
821 size_t num_static_fields = klass->NumReferenceStaticFields();
822 // Presumably GC can happen when we are cross compiling, it should not cause performance
823 // problems to do pointer size logic.
824 MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset(
825 Runtime::Current()->GetClassLinker()->GetImagePointerSize());
826 for (size_t i = 0u; i < num_static_fields; ++i) {
827 mirror::Object* ref = klass->GetFieldObject<mirror::Object>(field_offset);
828 if (ref != nullptr) {
829 if (ref->IsClass()) {
830 result = result || PruneImageClassInternal(ref->AsClass(), &my_early_exit, visited);
831 } else {
832 mirror::Class* type = ref->GetClass();
833 result = result || PruneImageClassInternal(type, &my_early_exit, visited);
834 if (!result) {
835 // For non-class case, also go through all the types mentioned by it's fields'
836 // references recursively to decide whether to keep this class.
837 bool tmp = false;
838 PruneObjectReferenceVisitor visitor(this, &my_early_exit, visited, &tmp);
839 ref->VisitReferences(visitor, visitor);
840 result = result || tmp;
841 }
842 }
843 }
844 field_offset = MemberOffset(field_offset.Uint32Value() +
845 sizeof(mirror::HeapReference<mirror::Object>));
846 }
847 }
848 result = result || PruneImageClassInternal(klass->GetSuperClass(), &my_early_exit, visited);
849 // Remove the class if the dex file is not in the set of dex files. This happens for classes that
850 // are from uses-library if there is no profile. b/30688277
851 ObjPtr<mirror::DexCache> dex_cache = klass->GetDexCache();
852 if (dex_cache != nullptr) {
853 result = result ||
854 dex_file_oat_index_map_.find(dex_cache->GetDexFile()) == dex_file_oat_index_map_.end();
855 }
856 // Erase the element we stored earlier since we are exiting the function.
857 auto it = visited->find(klass.Ptr());
858 DCHECK(it != visited->end());
859 visited->erase(it);
860 // Only store result if it is true or none of the calls early exited due to circular
861 // dependencies. If visited is empty then we are the root caller, in this case the cycle was in
862 // a child call and we can remember the result.
863 if (result == true || !my_early_exit || visited->empty()) {
864 prune_class_memo_.Overwrite(klass.Ptr(), result);
865 }
866 *early_exit |= my_early_exit;
867 return result;
868 }
869
KeepClass(ObjPtr<mirror::Class> klass)870 bool ImageWriter::KeepClass(ObjPtr<mirror::Class> klass) {
871 if (klass == nullptr) {
872 return false;
873 }
874 if (IsInBootImage(klass.Ptr())) {
875 // Already in boot image, return true.
876 DCHECK(!compiler_options_.IsBootImage());
877 return true;
878 }
879 std::string temp;
880 if (!compiler_options_.IsImageClass(klass->GetDescriptor(&temp))) {
881 return false;
882 }
883 if (compiler_options_.IsAppImage()) {
884 // For app images, we need to prune classes that
885 // are defined by the boot class path we're compiling against but not in
886 // the boot image spaces since these may have already been loaded at
887 // run time when this image is loaded. Keep classes in the boot image
888 // spaces we're compiling against since we don't want to re-resolve these.
889 return !PruneImageClass(klass);
890 }
891 return true;
892 }
893
894 class ImageWriter::PruneClassesVisitor : public ClassVisitor {
895 public:
PruneClassesVisitor(ImageWriter * image_writer,ObjPtr<mirror::ClassLoader> class_loader)896 PruneClassesVisitor(ImageWriter* image_writer, ObjPtr<mirror::ClassLoader> class_loader)
897 : image_writer_(image_writer),
898 class_loader_(class_loader),
899 classes_to_prune_(),
900 defined_class_count_(0u) { }
901
operator ()(ObjPtr<mirror::Class> klass)902 bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES_SHARED(Locks::mutator_lock_) {
903 if (!image_writer_->KeepClass(klass.Ptr())) {
904 classes_to_prune_.insert(klass.Ptr());
905 if (klass->GetClassLoader() == class_loader_) {
906 ++defined_class_count_;
907 }
908 }
909 return true;
910 }
911
Prune()912 size_t Prune() REQUIRES_SHARED(Locks::mutator_lock_) {
913 ClassTable* class_table =
914 Runtime::Current()->GetClassLinker()->ClassTableForClassLoader(class_loader_);
915 WriterMutexLock mu(Thread::Current(), class_table->lock_);
916 // App class loader class tables contain only one internal set. The boot class path class
917 // table also contains class sets from boot images we're compiling against but we are not
918 // pruning these boot image classes, so all classes to remove are in the last set.
919 DCHECK(!class_table->classes_.empty());
920 ClassTable::ClassSet& last_class_set = class_table->classes_.back();
921 for (mirror::Class* klass : classes_to_prune_) {
922 uint32_t hash = klass->DescriptorHash();
923 auto it = last_class_set.FindWithHash(ClassTable::TableSlot(klass, hash), hash);
924 DCHECK(it != last_class_set.end());
925 last_class_set.erase(it);
926 DCHECK(std::none_of(class_table->classes_.begin(),
927 class_table->classes_.end(),
928 [klass, hash](ClassTable::ClassSet& class_set)
929 REQUIRES_SHARED(Locks::mutator_lock_) {
930 ClassTable::TableSlot slot(klass, hash);
931 return class_set.FindWithHash(slot, hash) != class_set.end();
932 }));
933 }
934 return defined_class_count_;
935 }
936
937 private:
938 ImageWriter* const image_writer_;
939 const ObjPtr<mirror::ClassLoader> class_loader_;
940 HashSet<mirror::Class*> classes_to_prune_;
941 size_t defined_class_count_;
942 };
943
944 class ImageWriter::PruneClassLoaderClassesVisitor : public ClassLoaderVisitor {
945 public:
PruneClassLoaderClassesVisitor(ImageWriter * image_writer)946 explicit PruneClassLoaderClassesVisitor(ImageWriter* image_writer)
947 : image_writer_(image_writer), removed_class_count_(0) {}
948
Visit(ObjPtr<mirror::ClassLoader> class_loader)949 void Visit(ObjPtr<mirror::ClassLoader> class_loader) override
950 REQUIRES_SHARED(Locks::mutator_lock_) {
951 PruneClassesVisitor classes_visitor(image_writer_, class_loader);
952 ClassTable* class_table =
953 Runtime::Current()->GetClassLinker()->ClassTableForClassLoader(class_loader);
954 class_table->Visit(classes_visitor);
955 removed_class_count_ += classes_visitor.Prune();
956 }
957
GetRemovedClassCount() const958 size_t GetRemovedClassCount() const {
959 return removed_class_count_;
960 }
961
962 private:
963 ImageWriter* const image_writer_;
964 size_t removed_class_count_;
965 };
966
VisitClassLoaders(ClassLoaderVisitor * visitor)967 void ImageWriter::VisitClassLoaders(ClassLoaderVisitor* visitor) {
968 WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
969 visitor->Visit(nullptr); // Visit boot class loader.
970 Runtime::Current()->GetClassLinker()->VisitClassLoaders(visitor);
971 }
972
PruneNonImageClasses()973 void ImageWriter::PruneNonImageClasses() {
974 Runtime* runtime = Runtime::Current();
975 ClassLinker* class_linker = runtime->GetClassLinker();
976 Thread* self = Thread::Current();
977 ScopedAssertNoThreadSuspension sa(__FUNCTION__);
978
979 // Prune uses-library dex caches. Only prune the uses-library dex caches since we want to make
980 // sure the other ones don't get unloaded before the OatWriter runs.
981 class_linker->VisitClassTables(
982 [&](ClassTable* table) REQUIRES_SHARED(Locks::mutator_lock_) {
983 table->RemoveStrongRoots(
984 [&](GcRoot<mirror::Object> root) REQUIRES_SHARED(Locks::mutator_lock_) {
985 ObjPtr<mirror::Object> obj = root.Read();
986 if (obj->IsDexCache()) {
987 // Return true if the dex file is not one of the ones in the map.
988 return dex_file_oat_index_map_.find(obj->AsDexCache()->GetDexFile()) ==
989 dex_file_oat_index_map_.end();
990 }
991 // Return false to avoid removing.
992 return false;
993 });
994 });
995
996 // Remove the undesired classes from the class roots.
997 {
998 PruneClassLoaderClassesVisitor class_loader_visitor(this);
999 VisitClassLoaders(&class_loader_visitor);
1000 VLOG(compiler) << "Pruned " << class_loader_visitor.GetRemovedClassCount() << " classes";
1001 }
1002
1003 // Completely clear DexCaches.
1004 dchecked_vector<ObjPtr<mirror::DexCache>> dex_caches = FindDexCaches(self);
1005 for (ObjPtr<mirror::DexCache> dex_cache : dex_caches) {
1006 dex_cache->ResetNativeArrays();
1007 }
1008
1009 // Drop the array class cache in the ClassLinker, as these are roots holding those classes live.
1010 class_linker->DropFindArrayClassCache();
1011
1012 // Clear to save RAM.
1013 prune_class_memo_.clear();
1014 }
1015
FindDexCaches(Thread * self)1016 dchecked_vector<ObjPtr<mirror::DexCache>> ImageWriter::FindDexCaches(Thread* self) {
1017 dchecked_vector<ObjPtr<mirror::DexCache>> dex_caches;
1018 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1019 ReaderMutexLock mu2(self, *Locks::dex_lock_);
1020 dex_caches.reserve(class_linker->GetDexCachesData().size());
1021 for (const auto& entry : class_linker->GetDexCachesData()) {
1022 const ClassLinker::DexCacheData& data = entry.second;
1023 if (self->IsJWeakCleared(data.weak_root)) {
1024 continue;
1025 }
1026 dex_caches.push_back(self->DecodeJObject(data.weak_root)->AsDexCache());
1027 }
1028 return dex_caches;
1029 }
1030
CheckNonImageClassesRemoved()1031 void ImageWriter::CheckNonImageClassesRemoved() {
1032 auto visitor = [&](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
1033 if (obj->IsClass() && !IsInBootImage(obj)) {
1034 ObjPtr<Class> klass = obj->AsClass();
1035 if (!KeepClass(klass)) {
1036 DumpImageClasses();
1037 CHECK(KeepClass(klass))
1038 << Runtime::Current()->GetHeap()->GetVerification()->FirstPathFromRootSet(klass);
1039 }
1040 }
1041 };
1042 gc::Heap* heap = Runtime::Current()->GetHeap();
1043 heap->VisitObjects(visitor);
1044 }
1045
PromoteWeakInternsToStrong(Thread * self)1046 void ImageWriter::PromoteWeakInternsToStrong(Thread* self) {
1047 InternTable* intern_table = Runtime::Current()->GetInternTable();
1048 MutexLock mu(self, *Locks::intern_table_lock_);
1049 DCHECK_EQ(intern_table->weak_interns_.tables_.size(), 1u);
1050 for (GcRoot<mirror::String>& entry : intern_table->weak_interns_.tables_.front().set_) {
1051 ObjPtr<mirror::String> s = entry.Read<kWithoutReadBarrier>();
1052 DCHECK(!IsStronglyInternedString(s));
1053 uint32_t hash = static_cast<uint32_t>(s->GetStoredHashCode());
1054 intern_table->InsertStrong(s, hash);
1055 }
1056 intern_table->weak_interns_.tables_.front().set_.clear();
1057 }
1058
DumpImageClasses()1059 void ImageWriter::DumpImageClasses() {
1060 for (const std::string& image_class : compiler_options_.GetImageClasses()) {
1061 LOG(INFO) << " " << image_class;
1062 }
1063 }
1064
CreateImageRoots()1065 bool ImageWriter::CreateImageRoots() {
1066 Runtime* runtime = Runtime::Current();
1067 ClassLinker* class_linker = runtime->GetClassLinker();
1068 Thread* self = Thread::Current();
1069 VariableSizedHandleScope handles(self);
1070
1071 // Prepare boot image live objects if we're compiling a boot image or boot image extension.
1072 Handle<mirror::ObjectArray<mirror::Object>> boot_image_live_objects;
1073 if (compiler_options_.IsBootImage()) {
1074 boot_image_live_objects = handles.NewHandle(AllocateBootImageLiveObjects(self, runtime));
1075 if (boot_image_live_objects == nullptr) {
1076 return false;
1077 }
1078 } else if (compiler_options_.IsBootImageExtension()) {
1079 gc::Heap* heap = runtime->GetHeap();
1080 DCHECK(!heap->GetBootImageSpaces().empty());
1081 const ImageHeader& primary_header = heap->GetBootImageSpaces().front()->GetImageHeader();
1082 boot_image_live_objects = handles.NewHandle(ObjPtr<ObjectArray<Object>>::DownCast(
1083 primary_header.GetImageRoot<kWithReadBarrier>(ImageHeader::kBootImageLiveObjects)));
1084 DCHECK(boot_image_live_objects != nullptr);
1085 }
1086
1087 // Collect dex caches and the sizes of dex cache arrays.
1088 struct DexCacheRecord {
1089 uint64_t registration_index;
1090 Handle<mirror::DexCache> dex_cache;
1091 size_t oat_index;
1092 };
1093 size_t num_oat_files = oat_filenames_.size();
1094 dchecked_vector<size_t> dex_cache_counts(num_oat_files, 0u);
1095 dchecked_vector<DexCacheRecord> dex_cache_records;
1096 dex_cache_records.reserve(dex_file_oat_index_map_.size());
1097 {
1098 ReaderMutexLock mu(self, *Locks::dex_lock_);
1099 // Count number of dex caches not in the boot image.
1100 for (const auto& entry : class_linker->GetDexCachesData()) {
1101 const ClassLinker::DexCacheData& data = entry.second;
1102 ObjPtr<mirror::DexCache> dex_cache =
1103 ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root));
1104 if (dex_cache == nullptr) {
1105 continue;
1106 }
1107 const DexFile* dex_file = dex_cache->GetDexFile();
1108 auto it = dex_file_oat_index_map_.find(dex_file);
1109 if (it != dex_file_oat_index_map_.end()) {
1110 size_t oat_index = it->second;
1111 DCHECK(IsImageDexCache(dex_cache));
1112 ++dex_cache_counts[oat_index];
1113 Handle<mirror::DexCache> h_dex_cache = handles.NewHandle(dex_cache);
1114 dex_cache_records.push_back({data.registration_index, h_dex_cache, oat_index});
1115 }
1116 }
1117 }
1118
1119 // Allocate dex cache arrays.
1120 dchecked_vector<Handle<ObjectArray<Object>>> dex_cache_arrays;
1121 dex_cache_arrays.reserve(num_oat_files);
1122 for (size_t oat_index = 0; oat_index != num_oat_files; ++oat_index) {
1123 ObjPtr<ObjectArray<Object>> dex_caches = ObjectArray<Object>::Alloc(
1124 self, GetClassRoot<ObjectArray<Object>>(class_linker), dex_cache_counts[oat_index]);
1125 if (dex_caches == nullptr) {
1126 return false;
1127 }
1128 dex_cache_counts[oat_index] = 0u; // Reset count for filling in dex caches below.
1129 dex_cache_arrays.push_back(handles.NewHandle(dex_caches));
1130 }
1131
1132 // Sort dex caches by registration index to make output deterministic.
1133 std::sort(dex_cache_records.begin(),
1134 dex_cache_records.end(),
1135 [](const DexCacheRecord& lhs, const DexCacheRecord&rhs) {
1136 return lhs.registration_index < rhs.registration_index;
1137 });
1138
1139 // Fill dex cache arrays.
1140 for (const DexCacheRecord& record : dex_cache_records) {
1141 ObjPtr<ObjectArray<Object>> dex_caches = dex_cache_arrays[record.oat_index].Get();
1142 dex_caches->SetWithoutChecks</*kTransactionActive=*/ false>(
1143 dex_cache_counts[record.oat_index], record.dex_cache.Get());
1144 ++dex_cache_counts[record.oat_index];
1145 }
1146
1147 // Create image roots with empty dex cache arrays.
1148 image_roots_.reserve(num_oat_files);
1149 JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
1150 for (size_t oat_index = 0; oat_index != num_oat_files; ++oat_index) {
1151 // Build an Object[] of the roots needed to restore the runtime.
1152 int32_t image_roots_size = ImageHeader::NumberOfImageRoots(compiler_options_.IsAppImage());
1153 ObjPtr<ObjectArray<Object>> image_roots = ObjectArray<Object>::Alloc(
1154 self, GetClassRoot<ObjectArray<Object>>(class_linker), image_roots_size);
1155 if (image_roots == nullptr) {
1156 return false;
1157 }
1158 ObjPtr<ObjectArray<Object>> dex_caches = dex_cache_arrays[oat_index].Get();
1159 CHECK_EQ(dex_cache_counts[oat_index],
1160 dchecked_integral_cast<size_t>(dex_caches->GetLength<kVerifyNone>()))
1161 << "The number of non-image dex caches changed.";
1162 image_roots->SetWithoutChecks</*kTransactionActive=*/ false>(
1163 ImageHeader::kDexCaches, dex_caches);
1164 image_roots->SetWithoutChecks</*kTransactionActive=*/ false>(
1165 ImageHeader::kClassRoots, class_linker->GetClassRoots());
1166 if (!compiler_options_.IsAppImage()) {
1167 DCHECK(boot_image_live_objects != nullptr);
1168 image_roots->SetWithoutChecks</*kTransactionActive=*/ false>(
1169 ImageHeader::kBootImageLiveObjects, boot_image_live_objects.Get());
1170 } else {
1171 DCHECK(boot_image_live_objects.GetReference() == nullptr);
1172 image_roots->SetWithoutChecks</*kTransactionActive=*/ false>(
1173 ImageHeader::kAppImageClassLoader, GetAppClassLoader());
1174 }
1175 for (int32_t i = 0; i != image_roots_size; ++i) {
1176 CHECK(image_roots->Get(i) != nullptr);
1177 }
1178 image_roots_.push_back(vm->AddGlobalRef(self, image_roots));
1179 }
1180
1181 return true;
1182 }
1183
RecordNativeRelocations(ObjPtr<mirror::Class> klass,size_t oat_index)1184 void ImageWriter::RecordNativeRelocations(ObjPtr<mirror::Class> klass, size_t oat_index) {
1185 // Visit and assign offsets for fields and field arrays.
1186 DCHECK_EQ(oat_index, GetOatIndexForClass(klass));
1187 DCHECK(!klass->IsErroneous()) << klass->GetStatus();
1188 if (compiler_options_.IsAppImage()) {
1189 // Extra consistency check: no boot loader classes should be left!
1190 CHECK(!klass->IsBootStrapClassLoaded()) << klass->PrettyClass();
1191 }
1192 LengthPrefixedArray<ArtField>* fields[] = {
1193 klass->GetSFieldsPtr(), klass->GetIFieldsPtr(),
1194 };
1195 ImageInfo& image_info = GetImageInfo(oat_index);
1196 for (LengthPrefixedArray<ArtField>* cur_fields : fields) {
1197 // Total array length including header.
1198 if (cur_fields != nullptr) {
1199 // Forward the entire array at once.
1200 size_t offset = image_info.GetBinSlotSize(Bin::kArtField);
1201 DCHECK(!IsInBootImage(cur_fields));
1202 bool inserted =
1203 native_object_relocations_.insert(std::make_pair(
1204 cur_fields,
1205 NativeObjectRelocation{
1206 oat_index, offset, NativeObjectRelocationType::kArtFieldArray
1207 })).second;
1208 CHECK(inserted) << "Field array " << cur_fields << " already forwarded";
1209 const size_t size = LengthPrefixedArray<ArtField>::ComputeSize(cur_fields->size());
1210 offset += size;
1211 image_info.IncrementBinSlotSize(Bin::kArtField, size);
1212 DCHECK_EQ(offset, image_info.GetBinSlotSize(Bin::kArtField));
1213 }
1214 }
1215 // Visit and assign offsets for methods.
1216 size_t num_methods = klass->NumMethods();
1217 if (num_methods != 0) {
1218 bool any_dirty = false;
1219 for (auto& m : klass->GetMethods(target_ptr_size_)) {
1220 if (WillMethodBeDirty(&m)) {
1221 any_dirty = true;
1222 break;
1223 }
1224 }
1225 NativeObjectRelocationType type = any_dirty
1226 ? NativeObjectRelocationType::kArtMethodDirty
1227 : NativeObjectRelocationType::kArtMethodClean;
1228 Bin bin_type = BinTypeForNativeRelocationType(type);
1229 // Forward the entire array at once, but header first.
1230 const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_);
1231 const size_t method_size = ArtMethod::Size(target_ptr_size_);
1232 const size_t header_size = LengthPrefixedArray<ArtMethod>::ComputeSize(0,
1233 method_size,
1234 method_alignment);
1235 LengthPrefixedArray<ArtMethod>* array = klass->GetMethodsPtr();
1236 size_t offset = image_info.GetBinSlotSize(bin_type);
1237 DCHECK(!IsInBootImage(array));
1238 bool inserted =
1239 native_object_relocations_.insert(std::make_pair(
1240 array,
1241 NativeObjectRelocation{
1242 oat_index,
1243 offset,
1244 any_dirty ? NativeObjectRelocationType::kArtMethodArrayDirty
1245 : NativeObjectRelocationType::kArtMethodArrayClean
1246 })).second;
1247 CHECK(inserted) << "Method array " << array << " already forwarded";
1248 image_info.IncrementBinSlotSize(bin_type, header_size);
1249 for (auto& m : klass->GetMethods(target_ptr_size_)) {
1250 AssignMethodOffset(&m, type, oat_index);
1251 }
1252 (any_dirty ? dirty_methods_ : clean_methods_) += num_methods;
1253 }
1254 // Assign offsets for all runtime methods in the IMT since these may hold conflict tables
1255 // live.
1256 if (klass->ShouldHaveImt()) {
1257 ImTable* imt = klass->GetImt(target_ptr_size_);
1258 if (TryAssignImTableOffset(imt, oat_index)) {
1259 // Since imt's can be shared only do this the first time to not double count imt method
1260 // fixups.
1261 for (size_t i = 0; i < ImTable::kSize; ++i) {
1262 ArtMethod* imt_method = imt->Get(i, target_ptr_size_);
1263 DCHECK(imt_method != nullptr);
1264 if (imt_method->IsRuntimeMethod() &&
1265 !IsInBootImage(imt_method) &&
1266 !NativeRelocationAssigned(imt_method)) {
1267 AssignMethodOffset(imt_method, NativeObjectRelocationType::kRuntimeMethod, oat_index);
1268 }
1269 }
1270 }
1271 }
1272 }
1273
NativeRelocationAssigned(void * ptr) const1274 bool ImageWriter::NativeRelocationAssigned(void* ptr) const {
1275 return native_object_relocations_.find(ptr) != native_object_relocations_.end();
1276 }
1277
TryAssignImTableOffset(ImTable * imt,size_t oat_index)1278 bool ImageWriter::TryAssignImTableOffset(ImTable* imt, size_t oat_index) {
1279 // No offset, or already assigned.
1280 if (imt == nullptr || IsInBootImage(imt) || NativeRelocationAssigned(imt)) {
1281 return false;
1282 }
1283 // If the method is a conflict method we also want to assign the conflict table offset.
1284 ImageInfo& image_info = GetImageInfo(oat_index);
1285 const size_t size = ImTable::SizeInBytes(target_ptr_size_);
1286 native_object_relocations_.insert(std::make_pair(
1287 imt,
1288 NativeObjectRelocation{
1289 oat_index,
1290 image_info.GetBinSlotSize(Bin::kImTable),
1291 NativeObjectRelocationType::kIMTable
1292 }));
1293 image_info.IncrementBinSlotSize(Bin::kImTable, size);
1294 return true;
1295 }
1296
TryAssignConflictTableOffset(ImtConflictTable * table,size_t oat_index)1297 void ImageWriter::TryAssignConflictTableOffset(ImtConflictTable* table, size_t oat_index) {
1298 // No offset, or already assigned.
1299 if (table == nullptr || NativeRelocationAssigned(table)) {
1300 return;
1301 }
1302 CHECK(!IsInBootImage(table));
1303 // If the method is a conflict method we also want to assign the conflict table offset.
1304 ImageInfo& image_info = GetImageInfo(oat_index);
1305 const size_t size = table->ComputeSize(target_ptr_size_);
1306 native_object_relocations_.insert(std::make_pair(
1307 table,
1308 NativeObjectRelocation{
1309 oat_index,
1310 image_info.GetBinSlotSize(Bin::kIMTConflictTable),
1311 NativeObjectRelocationType::kIMTConflictTable
1312 }));
1313 image_info.IncrementBinSlotSize(Bin::kIMTConflictTable, size);
1314 }
1315
AssignMethodOffset(ArtMethod * method,NativeObjectRelocationType type,size_t oat_index)1316 void ImageWriter::AssignMethodOffset(ArtMethod* method,
1317 NativeObjectRelocationType type,
1318 size_t oat_index) {
1319 DCHECK(!IsInBootImage(method));
1320 CHECK(!NativeRelocationAssigned(method)) << "Method " << method << " already assigned "
1321 << ArtMethod::PrettyMethod(method);
1322 if (method->IsRuntimeMethod()) {
1323 TryAssignConflictTableOffset(method->GetImtConflictTable(target_ptr_size_), oat_index);
1324 }
1325 ImageInfo& image_info = GetImageInfo(oat_index);
1326 Bin bin_type = BinTypeForNativeRelocationType(type);
1327 size_t offset = image_info.GetBinSlotSize(bin_type);
1328 native_object_relocations_.insert(
1329 std::make_pair(method, NativeObjectRelocation{oat_index, offset, type}));
1330 image_info.IncrementBinSlotSize(bin_type, ArtMethod::Size(target_ptr_size_));
1331 }
1332
1333 class ImageWriter::LayoutHelper {
1334 public:
LayoutHelper(ImageWriter * image_writer)1335 explicit LayoutHelper(ImageWriter* image_writer)
1336 : image_writer_(image_writer) {
1337 bin_objects_.resize(image_writer_->image_infos_.size());
1338 for (auto& inner : bin_objects_) {
1339 inner.resize(enum_cast<size_t>(Bin::kMirrorCount));
1340 }
1341 }
1342
1343 void ProcessDexFileObjects(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
1344 void ProcessRoots(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
1345 void FinalizeInternTables() REQUIRES_SHARED(Locks::mutator_lock_);
1346 // Recreate dirty object offsets (kKnownDirty bin) with objects sorted by sort_key.
1347 void SortDirtyObjects(const HashMap<mirror::Object*, uint32_t>& dirty_objects, size_t oat_index)
1348 REQUIRES_SHARED(Locks::mutator_lock_);
1349
1350 void VerifyImageBinSlotsAssigned() REQUIRES_SHARED(Locks::mutator_lock_);
1351
1352 void FinalizeBinSlotOffsets() REQUIRES_SHARED(Locks::mutator_lock_);
1353
1354 /*
1355 * Collects the string reference info necessary for loading app images.
1356 *
1357 * Because AppImages may contain interned strings that must be deduplicated
1358 * with previously interned strings when loading the app image, we need to
1359 * visit references to these strings and update them to point to the correct
1360 * string. To speed up the visiting of references at load time we include
1361 * a list of offsets to string references in the AppImage.
1362 */
1363 void CollectStringReferenceInfo() REQUIRES_SHARED(Locks::mutator_lock_);
1364
1365 private:
1366 class CollectClassesVisitor;
1367 class CollectStringReferenceVisitor;
1368 class VisitReferencesVisitor;
1369
1370 void ProcessInterns(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
1371 void ProcessWorkQueue() REQUIRES_SHARED(Locks::mutator_lock_);
1372
1373 using WorkQueue = std::deque<std::pair<ObjPtr<mirror::Object>, size_t>>;
1374
1375 void VisitReferences(ObjPtr<mirror::Object> obj, size_t oat_index)
1376 REQUIRES_SHARED(Locks::mutator_lock_);
1377 bool TryAssignBinSlot(ObjPtr<mirror::Object> obj, size_t oat_index)
1378 REQUIRES_SHARED(Locks::mutator_lock_);
1379 void AssignImageBinSlot(ObjPtr<mirror::Object> object, size_t oat_index, Bin bin)
1380 REQUIRES_SHARED(Locks::mutator_lock_);
1381
1382 ImageWriter* const image_writer_;
1383
1384 // Work list of <object, oat_index> for objects. Everything in the queue must already be
1385 // assigned a bin slot.
1386 WorkQueue work_queue_;
1387
1388 // Objects for individual bins. Indexed by `oat_index` and `bin`.
1389 // Cannot use ObjPtr<> because of invalidation in Heap::VisitObjects().
1390 dchecked_vector<dchecked_vector<dchecked_vector<mirror::Object*>>> bin_objects_;
1391
1392 // Interns that do not have a corresponding StringId in any of the input dex files.
1393 // These shall be assigned to individual images based on the `oat_index` that we
1394 // see as we visit them during the work queue processing.
1395 dchecked_vector<mirror::String*> non_dex_file_interns_;
1396 };
1397
1398 class ImageWriter::LayoutHelper::CollectClassesVisitor {
1399 public:
CollectClassesVisitor(ImageWriter * image_writer)1400 explicit CollectClassesVisitor(ImageWriter* image_writer)
1401 : image_writer_(image_writer),
1402 dex_files_(image_writer_->compiler_options_.GetDexFilesForOatFile()) {}
1403
operator ()(ObjPtr<mirror::Class> klass)1404 bool operator()(ObjPtr<mirror::Class> klass) REQUIRES_SHARED(Locks::mutator_lock_) {
1405 if (!image_writer_->IsInBootImage(klass.Ptr())) {
1406 ObjPtr<mirror::Class> component_type = klass;
1407 size_t dimension = 0u;
1408 while (component_type->IsArrayClass<kVerifyNone>()) {
1409 ++dimension;
1410 component_type = component_type->GetComponentType<kVerifyNone, kWithoutReadBarrier>();
1411 }
1412 DCHECK(!component_type->IsProxyClass());
1413 size_t dex_file_index;
1414 uint32_t class_def_index = 0u;
1415 if (UNLIKELY(component_type->IsPrimitive())) {
1416 DCHECK(image_writer_->compiler_options_.IsBootImage());
1417 dex_file_index = 0u;
1418 class_def_index = enum_cast<uint32_t>(component_type->GetPrimitiveType());
1419 } else {
1420 auto it = std::find(dex_files_.begin(), dex_files_.end(), &component_type->GetDexFile());
1421 DCHECK(it != dex_files_.end()) << klass->PrettyDescriptor();
1422 dex_file_index = std::distance(dex_files_.begin(), it) + 1u; // 0 is for primitive types.
1423 class_def_index = component_type->GetDexClassDefIndex();
1424 }
1425 klasses_.push_back({klass, dex_file_index, class_def_index, dimension});
1426 }
1427 return true;
1428 }
1429
ProcessCollectedClasses(Thread * self)1430 WorkQueue ProcessCollectedClasses(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) {
1431 std::sort(klasses_.begin(), klasses_.end());
1432
1433 ImageWriter* image_writer = image_writer_;
1434 WorkQueue work_queue;
1435 size_t last_dex_file_index = static_cast<size_t>(-1);
1436 size_t last_oat_index = static_cast<size_t>(-1);
1437 for (const ClassEntry& entry : klasses_) {
1438 if (last_dex_file_index != entry.dex_file_index) {
1439 if (UNLIKELY(entry.dex_file_index == 0u)) {
1440 last_oat_index = GetDefaultOatIndex(); // Primitive type.
1441 } else {
1442 uint32_t dex_file_index = entry.dex_file_index - 1u; // 0 is for primitive types.
1443 last_oat_index = image_writer->GetOatIndexForDexFile(dex_files_[dex_file_index]);
1444 }
1445 last_dex_file_index = entry.dex_file_index;
1446 }
1447 // Count the number of classes for class tables.
1448 image_writer->image_infos_[last_oat_index].class_table_size_ += 1u;
1449 work_queue.emplace_back(entry.klass, last_oat_index);
1450 }
1451 klasses_.clear();
1452
1453 // Prepare image class tables.
1454 dchecked_vector<mirror::Class*> boot_image_classes;
1455 if (image_writer->compiler_options_.IsAppImage()) {
1456 DCHECK_EQ(image_writer->image_infos_.size(), 1u);
1457 ImageInfo& image_info = image_writer->image_infos_[0];
1458 // Log the non-boot image class count for app image for debugging purposes.
1459 VLOG(compiler) << "Dex2Oat:AppImage:classCount = " << image_info.class_table_size_;
1460 // Collect boot image classes referenced by app class loader's class table.
1461 JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
1462 auto app_class_loader = DecodeGlobalWithoutRB<mirror::ClassLoader>(
1463 vm, image_writer->app_class_loader_);
1464 ClassTable* app_class_table = app_class_loader->GetClassTable();
1465 ReaderMutexLock lock(self, app_class_table->lock_);
1466 DCHECK_EQ(app_class_table->classes_.size(), 1u);
1467 const ClassTable::ClassSet& app_class_set = app_class_table->classes_[0];
1468 DCHECK_GE(app_class_set.size(), image_info.class_table_size_);
1469 boot_image_classes.reserve(app_class_set.size() - image_info.class_table_size_);
1470 for (const ClassTable::TableSlot& slot : app_class_set) {
1471 mirror::Class* klass = slot.Read<kWithoutReadBarrier>().Ptr();
1472 if (image_writer->IsInBootImage(klass)) {
1473 boot_image_classes.push_back(klass);
1474 }
1475 }
1476 DCHECK_EQ(app_class_set.size() - image_info.class_table_size_, boot_image_classes.size());
1477 // Increase the app class table size to include referenced boot image classes.
1478 image_info.class_table_size_ = app_class_set.size();
1479 }
1480 for (ImageInfo& image_info : image_writer->image_infos_) {
1481 if (image_info.class_table_size_ != 0u) {
1482 // Make sure the class table shall be full by allocating a buffer of the right size.
1483 size_t buffer_size = static_cast<size_t>(
1484 ceil(image_info.class_table_size_ / kImageClassTableMaxLoadFactor));
1485 image_info.class_table_buffer_.reset(new ClassTable::TableSlot[buffer_size]);
1486 DCHECK(image_info.class_table_buffer_ != nullptr);
1487 image_info.class_table_.emplace(kImageClassTableMinLoadFactor,
1488 kImageClassTableMaxLoadFactor,
1489 image_info.class_table_buffer_.get(),
1490 buffer_size);
1491 }
1492 }
1493 for (const auto& pair : work_queue) {
1494 ObjPtr<mirror::Class> klass = pair.first->AsClass();
1495 size_t oat_index = pair.second;
1496 DCHECK(image_writer->image_infos_[oat_index].class_table_.has_value());
1497 ClassTable::ClassSet& class_table = *image_writer->image_infos_[oat_index].class_table_;
1498 uint32_t hash = klass->DescriptorHash();
1499 bool inserted = class_table.InsertWithHash(ClassTable::TableSlot(klass, hash), hash).second;
1500 DCHECK(inserted) << "Class " << klass->PrettyDescriptor()
1501 << " (" << klass.Ptr() << ") already inserted";
1502 }
1503 if (image_writer->compiler_options_.IsAppImage()) {
1504 DCHECK_EQ(image_writer->image_infos_.size(), 1u);
1505 ImageInfo& image_info = image_writer->image_infos_[0];
1506 if (image_info.class_table_size_ != 0u) {
1507 // Insert boot image class references to the app class table.
1508 // The order of insertion into the app class loader's ClassTable is non-deterministic,
1509 // so sort the boot image classes by the boot image address to get deterministic table.
1510 std::sort(boot_image_classes.begin(), boot_image_classes.end());
1511 DCHECK(image_info.class_table_.has_value());
1512 ClassTable::ClassSet& table = *image_info.class_table_;
1513 for (mirror::Class* klass : boot_image_classes) {
1514 uint32_t hash = klass->DescriptorHash();
1515 bool inserted = table.InsertWithHash(ClassTable::TableSlot(klass, hash), hash).second;
1516 DCHECK(inserted) << "Boot image class " << klass->PrettyDescriptor()
1517 << " (" << klass << ") already inserted";
1518 }
1519 DCHECK_EQ(table.size(), image_info.class_table_size_);
1520 }
1521 }
1522 for (ImageInfo& image_info : image_writer->image_infos_) {
1523 DCHECK_EQ(image_info.class_table_bytes_, 0u);
1524 if (image_info.class_table_size_ != 0u) {
1525 DCHECK(image_info.class_table_.has_value());
1526 DCHECK_EQ(image_info.class_table_->size(), image_info.class_table_size_);
1527 image_info.class_table_bytes_ = image_info.class_table_->WriteToMemory(nullptr);
1528 DCHECK_NE(image_info.class_table_bytes_, 0u);
1529 } else {
1530 DCHECK(!image_info.class_table_.has_value());
1531 }
1532 }
1533
1534 return work_queue;
1535 }
1536
1537 private:
1538 struct ClassEntry {
1539 ObjPtr<mirror::Class> klass;
1540 // We shall sort classes by dex file, class def index and array dimension.
1541 size_t dex_file_index;
1542 uint32_t class_def_index;
1543 size_t dimension;
1544
operator <art::linker::ImageWriter::LayoutHelper::CollectClassesVisitor::ClassEntry1545 bool operator<(const ClassEntry& other) const {
1546 return std::tie(dex_file_index, class_def_index, dimension) <
1547 std::tie(other.dex_file_index, other.class_def_index, other.dimension);
1548 }
1549 };
1550
1551 ImageWriter* const image_writer_;
1552 const ArrayRef<const DexFile* const> dex_files_;
1553 std::deque<ClassEntry> klasses_;
1554 };
1555
1556 class ImageWriter::LayoutHelper::CollectStringReferenceVisitor {
1557 public:
CollectStringReferenceVisitor(const ImageWriter * image_writer,size_t oat_index,dchecked_vector<AppImageReferenceOffsetInfo> * const string_reference_offsets,ObjPtr<mirror::Object> current_obj)1558 explicit CollectStringReferenceVisitor(
1559 const ImageWriter* image_writer,
1560 size_t oat_index,
1561 dchecked_vector<AppImageReferenceOffsetInfo>* const string_reference_offsets,
1562 ObjPtr<mirror::Object> current_obj)
1563 : image_writer_(image_writer),
1564 oat_index_(oat_index),
1565 string_reference_offsets_(string_reference_offsets),
1566 current_obj_(current_obj) {}
1567
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1568 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1569 REQUIRES_SHARED(Locks::mutator_lock_) {
1570 if (!root->IsNull()) {
1571 VisitRoot(root);
1572 }
1573 }
1574
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1575 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1576 REQUIRES_SHARED(Locks::mutator_lock_) {
1577 // Only dex caches have native String roots. These are collected separately.
1578 DCHECK((current_obj_->IsDexCache<kVerifyNone, kWithoutReadBarrier>()) ||
1579 !image_writer_->IsInternedAppImageStringReference(root->AsMirrorPtr()))
1580 << mirror::Object::PrettyTypeOf(current_obj_);
1581 }
1582
1583 // Collects info for managed fields that reference managed Strings.
operator ()(ObjPtr<mirror::Object> obj,MemberOffset member_offset,bool is_static ATTRIBUTE_UNUSED) const1584 void operator() (ObjPtr<mirror::Object> obj,
1585 MemberOffset member_offset,
1586 bool is_static ATTRIBUTE_UNUSED) const
1587 REQUIRES_SHARED(Locks::mutator_lock_) {
1588 ObjPtr<mirror::Object> referred_obj =
1589 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(member_offset);
1590
1591 if (image_writer_->IsInternedAppImageStringReference(referred_obj)) {
1592 size_t base_offset = image_writer_->GetImageOffset(current_obj_.Ptr(), oat_index_);
1593 string_reference_offsets_->emplace_back(base_offset, member_offset.Uint32Value());
1594 }
1595 }
1596
1597 ALWAYS_INLINE
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const1598 void operator() (ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
1599 ObjPtr<mirror::Reference> ref) const
1600 REQUIRES_SHARED(Locks::mutator_lock_) {
1601 operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
1602 }
1603
1604 private:
1605 const ImageWriter* const image_writer_;
1606 const size_t oat_index_;
1607 dchecked_vector<AppImageReferenceOffsetInfo>* const string_reference_offsets_;
1608 const ObjPtr<mirror::Object> current_obj_;
1609 };
1610
1611 class ImageWriter::LayoutHelper::VisitReferencesVisitor {
1612 public:
VisitReferencesVisitor(LayoutHelper * helper,size_t oat_index)1613 VisitReferencesVisitor(LayoutHelper* helper, size_t oat_index)
1614 : helper_(helper), oat_index_(oat_index) {}
1615
1616 // We do not visit native roots. These are handled with other logic.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const1617 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
1618 const {
1619 LOG(FATAL) << "UNREACHABLE";
1620 }
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const1621 void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {
1622 LOG(FATAL) << "UNREACHABLE";
1623 }
1624
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const1625 ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> obj,
1626 MemberOffset offset,
1627 bool is_static ATTRIBUTE_UNUSED) const
1628 REQUIRES_SHARED(Locks::mutator_lock_) {
1629 mirror::Object* ref =
1630 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
1631 VisitReference(ref);
1632 }
1633
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const1634 ALWAYS_INLINE void operator() (ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
1635 ObjPtr<mirror::Reference> ref) const
1636 REQUIRES_SHARED(Locks::mutator_lock_) {
1637 operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
1638 }
1639
1640 private:
VisitReference(mirror::Object * ref) const1641 void VisitReference(mirror::Object* ref) const REQUIRES_SHARED(Locks::mutator_lock_) {
1642 if (helper_->TryAssignBinSlot(ref, oat_index_)) {
1643 // Remember how many objects we're adding at the front of the queue as we want
1644 // to reverse that range to process these references in the order of addition.
1645 helper_->work_queue_.emplace_front(ref, oat_index_);
1646 }
1647 if (ClassLinker::kAppImageMayContainStrings &&
1648 helper_->image_writer_->compiler_options_.IsAppImage() &&
1649 helper_->image_writer_->IsInternedAppImageStringReference(ref)) {
1650 helper_->image_writer_->image_infos_[oat_index_].num_string_references_ += 1u;
1651 }
1652 }
1653
1654 LayoutHelper* const helper_;
1655 const size_t oat_index_;
1656 };
1657
1658 // Visit method pointer arrays in `klass` that were not inherited from its superclass.
1659 template <typename Visitor>
VisitNewMethodPointerArrays(ObjPtr<mirror::Class> klass,Visitor && visitor)1660 static void VisitNewMethodPointerArrays(ObjPtr<mirror::Class> klass, Visitor&& visitor)
1661 REQUIRES_SHARED(Locks::mutator_lock_) {
1662 ObjPtr<mirror::Class> super = klass->GetSuperClass<kVerifyNone, kWithoutReadBarrier>();
1663 ObjPtr<mirror::PointerArray> vtable = klass->GetVTable<kVerifyNone, kWithoutReadBarrier>();
1664 if (vtable != nullptr &&
1665 (super == nullptr || vtable != super->GetVTable<kVerifyNone, kWithoutReadBarrier>())) {
1666 visitor(vtable);
1667 }
1668 int32_t iftable_count = klass->GetIfTableCount();
1669 int32_t super_iftable_count = (super != nullptr) ? super->GetIfTableCount() : 0;
1670 ObjPtr<mirror::IfTable> iftable = klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>();
1671 ObjPtr<mirror::IfTable> super_iftable =
1672 (super != nullptr) ? super->GetIfTable<kVerifyNone, kWithoutReadBarrier>() : nullptr;
1673 for (int32_t i = 0; i < iftable_count; ++i) {
1674 ObjPtr<mirror::PointerArray> methods =
1675 iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i);
1676 ObjPtr<mirror::PointerArray> super_methods = (i < super_iftable_count)
1677 ? super_iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i)
1678 : nullptr;
1679 if (methods != super_methods) {
1680 DCHECK(methods != nullptr);
1681 if (i < super_iftable_count) {
1682 DCHECK(super_methods != nullptr);
1683 DCHECK_EQ(methods->GetLength(), super_methods->GetLength());
1684 }
1685 visitor(methods);
1686 }
1687 }
1688 }
1689
ProcessDexFileObjects(Thread * self)1690 void ImageWriter::LayoutHelper::ProcessDexFileObjects(Thread* self) {
1691 Runtime* runtime = Runtime::Current();
1692 ClassLinker* class_linker = runtime->GetClassLinker();
1693 const CompilerOptions& compiler_options = image_writer_->compiler_options_;
1694 JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
1695
1696 // To ensure deterministic output, populate the work queue with objects in a pre-defined order.
1697 // Note: If we decide to implement a profile-guided layout, this is the place to do so.
1698
1699 // Get initial work queue with the image classes and assign their bin slots.
1700 CollectClassesVisitor visitor(image_writer_);
1701 {
1702 WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
1703 if (compiler_options.IsBootImage() || compiler_options.IsBootImageExtension()) {
1704 // No need to filter based on class loader, boot class table contains only
1705 // classes defined by the boot class loader.
1706 ClassTable* class_table = class_linker->boot_class_table_.get();
1707 class_table->Visit<kWithoutReadBarrier>(visitor);
1708 } else {
1709 // No need to visit boot class table as there are no classes there for the app image.
1710 for (const ClassLinker::ClassLoaderData& data : class_linker->class_loaders_) {
1711 auto class_loader =
1712 DecodeWeakGlobalWithoutRB<mirror::ClassLoader>(vm, self, data.weak_root);
1713 if (class_loader != nullptr) {
1714 ClassTable* class_table = class_loader->GetClassTable();
1715 if (class_table != nullptr) {
1716 // Visit only classes defined in this class loader (avoid visiting multiple times).
1717 auto filtering_visitor = [&visitor, class_loader](ObjPtr<mirror::Class> klass)
1718 REQUIRES_SHARED(Locks::mutator_lock_) {
1719 if (klass->GetClassLoader<kVerifyNone, kWithoutReadBarrier>() == class_loader) {
1720 visitor(klass);
1721 }
1722 return true;
1723 };
1724 class_table->Visit<kWithoutReadBarrier>(filtering_visitor);
1725 }
1726 }
1727 }
1728 }
1729 }
1730 DCHECK(work_queue_.empty());
1731 work_queue_ = visitor.ProcessCollectedClasses(self);
1732 for (const std::pair<ObjPtr<mirror::Object>, size_t>& entry : work_queue_) {
1733 DCHECK(entry.first != nullptr);
1734 ObjPtr<mirror::Class> klass = entry.first->AsClass();
1735 size_t oat_index = entry.second;
1736 DCHECK(!image_writer_->IsInBootImage(klass.Ptr()));
1737 DCHECK(!image_writer_->IsImageBinSlotAssigned(klass.Ptr()));
1738 image_writer_->RecordNativeRelocations(klass, oat_index);
1739 Bin klass_bin = image_writer_->AssignImageBinSlot(klass.Ptr(), oat_index);
1740 bin_objects_[oat_index][enum_cast<size_t>(klass_bin)].push_back(klass.Ptr());
1741
1742 auto method_pointer_array_visitor =
1743 [&](ObjPtr<mirror::PointerArray> pointer_array) REQUIRES_SHARED(Locks::mutator_lock_) {
1744 constexpr Bin bin = kBinObjects ? Bin::kInternalClean : Bin::kRegular;
1745 image_writer_->AssignImageBinSlot(pointer_array.Ptr(), oat_index, bin);
1746 bin_objects_[oat_index][enum_cast<size_t>(bin)].push_back(pointer_array.Ptr());
1747 // No need to add to the work queue. The class reference, if not in the boot image
1748 // (that is, when compiling the primary boot image), is already in the work queue.
1749 };
1750 VisitNewMethodPointerArrays(klass, method_pointer_array_visitor);
1751 }
1752
1753 // Assign bin slots to dex caches.
1754 {
1755 ReaderMutexLock mu(self, *Locks::dex_lock_);
1756 for (const DexFile* dex_file : compiler_options.GetDexFilesForOatFile()) {
1757 auto it = image_writer_->dex_file_oat_index_map_.find(dex_file);
1758 DCHECK(it != image_writer_->dex_file_oat_index_map_.end()) << dex_file->GetLocation();
1759 const size_t oat_index = it->second;
1760 // Assign bin slot to this file's dex cache and add it to the end of the work queue.
1761 auto dcd_it = class_linker->GetDexCachesData().find(dex_file);
1762 DCHECK(dcd_it != class_linker->GetDexCachesData().end()) << dex_file->GetLocation();
1763 auto dex_cache =
1764 DecodeWeakGlobalWithoutRB<mirror::DexCache>(vm, self, dcd_it->second.weak_root);
1765 DCHECK(dex_cache != nullptr);
1766 bool assigned = TryAssignBinSlot(dex_cache, oat_index);
1767 DCHECK(assigned);
1768 work_queue_.emplace_back(dex_cache, oat_index);
1769 }
1770 }
1771
1772 // Assign interns to images depending on the first dex file they appear in.
1773 // Record those that do not have a StringId in any dex file.
1774 ProcessInterns(self);
1775
1776 // Since classes and dex caches have been assigned to their bins, when we process a class
1777 // we do not follow through the class references or dex caches, so we correctly process
1778 // only objects actually belonging to that class before taking a new class from the queue.
1779 // If multiple class statics reference the same object (directly or indirectly), the object
1780 // is treated as belonging to the first encountered referencing class.
1781 ProcessWorkQueue();
1782 }
1783
ProcessRoots(Thread * self)1784 void ImageWriter::LayoutHelper::ProcessRoots(Thread* self) {
1785 // Assign bin slots to the image roots and boot image live objects, add them to the work queue
1786 // and process the work queue. These objects reference other objects needed for the image, for
1787 // example the array of dex cache references, or the pre-allocated exceptions for the boot image.
1788 DCHECK(work_queue_.empty());
1789
1790 constexpr Bin clean_bin = kBinObjects ? Bin::kInternalClean : Bin::kRegular;
1791 size_t num_oat_files = image_writer_->oat_filenames_.size();
1792 JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
1793 for (size_t oat_index = 0; oat_index != num_oat_files; ++oat_index) {
1794 // Put image roots and dex caches into `clean_bin`.
1795 auto image_roots = DecodeGlobalWithoutRB<mirror::ObjectArray<mirror::Object>>(
1796 vm, image_writer_->image_roots_[oat_index]);
1797 AssignImageBinSlot(image_roots, oat_index, clean_bin);
1798 work_queue_.emplace_back(image_roots, oat_index);
1799 // Do not rely on the `work_queue_` for dex cache arrays, it would assign a different bin.
1800 ObjPtr<ObjectArray<Object>> dex_caches = ObjPtr<ObjectArray<Object>>::DownCast(
1801 image_roots->GetWithoutChecks<kVerifyNone, kWithoutReadBarrier>(ImageHeader::kDexCaches));
1802 AssignImageBinSlot(dex_caches, oat_index, clean_bin);
1803 work_queue_.emplace_back(dex_caches, oat_index);
1804 }
1805 // Do not rely on the `work_queue_` for boot image live objects, it would assign a different bin.
1806 if (image_writer_->compiler_options_.IsBootImage()) {
1807 ObjPtr<mirror::ObjectArray<mirror::Object>> boot_image_live_objects =
1808 image_writer_->boot_image_live_objects_;
1809 AssignImageBinSlot(boot_image_live_objects, GetDefaultOatIndex(), clean_bin);
1810 work_queue_.emplace_back(boot_image_live_objects, GetDefaultOatIndex());
1811 }
1812
1813 ProcessWorkQueue();
1814 }
1815
ProcessInterns(Thread * self)1816 void ImageWriter::LayoutHelper::ProcessInterns(Thread* self) {
1817 // String bins are empty at this point.
1818 DCHECK(std::all_of(bin_objects_.begin(),
1819 bin_objects_.end(),
1820 [](const auto& bins) {
1821 return bins[enum_cast<size_t>(Bin::kString)].empty();
1822 }));
1823
1824 // There is only one non-boot image intern table and it's the last one.
1825 InternTable* const intern_table = Runtime::Current()->GetInternTable();
1826 MutexLock mu(self, *Locks::intern_table_lock_);
1827 DCHECK_EQ(std::count_if(intern_table->strong_interns_.tables_.begin(),
1828 intern_table->strong_interns_.tables_.end(),
1829 [](const InternTable::Table::InternalTable& table) {
1830 return !table.IsBootImage();
1831 }),
1832 1);
1833 DCHECK(!intern_table->strong_interns_.tables_.back().IsBootImage());
1834 const InternTable::UnorderedSet& intern_set = intern_table->strong_interns_.tables_.back().set_;
1835
1836 // Assign bin slots to all interns with a corresponding StringId in one of the input dex files.
1837 ImageWriter* image_writer = image_writer_;
1838 for (const DexFile* dex_file : image_writer->compiler_options_.GetDexFilesForOatFile()) {
1839 auto it = image_writer->dex_file_oat_index_map_.find(dex_file);
1840 DCHECK(it != image_writer->dex_file_oat_index_map_.end()) << dex_file->GetLocation();
1841 const size_t oat_index = it->second;
1842 // Assign bin slots for strings defined in this dex file in StringId (lexicographical) order.
1843 auto& string_bin_objects = bin_objects_[oat_index][enum_cast<size_t>(Bin::kString)];
1844 for (size_t i = 0, count = dex_file->NumStringIds(); i != count; ++i) {
1845 uint32_t utf16_length;
1846 const char* utf8_data = dex_file->StringDataAndUtf16LengthByIdx(dex::StringIndex(i),
1847 &utf16_length);
1848 uint32_t hash = InternTable::Utf8String::Hash(utf16_length, utf8_data);
1849 auto intern_it =
1850 intern_set.FindWithHash(InternTable::Utf8String(utf16_length, utf8_data), hash);
1851 if (intern_it != intern_set.end()) {
1852 mirror::String* string = intern_it->Read<kWithoutReadBarrier>();
1853 DCHECK(string != nullptr);
1854 DCHECK(!image_writer->IsInBootImage(string));
1855 if (!image_writer->IsImageBinSlotAssigned(string)) {
1856 Bin bin = image_writer->AssignImageBinSlot(string, oat_index);
1857 DCHECK_EQ(bin, kBinObjects ? Bin::kString : Bin::kRegular);
1858 string_bin_objects.push_back(string);
1859 } else {
1860 // We have already seen this string in a previous dex file.
1861 DCHECK(dex_file != image_writer->compiler_options_.GetDexFilesForOatFile().front());
1862 }
1863 }
1864 }
1865 }
1866
1867 // String bins have been filled with dex file interns. Record their numbers in image infos.
1868 DCHECK_EQ(bin_objects_.size(), image_writer_->image_infos_.size());
1869 size_t total_dex_file_interns = 0u;
1870 for (size_t oat_index = 0, size = bin_objects_.size(); oat_index != size; ++oat_index) {
1871 size_t num_dex_file_interns = bin_objects_[oat_index][enum_cast<size_t>(Bin::kString)].size();
1872 ImageInfo& image_info = image_writer_->GetImageInfo(oat_index);
1873 DCHECK_EQ(image_info.intern_table_size_, 0u);
1874 image_info.intern_table_size_ = num_dex_file_interns;
1875 total_dex_file_interns += num_dex_file_interns;
1876 }
1877
1878 // Collect interns that do not have a corresponding StringId in any of the input dex files.
1879 non_dex_file_interns_.reserve(intern_set.size() - total_dex_file_interns);
1880 for (const GcRoot<mirror::String>& root : intern_set) {
1881 mirror::String* string = root.Read<kWithoutReadBarrier>();
1882 if (!image_writer->IsImageBinSlotAssigned(string)) {
1883 non_dex_file_interns_.push_back(string);
1884 }
1885 }
1886 DCHECK_EQ(intern_set.size(), total_dex_file_interns + non_dex_file_interns_.size());
1887 }
1888
FinalizeInternTables()1889 void ImageWriter::LayoutHelper::FinalizeInternTables() {
1890 // Remove interns that do not have a bin slot assigned. These correspond
1891 // to the DexCache locations excluded in VerifyImageBinSlotsAssigned().
1892 ImageWriter* image_writer = image_writer_;
1893 auto retained_end = std::remove_if(
1894 non_dex_file_interns_.begin(),
1895 non_dex_file_interns_.end(),
1896 [=](mirror::String* string) REQUIRES_SHARED(Locks::mutator_lock_) {
1897 return !image_writer->IsImageBinSlotAssigned(string);
1898 });
1899 non_dex_file_interns_.resize(std::distance(non_dex_file_interns_.begin(), retained_end));
1900
1901 // Sort `non_dex_file_interns_` based on oat index and bin offset.
1902 ArrayRef<mirror::String*> non_dex_file_interns(non_dex_file_interns_);
1903 std::sort(non_dex_file_interns.begin(),
1904 non_dex_file_interns.end(),
1905 [=](mirror::String* lhs, mirror::String* rhs) REQUIRES_SHARED(Locks::mutator_lock_) {
1906 size_t lhs_oat_index = image_writer->GetOatIndex(lhs);
1907 size_t rhs_oat_index = image_writer->GetOatIndex(rhs);
1908 if (lhs_oat_index != rhs_oat_index) {
1909 return lhs_oat_index < rhs_oat_index;
1910 }
1911 BinSlot lhs_bin_slot = image_writer->GetImageBinSlot(lhs, lhs_oat_index);
1912 BinSlot rhs_bin_slot = image_writer->GetImageBinSlot(rhs, rhs_oat_index);
1913 return lhs_bin_slot < rhs_bin_slot;
1914 });
1915
1916 // Allocate and fill intern tables.
1917 size_t ndfi_index = 0u;
1918 DCHECK_EQ(bin_objects_.size(), image_writer->image_infos_.size());
1919 for (size_t oat_index = 0, size = bin_objects_.size(); oat_index != size; ++oat_index) {
1920 // Find the end of `non_dex_file_interns` for this oat file.
1921 size_t ndfi_end = ndfi_index;
1922 while (ndfi_end != non_dex_file_interns.size() &&
1923 image_writer->GetOatIndex(non_dex_file_interns[ndfi_end]) == oat_index) {
1924 ++ndfi_end;
1925 }
1926
1927 // Calculate final intern table size.
1928 ImageInfo& image_info = image_writer->GetImageInfo(oat_index);
1929 DCHECK_EQ(image_info.intern_table_bytes_, 0u);
1930 size_t num_dex_file_interns = image_info.intern_table_size_;
1931 size_t num_non_dex_file_interns = ndfi_end - ndfi_index;
1932 image_info.intern_table_size_ = num_dex_file_interns + num_non_dex_file_interns;
1933 if (image_info.intern_table_size_ != 0u) {
1934 // Make sure the intern table shall be full by allocating a buffer of the right size.
1935 size_t buffer_size = static_cast<size_t>(
1936 ceil(image_info.intern_table_size_ / kImageInternTableMaxLoadFactor));
1937 image_info.intern_table_buffer_.reset(new GcRoot<mirror::String>[buffer_size]);
1938 DCHECK(image_info.intern_table_buffer_ != nullptr);
1939 image_info.intern_table_.emplace(kImageInternTableMinLoadFactor,
1940 kImageInternTableMaxLoadFactor,
1941 image_info.intern_table_buffer_.get(),
1942 buffer_size);
1943
1944 // Fill the intern table. Dex file interns are at the start of the bin_objects[.][kString].
1945 InternTable::UnorderedSet& table = *image_info.intern_table_;
1946 const auto& oat_file_strings = bin_objects_[oat_index][enum_cast<size_t>(Bin::kString)];
1947 DCHECK_LE(num_dex_file_interns, oat_file_strings.size());
1948 ArrayRef<mirror::Object* const> dex_file_interns(
1949 oat_file_strings.data(), num_dex_file_interns);
1950 for (mirror::Object* string : dex_file_interns) {
1951 bool inserted = table.insert(GcRoot<mirror::String>(string->AsString())).second;
1952 DCHECK(inserted) << "String already inserted: " << string->AsString()->ToModifiedUtf8();
1953 }
1954 ArrayRef<mirror::String*> current_non_dex_file_interns =
1955 non_dex_file_interns.SubArray(ndfi_index, num_non_dex_file_interns);
1956 for (mirror::String* string : current_non_dex_file_interns) {
1957 bool inserted = table.insert(GcRoot<mirror::String>(string)).second;
1958 DCHECK(inserted) << "String already inserted: " << string->ToModifiedUtf8();
1959 }
1960
1961 // Record the intern table size in bytes.
1962 image_info.intern_table_bytes_ = table.WriteToMemory(nullptr);
1963 }
1964
1965 ndfi_index = ndfi_end;
1966 }
1967 }
1968
ProcessWorkQueue()1969 void ImageWriter::LayoutHelper::ProcessWorkQueue() {
1970 while (!work_queue_.empty()) {
1971 std::pair<ObjPtr<mirror::Object>, size_t> pair = work_queue_.front();
1972 work_queue_.pop_front();
1973 VisitReferences(/*obj=*/ pair.first, /*oat_index=*/ pair.second);
1974 }
1975 }
1976
SortDirtyObjects(const HashMap<mirror::Object *,uint32_t> & dirty_objects,size_t oat_index)1977 void ImageWriter::LayoutHelper::SortDirtyObjects(
1978 const HashMap<mirror::Object*, uint32_t>& dirty_objects, size_t oat_index) {
1979 constexpr Bin bin = Bin::kKnownDirty;
1980 ImageInfo& image_info = image_writer_->GetImageInfo(oat_index);
1981
1982 dchecked_vector<mirror::Object*>& known_dirty = bin_objects_[oat_index][enum_cast<size_t>(bin)];
1983 if (known_dirty.empty()) {
1984 return;
1985 }
1986
1987 // Collect objects and their combined sort_keys.
1988 // Combined key contains sort_key and original offset to ensure deterministic sorting.
1989 using CombinedKey = std::pair<uint32_t, uint32_t>;
1990 using ObjSortPair = std::pair<mirror::Object*, CombinedKey>;
1991 dchecked_vector<ObjSortPair> objects;
1992 objects.reserve(known_dirty.size());
1993 for (mirror::Object* obj : known_dirty) {
1994 const BinSlot bin_slot = image_writer_->GetImageBinSlot(obj, oat_index);
1995 const uint32_t original_offset = bin_slot.GetOffset();
1996 const auto it = dirty_objects.find(obj);
1997 const uint32_t sort_key = (it != dirty_objects.end()) ? it->second : 0;
1998 objects.emplace_back(obj, std::make_pair(sort_key, original_offset));
1999 }
2000 // Sort by combined sort_key.
2001 std::sort(std::begin(objects), std::end(objects), [&](ObjSortPair& lhs, ObjSortPair& rhs) {
2002 return lhs.second < rhs.second;
2003 });
2004
2005 // Fill known_dirty objects in sorted order, update bin offsets.
2006 known_dirty.clear();
2007 size_t offset = 0;
2008 for (const ObjSortPair& entry : objects) {
2009 mirror::Object* obj = entry.first;
2010
2011 known_dirty.push_back(obj);
2012 image_writer_->UpdateImageBinSlotOffset(obj, oat_index, offset);
2013
2014 const size_t aligned_object_size = RoundUp(obj->SizeOf<kVerifyNone>(), kObjectAlignment);
2015 offset += aligned_object_size;
2016 }
2017 DCHECK_EQ(offset, image_info.GetBinSlotSize(bin));
2018 }
2019
VerifyImageBinSlotsAssigned()2020 void ImageWriter::LayoutHelper::VerifyImageBinSlotsAssigned() {
2021 dchecked_vector<mirror::Object*> carveout;
2022 JavaVMExt* vm = nullptr;
2023 if (image_writer_->compiler_options_.IsAppImage()) {
2024 // Exclude boot class path dex caches that are not part of the boot image.
2025 // Also exclude their locations if they have not been visited through another path.
2026 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2027 Thread* self = Thread::Current();
2028 vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
2029 ReaderMutexLock mu(self, *Locks::dex_lock_);
2030 for (const auto& entry : class_linker->GetDexCachesData()) {
2031 const ClassLinker::DexCacheData& data = entry.second;
2032 auto dex_cache = DecodeWeakGlobalWithoutRB<mirror::DexCache>(vm, self, data.weak_root);
2033 if (dex_cache == nullptr ||
2034 image_writer_->IsInBootImage(dex_cache.Ptr()) ||
2035 ContainsElement(image_writer_->compiler_options_.GetDexFilesForOatFile(),
2036 dex_cache->GetDexFile())) {
2037 continue;
2038 }
2039 CHECK(!image_writer_->IsImageBinSlotAssigned(dex_cache.Ptr()));
2040 carveout.push_back(dex_cache.Ptr());
2041 ObjPtr<mirror::String> location = dex_cache->GetLocation<kVerifyNone, kWithoutReadBarrier>();
2042 if (!image_writer_->IsImageBinSlotAssigned(location.Ptr())) {
2043 carveout.push_back(location.Ptr());
2044 }
2045 }
2046 }
2047
2048 dchecked_vector<mirror::Object*> missed_objects;
2049 auto ensure_bin_slots_assigned = [&](mirror::Object* obj)
2050 REQUIRES_SHARED(Locks::mutator_lock_) {
2051 if (!image_writer_->IsInBootImage(obj)) {
2052 if (!UNLIKELY(image_writer_->IsImageBinSlotAssigned(obj))) {
2053 // Ignore the `carveout` objects.
2054 if (ContainsElement(carveout, obj)) {
2055 return;
2056 }
2057 // Ignore finalizer references for the dalvik.system.DexFile objects referenced by
2058 // the app class loader.
2059 ObjPtr<mirror::Class> klass = obj->GetClass<kVerifyNone, kWithoutReadBarrier>();
2060 if (klass->IsFinalizerReferenceClass<kVerifyNone>()) {
2061 ObjPtr<mirror::Class> reference_class =
2062 klass->GetSuperClass<kVerifyNone, kWithoutReadBarrier>();
2063 DCHECK(reference_class->DescriptorEquals("Ljava/lang/ref/Reference;"));
2064 ArtField* ref_field = reference_class->FindDeclaredInstanceField(
2065 "referent", "Ljava/lang/Object;");
2066 CHECK(ref_field != nullptr);
2067 ObjPtr<mirror::Object> ref = ref_field->GetObject<kWithoutReadBarrier>(obj);
2068 CHECK(ref != nullptr);
2069 CHECK(image_writer_->IsImageBinSlotAssigned(ref.Ptr()));
2070 ObjPtr<mirror::Class> ref_klass = ref->GetClass<kVerifyNone, kWithoutReadBarrier>();
2071 CHECK(ref_klass == WellKnownClasses::dalvik_system_DexFile.Get<kWithoutReadBarrier>());
2072 // Note: The app class loader is used only for checking against the runtime
2073 // class loader, the dex file cookie is cleared and therefore we do not need
2074 // to run the finalizer even if we implement app image objects collection.
2075 ArtField* field = WellKnownClasses::dalvik_system_DexFile_cookie;
2076 CHECK(field->GetObject<kWithoutReadBarrier>(ref) == nullptr);
2077 return;
2078 }
2079 if (klass->IsStringClass()) {
2080 // Ignore interned strings. These may come from reflection interning method names.
2081 // TODO: Make dex file strings weak interns and GC them before writing the image.
2082 if (IsStronglyInternedString(obj->AsString())) {
2083 return;
2084 }
2085 }
2086 missed_objects.push_back(obj);
2087 }
2088 }
2089 };
2090 Runtime::Current()->GetHeap()->VisitObjects(ensure_bin_slots_assigned);
2091 if (!missed_objects.empty()) {
2092 const gc::Verification* v = Runtime::Current()->GetHeap()->GetVerification();
2093 size_t num_missed_objects = missed_objects.size();
2094 size_t num_paths = std::min<size_t>(num_missed_objects, 5u); // Do not flood the output.
2095 ArrayRef<mirror::Object*> missed_objects_head =
2096 ArrayRef<mirror::Object*>(missed_objects).SubArray(/*pos=*/ 0u, /*length=*/ num_paths);
2097 for (mirror::Object* obj : missed_objects_head) {
2098 LOG(ERROR) << "Image object without assigned bin slot: "
2099 << mirror::Object::PrettyTypeOf(obj) << " " << obj
2100 << " " << v->FirstPathFromRootSet(obj);
2101 }
2102 LOG(FATAL) << "Found " << num_missed_objects << " objects without assigned bin slots.";
2103 }
2104 }
2105
FinalizeBinSlotOffsets()2106 void ImageWriter::LayoutHelper::FinalizeBinSlotOffsets() {
2107 // Calculate bin slot offsets and adjust for region padding if needed.
2108 const size_t region_size = image_writer_->region_size_;
2109 const size_t num_image_infos = image_writer_->image_infos_.size();
2110 for (size_t oat_index = 0; oat_index != num_image_infos; ++oat_index) {
2111 ImageInfo& image_info = image_writer_->image_infos_[oat_index];
2112 size_t bin_offset = image_writer_->image_objects_offset_begin_;
2113
2114 for (size_t i = 0; i != kNumberOfBins; ++i) {
2115 Bin bin = enum_cast<Bin>(i);
2116 switch (bin) {
2117 case Bin::kArtMethodClean:
2118 case Bin::kArtMethodDirty: {
2119 bin_offset = RoundUp(bin_offset, ArtMethod::Alignment(image_writer_->target_ptr_size_));
2120 break;
2121 }
2122 case Bin::kImTable:
2123 case Bin::kIMTConflictTable: {
2124 bin_offset = RoundUp(bin_offset, static_cast<size_t>(image_writer_->target_ptr_size_));
2125 break;
2126 }
2127 default: {
2128 // Normal alignment.
2129 }
2130 }
2131 image_info.bin_slot_offsets_[i] = bin_offset;
2132
2133 // If the bin is for mirror objects, we may need to add region padding and update offsets.
2134 if (i < enum_cast<size_t>(Bin::kMirrorCount) && region_size != 0u) {
2135 const size_t offset_after_header = bin_offset - sizeof(ImageHeader);
2136 size_t remaining_space =
2137 RoundUp(offset_after_header + 1u, region_size) - offset_after_header;
2138 // Exercise the loop below in debug builds to get coverage.
2139 if (kIsDebugBuild || remaining_space < image_info.bin_slot_sizes_[i]) {
2140 // The bin crosses a region boundary. Add padding if needed.
2141 size_t object_offset = 0u;
2142 size_t padding = 0u;
2143 for (mirror::Object* object : bin_objects_[oat_index][i]) {
2144 BinSlot bin_slot = image_writer_->GetImageBinSlot(object, oat_index);
2145 DCHECK_EQ(enum_cast<size_t>(bin_slot.GetBin()), i);
2146 DCHECK_EQ(bin_slot.GetOffset() + padding, object_offset);
2147 size_t object_size = RoundUp(object->SizeOf<kVerifyNone>(), kObjectAlignment);
2148
2149 auto add_padding = [&](bool tail_region) {
2150 DCHECK_NE(remaining_space, 0u);
2151 DCHECK_LT(remaining_space, region_size);
2152 DCHECK_ALIGNED(remaining_space, kObjectAlignment);
2153 // TODO When copying to heap regions, leave the tail region padding zero-filled.
2154 if (!tail_region || true) {
2155 image_info.padding_offsets_.push_back(bin_offset + object_offset);
2156 }
2157 image_info.bin_slot_sizes_[i] += remaining_space;
2158 padding += remaining_space;
2159 object_offset += remaining_space;
2160 remaining_space = region_size;
2161 };
2162 if (object_size > remaining_space) {
2163 // Padding needed if we're not at region boundary (with a multi-region object).
2164 if (remaining_space != region_size) {
2165 // TODO: Instead of adding padding, we should consider reordering the bins
2166 // or objects to reduce wasted space.
2167 add_padding(/*tail_region=*/ false);
2168 }
2169 DCHECK_EQ(remaining_space, region_size);
2170 // For huge objects, adjust the remaining space to hold the object and some more.
2171 if (object_size > region_size) {
2172 remaining_space = RoundUp(object_size + 1u, region_size);
2173 }
2174 } else if (remaining_space == object_size) {
2175 // Move to the next region, no padding needed.
2176 remaining_space += region_size;
2177 }
2178 DCHECK_GT(remaining_space, object_size);
2179 remaining_space -= object_size;
2180 image_writer_->UpdateImageBinSlotOffset(object, oat_index, object_offset);
2181 object_offset += object_size;
2182 // Add padding to the tail region of huge objects if not region-aligned.
2183 if (object_size > region_size && remaining_space != region_size) {
2184 DCHECK(!IsAlignedParam(object_size, region_size));
2185 add_padding(/*tail_region=*/ true);
2186 }
2187 }
2188 image_writer_->region_alignment_wasted_ += padding;
2189 image_info.image_end_ += padding;
2190 }
2191 }
2192 bin_offset += image_info.bin_slot_sizes_[i];
2193 }
2194 // NOTE: There may be additional padding between the bin slots and the intern table.
2195 DCHECK_EQ(
2196 image_info.image_end_,
2197 image_info.GetBinSizeSum(Bin::kMirrorCount) + image_writer_->image_objects_offset_begin_);
2198 }
2199
2200 VLOG(image) << "Space wasted for region alignment " << image_writer_->region_alignment_wasted_;
2201 }
2202
CollectStringReferenceInfo()2203 void ImageWriter::LayoutHelper::CollectStringReferenceInfo() {
2204 size_t total_string_refs = 0u;
2205
2206 const size_t num_image_infos = image_writer_->image_infos_.size();
2207 for (size_t oat_index = 0; oat_index != num_image_infos; ++oat_index) {
2208 ImageInfo& image_info = image_writer_->image_infos_[oat_index];
2209 DCHECK(image_info.string_reference_offsets_.empty());
2210 image_info.string_reference_offsets_.reserve(image_info.num_string_references_);
2211
2212 for (size_t i = 0; i < enum_cast<size_t>(Bin::kMirrorCount); ++i) {
2213 for (mirror::Object* obj : bin_objects_[oat_index][i]) {
2214 CollectStringReferenceVisitor visitor(image_writer_,
2215 oat_index,
2216 &image_info.string_reference_offsets_,
2217 obj);
2218 /*
2219 * References to managed strings can occur either in the managed heap or in
2220 * native memory regions. Information about managed references is collected
2221 * by the CollectStringReferenceVisitor and directly added to the image info.
2222 *
2223 * Native references to managed strings can only occur through DexCache
2224 * objects. This is verified by the visitor in debug mode and the references
2225 * are collected separately below.
2226 */
2227 obj->VisitReferences</*kVisitNativeRoots=*/ kIsDebugBuild,
2228 kVerifyNone,
2229 kWithoutReadBarrier>(visitor, visitor);
2230 }
2231 }
2232
2233 total_string_refs += image_info.string_reference_offsets_.size();
2234
2235 // Check that we collected the same number of string references as we saw in the previous pass.
2236 CHECK_EQ(image_info.string_reference_offsets_.size(), image_info.num_string_references_);
2237 }
2238
2239 VLOG(compiler) << "Dex2Oat:AppImage:stringReferences = " << total_string_refs;
2240 }
2241
VisitReferences(ObjPtr<mirror::Object> obj,size_t oat_index)2242 void ImageWriter::LayoutHelper::VisitReferences(ObjPtr<mirror::Object> obj, size_t oat_index) {
2243 size_t old_work_queue_size = work_queue_.size();
2244 VisitReferencesVisitor visitor(this, oat_index);
2245 // Walk references and assign bin slots for them.
2246 obj->VisitReferences</*kVisitNativeRoots=*/ false, kVerifyNone, kWithoutReadBarrier>(
2247 visitor,
2248 visitor);
2249 // Put the added references in the queue in the order in which they were added.
2250 // The visitor just pushes them to the front as it visits them.
2251 DCHECK_LE(old_work_queue_size, work_queue_.size());
2252 size_t num_added = work_queue_.size() - old_work_queue_size;
2253 std::reverse(work_queue_.begin(), work_queue_.begin() + num_added);
2254 }
2255
TryAssignBinSlot(ObjPtr<mirror::Object> obj,size_t oat_index)2256 bool ImageWriter::LayoutHelper::TryAssignBinSlot(ObjPtr<mirror::Object> obj, size_t oat_index) {
2257 if (obj == nullptr || image_writer_->IsInBootImage(obj.Ptr())) {
2258 // Object is null or already in the image, there is no work to do.
2259 return false;
2260 }
2261 bool assigned = false;
2262 if (!image_writer_->IsImageBinSlotAssigned(obj.Ptr())) {
2263 Bin bin = image_writer_->AssignImageBinSlot(obj.Ptr(), oat_index);
2264 bin_objects_[oat_index][enum_cast<size_t>(bin)].push_back(obj.Ptr());
2265 assigned = true;
2266 }
2267 return assigned;
2268 }
2269
AssignImageBinSlot(ObjPtr<mirror::Object> object,size_t oat_index,Bin bin)2270 void ImageWriter::LayoutHelper::AssignImageBinSlot(
2271 ObjPtr<mirror::Object> object, size_t oat_index, Bin bin) {
2272 DCHECK(object != nullptr);
2273 DCHECK(!image_writer_->IsInBootImage(object.Ptr()));
2274 DCHECK(!image_writer_->IsImageBinSlotAssigned(object.Ptr()));
2275 image_writer_->AssignImageBinSlot(object.Ptr(), oat_index, bin);
2276 bin_objects_[oat_index][enum_cast<size_t>(bin)].push_back(object.Ptr());
2277 }
2278
CalculateNewObjectOffsets()2279 void ImageWriter::CalculateNewObjectOffsets() {
2280 Thread* const self = Thread::Current();
2281 Runtime* const runtime = Runtime::Current();
2282 gc::Heap* const heap = runtime->GetHeap();
2283
2284 // Leave space for the header, but do not write it yet, we need to
2285 // know where image_roots is going to end up
2286 image_objects_offset_begin_ = RoundUp(sizeof(ImageHeader), kObjectAlignment); // 64-bit-alignment
2287
2288 // Write the image runtime methods.
2289 image_methods_[ImageHeader::kResolutionMethod] = runtime->GetResolutionMethod();
2290 image_methods_[ImageHeader::kImtConflictMethod] = runtime->GetImtConflictMethod();
2291 image_methods_[ImageHeader::kImtUnimplementedMethod] = runtime->GetImtUnimplementedMethod();
2292 image_methods_[ImageHeader::kSaveAllCalleeSavesMethod] =
2293 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveAllCalleeSaves);
2294 image_methods_[ImageHeader::kSaveRefsOnlyMethod] =
2295 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsOnly);
2296 image_methods_[ImageHeader::kSaveRefsAndArgsMethod] =
2297 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs);
2298 image_methods_[ImageHeader::kSaveEverythingMethod] =
2299 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverything);
2300 image_methods_[ImageHeader::kSaveEverythingMethodForClinit] =
2301 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForClinit);
2302 image_methods_[ImageHeader::kSaveEverythingMethodForSuspendCheck] =
2303 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForSuspendCheck);
2304 // Visit image methods first to have the main runtime methods in the first image.
2305 for (auto* m : image_methods_) {
2306 CHECK(m != nullptr);
2307 CHECK(m->IsRuntimeMethod());
2308 DCHECK_EQ(!compiler_options_.IsBootImage(), IsInBootImage(m))
2309 << "Trampolines should be in boot image";
2310 if (!IsInBootImage(m)) {
2311 AssignMethodOffset(m, NativeObjectRelocationType::kRuntimeMethod, GetDefaultOatIndex());
2312 }
2313 }
2314
2315 // Deflate monitors before we visit roots since deflating acquires the monitor lock. Acquiring
2316 // this lock while holding other locks may cause lock order violations.
2317 {
2318 auto deflate_monitor = [](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
2319 Monitor::Deflate(Thread::Current(), obj);
2320 };
2321 heap->VisitObjects(deflate_monitor);
2322 }
2323
2324 // From this point on, there shall be no GC anymore and no objects shall be allocated.
2325 // We can now assign a BitSlot to each object and store it in its lockword.
2326
2327 JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
2328 if (compiler_options_.IsBootImage() || compiler_options_.IsBootImageExtension()) {
2329 // Record the address of boot image live objects.
2330 auto image_roots = DecodeGlobalWithoutRB<mirror::ObjectArray<mirror::Object>>(
2331 vm, image_roots_[0]);
2332 boot_image_live_objects_ = ObjPtr<ObjectArray<Object>>::DownCast(
2333 image_roots->GetWithoutChecks<kVerifyNone, kWithoutReadBarrier>(
2334 ImageHeader::kBootImageLiveObjects)).Ptr();
2335 }
2336
2337 LayoutHelper layout_helper(this);
2338 layout_helper.ProcessDexFileObjects(self);
2339 layout_helper.ProcessRoots(self);
2340 layout_helper.FinalizeInternTables();
2341
2342 // Sort objects in dirty bin.
2343 if (!dirty_objects_.empty()) {
2344 for (size_t oat_index = 0; oat_index < image_infos_.size(); ++oat_index) {
2345 layout_helper.SortDirtyObjects(dirty_objects_, oat_index);
2346 }
2347 }
2348
2349 // Verify that all objects have assigned image bin slots.
2350 layout_helper.VerifyImageBinSlotsAssigned();
2351
2352 // Finalize bin slot offsets. This may add padding for regions.
2353 layout_helper.FinalizeBinSlotOffsets();
2354
2355 // Collect string reference info for app images.
2356 if (ClassLinker::kAppImageMayContainStrings && compiler_options_.IsAppImage()) {
2357 layout_helper.CollectStringReferenceInfo();
2358 }
2359
2360 // Calculate image offsets.
2361 size_t image_offset = 0;
2362 for (ImageInfo& image_info : image_infos_) {
2363 image_info.image_begin_ = global_image_begin_ + image_offset;
2364 image_info.image_offset_ = image_offset;
2365 image_info.image_size_ = RoundUp(image_info.CreateImageSections().first, kPageSize);
2366 // There should be no gaps until the next image.
2367 image_offset += image_info.image_size_;
2368 }
2369
2370 size_t oat_index = 0;
2371 for (ImageInfo& image_info : image_infos_) {
2372 auto image_roots = DecodeGlobalWithoutRB<mirror::ObjectArray<mirror::Object>>(
2373 vm, image_roots_[oat_index]);
2374 image_info.image_roots_address_ = PointerToLowMemUInt32(GetImageAddress(image_roots.Ptr()));
2375 ++oat_index;
2376 }
2377
2378 // Update the native relocations by adding their bin sums.
2379 for (auto& pair : native_object_relocations_) {
2380 NativeObjectRelocation& relocation = pair.second;
2381 Bin bin_type = BinTypeForNativeRelocationType(relocation.type);
2382 ImageInfo& image_info = GetImageInfo(relocation.oat_index);
2383 relocation.offset += image_info.GetBinSlotOffset(bin_type);
2384 }
2385 }
2386
MatchDirtyObjectOffsets(const HashMap<uint32_t,DirtyEntry> & dirty_entries)2387 std::optional<HashMap<mirror::Object*, uint32_t>> ImageWriter::MatchDirtyObjectOffsets(
2388 const HashMap<uint32_t, DirtyEntry>& dirty_entries) REQUIRES_SHARED(Locks::mutator_lock_) {
2389 HashMap<mirror::Object*, uint32_t> dirty_objects;
2390 bool mismatch_found = false;
2391
2392 auto visitor = [&](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
2393 DCHECK(obj != nullptr);
2394 if (mismatch_found) {
2395 return;
2396 }
2397 if (!IsImageBinSlotAssigned(obj)) {
2398 return;
2399 }
2400
2401 uint8_t* image_address = reinterpret_cast<uint8_t*>(GetImageAddress(obj));
2402 uint32_t offset = static_cast<uint32_t>(image_address - global_image_begin_);
2403
2404 auto entry_it = dirty_entries.find(offset);
2405 if (entry_it == dirty_entries.end()) {
2406 return;
2407 }
2408
2409 const DirtyEntry& entry = entry_it->second;
2410
2411 const bool is_class = obj->IsClass();
2412 const uint32_t descriptor_hash =
2413 is_class ? obj->AsClass()->DescriptorHash() : obj->GetClass()->DescriptorHash();
2414
2415 if (is_class != entry.is_class || descriptor_hash != entry.descriptor_hash) {
2416 LOG(WARNING) << "Dirty image objects offset mismatch (outdated file?)";
2417 mismatch_found = true;
2418 return;
2419 }
2420
2421 dirty_objects.insert(std::make_pair(obj, entry.sort_key));
2422 };
2423 Runtime::Current()->GetHeap()->VisitObjects(visitor);
2424
2425 // A single mismatch indicates that dirty-image-objects layout differs from
2426 // current ImageWriter layout. In this case any "valid" matches are likely to be accidental,
2427 // so there's no point in optimizing the layout with such data.
2428 if (mismatch_found) {
2429 return {};
2430 }
2431 if (dirty_objects.size() != dirty_entries.size()) {
2432 LOG(WARNING) << "Dirty image objects missing offsets (outdated file?)";
2433 return {};
2434 }
2435 return dirty_objects;
2436 }
2437
ResetObjectOffsets()2438 void ImageWriter::ResetObjectOffsets() {
2439 const size_t image_infos_size = image_infos_.size();
2440 image_infos_.clear();
2441 image_infos_.resize(image_infos_size);
2442
2443 native_object_relocations_.clear();
2444
2445 // CalculateNewObjectOffsets stores image offsets of the objects in lock words,
2446 // while original lock words are preserved in saved_hashcode_map.
2447 // Restore original lock words.
2448 auto visitor = [&](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
2449 DCHECK(obj != nullptr);
2450 const auto it = saved_hashcode_map_.find(obj);
2451 obj->SetLockWord(it != saved_hashcode_map_.end() ? LockWord::FromHashCode(it->second, 0u) :
2452 LockWord::Default(),
2453 false);
2454 };
2455 Runtime::Current()->GetHeap()->VisitObjects(visitor);
2456
2457 saved_hashcode_map_.clear();
2458 }
2459
TryRecalculateOffsetsWithDirtyObjects()2460 void ImageWriter::TryRecalculateOffsetsWithDirtyObjects() {
2461 const std::optional<HashMap<uint32_t, ImageWriter::DirtyEntry>> dirty_entries =
2462 ParseDirtyObjectOffsets(*dirty_image_objects_);
2463 if (!dirty_entries || dirty_entries->empty()) {
2464 return;
2465 }
2466
2467 std::optional<HashMap<mirror::Object*, uint32_t>> dirty_objects =
2468 MatchDirtyObjectOffsets(*dirty_entries);
2469 if (!dirty_objects || dirty_objects->empty()) {
2470 return;
2471 }
2472 // Calculate offsets again, now with dirty object offsets.
2473 LOG(INFO) << "Recalculating object offsets using dirty-image-objects";
2474 dirty_objects_ = std::move(*dirty_objects);
2475 ResetObjectOffsets();
2476 CalculateNewObjectOffsets();
2477 }
2478
ParseDirtyObjectOffsets(const HashSet<std::string> & dirty_image_objects)2479 std::optional<HashMap<uint32_t, ImageWriter::DirtyEntry>> ImageWriter::ParseDirtyObjectOffsets(
2480 const HashSet<std::string>& dirty_image_objects) REQUIRES_SHARED(Locks::mutator_lock_) {
2481 HashMap<uint32_t, DirtyEntry> dirty_entries;
2482
2483 // Go through each dirty-image-object line, parse only lines of the format:
2484 // "dirty_obj: <offset> <type> <descriptor_hash> <sort_key>"
2485 // <offset> -- decimal uint32.
2486 // <type> -- "class" or "instance" (defines if descriptor is referring to a class or an instance).
2487 // <descriptor_hash> -- decimal uint32 (from DescriptorHash() method).
2488 // <sort_key> -- decimal uint32 (defines order of the object inside the dirty bin).
2489 const std::string prefix = "dirty_obj:";
2490 for (const std::string& entry_str : dirty_image_objects) {
2491 // Skip the lines of old dirty-image-object format.
2492 if (std::strncmp(entry_str.data(), prefix.data(), prefix.size()) != 0) {
2493 continue;
2494 }
2495
2496 const std::vector<std::string> tokens = android::base::Split(entry_str, " ");
2497 if (tokens.size() != 5) {
2498 LOG(WARNING) << "Invalid dirty image objects format: \"" << entry_str << "\"";
2499 return {};
2500 }
2501
2502 uint32_t offset = 0;
2503 std::from_chars_result res =
2504 std::from_chars(tokens[1].data(), tokens[1].data() + tokens[1].size(), offset);
2505 if (res.ec != std::errc()) {
2506 LOG(WARNING) << "Couldn't parse dirty object offset: \"" << entry_str << "\"";
2507 return {};
2508 }
2509
2510 DirtyEntry entry;
2511 entry.is_class = (tokens[2] == "class");
2512 res = std::from_chars(
2513 tokens[3].data(), tokens[3].data() + tokens[3].size(), entry.descriptor_hash);
2514 if (res.ec != std::errc()) {
2515 LOG(WARNING) << "Couldn't parse dirty object descriptor hash: \"" << entry_str << "\"";
2516 return {};
2517 }
2518 res = std::from_chars(tokens[4].data(), tokens[4].data() + tokens[4].size(), entry.sort_key);
2519 if (res.ec != std::errc()) {
2520 LOG(WARNING) << "Couldn't parse dirty object marker: \"" << entry_str << "\"";
2521 return {};
2522 }
2523
2524 dirty_entries.insert(std::make_pair(offset, entry));
2525 }
2526
2527 return dirty_entries;
2528 }
2529
2530 std::pair<size_t, dchecked_vector<ImageSection>>
CreateImageSections() const2531 ImageWriter::ImageInfo::CreateImageSections() const {
2532 dchecked_vector<ImageSection> sections(ImageHeader::kSectionCount);
2533
2534 // Do not round up any sections here that are represented by the bins since it
2535 // will break offsets.
2536
2537 /*
2538 * Objects section
2539 */
2540 sections[ImageHeader::kSectionObjects] =
2541 ImageSection(0u, image_end_);
2542
2543 /*
2544 * Field section
2545 */
2546 sections[ImageHeader::kSectionArtFields] =
2547 ImageSection(GetBinSlotOffset(Bin::kArtField), GetBinSlotSize(Bin::kArtField));
2548
2549 /*
2550 * Method section
2551 */
2552 sections[ImageHeader::kSectionArtMethods] =
2553 ImageSection(GetBinSlotOffset(Bin::kArtMethodClean),
2554 GetBinSlotSize(Bin::kArtMethodClean) +
2555 GetBinSlotSize(Bin::kArtMethodDirty));
2556
2557 /*
2558 * IMT section
2559 */
2560 sections[ImageHeader::kSectionImTables] =
2561 ImageSection(GetBinSlotOffset(Bin::kImTable), GetBinSlotSize(Bin::kImTable));
2562
2563 /*
2564 * Conflict Tables section
2565 */
2566 sections[ImageHeader::kSectionIMTConflictTables] =
2567 ImageSection(GetBinSlotOffset(Bin::kIMTConflictTable), GetBinSlotSize(Bin::kIMTConflictTable));
2568
2569 /*
2570 * Runtime Methods section
2571 */
2572 sections[ImageHeader::kSectionRuntimeMethods] =
2573 ImageSection(GetBinSlotOffset(Bin::kRuntimeMethod), GetBinSlotSize(Bin::kRuntimeMethod));
2574
2575 /*
2576 * Interned Strings section
2577 */
2578
2579 // Round up to the alignment the string table expects. See HashSet::WriteToMemory.
2580 size_t cur_pos = RoundUp(sections[ImageHeader::kSectionRuntimeMethods].End(), sizeof(uint64_t));
2581
2582 const ImageSection& interned_strings_section =
2583 sections[ImageHeader::kSectionInternedStrings] =
2584 ImageSection(cur_pos, intern_table_bytes_);
2585
2586 /*
2587 * Class Table section
2588 */
2589
2590 // Obtain the new position and round it up to the appropriate alignment.
2591 cur_pos = RoundUp(interned_strings_section.End(), sizeof(uint64_t));
2592
2593 const ImageSection& class_table_section =
2594 sections[ImageHeader::kSectionClassTable] =
2595 ImageSection(cur_pos, class_table_bytes_);
2596
2597 /*
2598 * String Field Offsets section
2599 */
2600
2601 // Round up to the alignment of the offsets we are going to store.
2602 cur_pos = RoundUp(class_table_section.End(), sizeof(uint32_t));
2603
2604 // The size of string_reference_offsets_ can't be used here because it hasn't
2605 // been filled with AppImageReferenceOffsetInfo objects yet. The
2606 // num_string_references_ value is calculated separately, before we can
2607 // compute the actual offsets.
2608 const ImageSection& string_reference_offsets =
2609 sections[ImageHeader::kSectionStringReferenceOffsets] =
2610 ImageSection(cur_pos, sizeof(string_reference_offsets_[0]) * num_string_references_);
2611
2612 /*
2613 * DexCache arrays section
2614 */
2615
2616 // Round up to the alignment dex caches arrays expects.
2617 cur_pos = RoundUp(sections[ImageHeader::kSectionStringReferenceOffsets].End(), sizeof(uint32_t));
2618 // We don't generate dex cache arrays in an image generated by dex2oat.
2619 sections[ImageHeader::kSectionDexCacheArrays] = ImageSection(cur_pos, 0u);
2620
2621 /*
2622 * Metadata section.
2623 */
2624
2625 // Round up to the alignment of the offsets we are going to store.
2626 cur_pos = RoundUp(string_reference_offsets.End(), sizeof(uint32_t));
2627
2628 const ImageSection& metadata_section =
2629 sections[ImageHeader::kSectionMetadata] =
2630 ImageSection(cur_pos, GetBinSlotSize(Bin::kMetadata));
2631
2632 // Return the number of bytes described by these sections, and the sections
2633 // themselves.
2634 return make_pair(metadata_section.End(), std::move(sections));
2635 }
2636
CreateHeader(size_t oat_index,size_t component_count)2637 void ImageWriter::CreateHeader(size_t oat_index, size_t component_count) {
2638 ImageInfo& image_info = GetImageInfo(oat_index);
2639 const uint8_t* oat_file_begin = image_info.oat_file_begin_;
2640 const uint8_t* oat_file_end = oat_file_begin + image_info.oat_loaded_size_;
2641 const uint8_t* oat_data_end = image_info.oat_data_begin_ + image_info.oat_size_;
2642
2643 uint32_t image_reservation_size = image_info.image_size_;
2644 DCHECK_ALIGNED(image_reservation_size, kPageSize);
2645 uint32_t current_component_count = 1u;
2646 if (compiler_options_.IsAppImage()) {
2647 DCHECK_EQ(oat_index, 0u);
2648 DCHECK_EQ(component_count, current_component_count);
2649 } else {
2650 DCHECK(image_infos_.size() == 1u || image_infos_.size() == component_count)
2651 << image_infos_.size() << " " << component_count;
2652 if (oat_index == 0u) {
2653 const ImageInfo& last_info = image_infos_.back();
2654 const uint8_t* end = last_info.oat_file_begin_ + last_info.oat_loaded_size_;
2655 DCHECK_ALIGNED(image_info.image_begin_, kPageSize);
2656 image_reservation_size =
2657 dchecked_integral_cast<uint32_t>(RoundUp(end - image_info.image_begin_, kPageSize));
2658 current_component_count = component_count;
2659 } else {
2660 image_reservation_size = 0u;
2661 current_component_count = 0u;
2662 }
2663 }
2664
2665 // Compute boot image checksums for the primary component, leave as 0 otherwise.
2666 uint32_t boot_image_components = 0u;
2667 uint32_t boot_image_checksums = 0u;
2668 if (oat_index == 0u) {
2669 const std::vector<gc::space::ImageSpace*>& image_spaces =
2670 Runtime::Current()->GetHeap()->GetBootImageSpaces();
2671 DCHECK_EQ(image_spaces.empty(), compiler_options_.IsBootImage());
2672 for (size_t i = 0u, size = image_spaces.size(); i != size; ) {
2673 const ImageHeader& header = image_spaces[i]->GetImageHeader();
2674 boot_image_components += header.GetComponentCount();
2675 boot_image_checksums ^= header.GetImageChecksum();
2676 DCHECK_LE(header.GetImageSpaceCount(), size - i);
2677 i += header.GetImageSpaceCount();
2678 }
2679 }
2680
2681 // Create the image sections.
2682 auto section_info_pair = image_info.CreateImageSections();
2683 const size_t image_end = section_info_pair.first;
2684 dchecked_vector<ImageSection>& sections = section_info_pair.second;
2685
2686 // Finally bitmap section.
2687 const size_t bitmap_bytes = image_info.image_bitmap_.Size();
2688 auto* bitmap_section = §ions[ImageHeader::kSectionImageBitmap];
2689 *bitmap_section = ImageSection(RoundUp(image_end, kPageSize), RoundUp(bitmap_bytes, kPageSize));
2690 if (VLOG_IS_ON(compiler)) {
2691 LOG(INFO) << "Creating header for " << oat_filenames_[oat_index];
2692 size_t idx = 0;
2693 for (const ImageSection& section : sections) {
2694 LOG(INFO) << static_cast<ImageHeader::ImageSections>(idx) << " " << section;
2695 ++idx;
2696 }
2697 LOG(INFO) << "Methods: clean=" << clean_methods_ << " dirty=" << dirty_methods_;
2698 LOG(INFO) << "Image roots address=" << std::hex << image_info.image_roots_address_ << std::dec;
2699 LOG(INFO) << "Image begin=" << std::hex << reinterpret_cast<uintptr_t>(global_image_begin_)
2700 << " Image offset=" << image_info.image_offset_ << std::dec;
2701 LOG(INFO) << "Oat file begin=" << std::hex << reinterpret_cast<uintptr_t>(oat_file_begin)
2702 << " Oat data begin=" << reinterpret_cast<uintptr_t>(image_info.oat_data_begin_)
2703 << " Oat data end=" << reinterpret_cast<uintptr_t>(oat_data_end)
2704 << " Oat file end=" << reinterpret_cast<uintptr_t>(oat_file_end);
2705 }
2706
2707 // Create the header, leave 0 for data size since we will fill this in as we are writing the
2708 // image.
2709 new (image_info.image_.Begin()) ImageHeader(
2710 image_reservation_size,
2711 current_component_count,
2712 PointerToLowMemUInt32(image_info.image_begin_),
2713 image_end,
2714 sections.data(),
2715 image_info.image_roots_address_,
2716 image_info.oat_checksum_,
2717 PointerToLowMemUInt32(oat_file_begin),
2718 PointerToLowMemUInt32(image_info.oat_data_begin_),
2719 PointerToLowMemUInt32(oat_data_end),
2720 PointerToLowMemUInt32(oat_file_end),
2721 boot_image_begin_,
2722 boot_image_size_,
2723 boot_image_components,
2724 boot_image_checksums,
2725 static_cast<uint32_t>(target_ptr_size_));
2726 }
2727
GetImageMethodAddress(ArtMethod * method)2728 ArtMethod* ImageWriter::GetImageMethodAddress(ArtMethod* method) {
2729 NativeObjectRelocation relocation = GetNativeRelocation(method);
2730 const ImageInfo& image_info = GetImageInfo(relocation.oat_index);
2731 CHECK_GE(relocation.offset, image_info.image_end_) << "ArtMethods should be after Objects";
2732 return reinterpret_cast<ArtMethod*>(image_info.image_begin_ + relocation.offset);
2733 }
2734
GetIntrinsicReferenceAddress(uint32_t intrinsic_data)2735 const void* ImageWriter::GetIntrinsicReferenceAddress(uint32_t intrinsic_data) {
2736 DCHECK(compiler_options_.IsBootImage());
2737 switch (IntrinsicObjects::DecodePatchType(intrinsic_data)) {
2738 case IntrinsicObjects::PatchType::kIntegerValueOfArray: {
2739 const uint8_t* base_address =
2740 reinterpret_cast<const uint8_t*>(GetImageAddress(boot_image_live_objects_));
2741 MemberOffset data_offset =
2742 IntrinsicObjects::GetIntegerValueOfArrayDataOffset(boot_image_live_objects_);
2743 return base_address + data_offset.Uint32Value();
2744 }
2745 case IntrinsicObjects::PatchType::kIntegerValueOfObject: {
2746 uint32_t index = IntrinsicObjects::DecodePatchIndex(intrinsic_data);
2747 ObjPtr<mirror::Object> value =
2748 IntrinsicObjects::GetIntegerValueOfObject(boot_image_live_objects_, index);
2749 return GetImageAddress(value.Ptr());
2750 }
2751 }
2752 LOG(FATAL) << "UNREACHABLE";
2753 UNREACHABLE();
2754 }
2755
2756
2757 class ImageWriter::FixupRootVisitor : public RootVisitor {
2758 public:
FixupRootVisitor(ImageWriter * image_writer)2759 explicit FixupRootVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {
2760 }
2761
VisitRoots(mirror::Object *** roots ATTRIBUTE_UNUSED,size_t count ATTRIBUTE_UNUSED,const RootInfo & info ATTRIBUTE_UNUSED)2762 void VisitRoots(mirror::Object*** roots ATTRIBUTE_UNUSED,
2763 size_t count ATTRIBUTE_UNUSED,
2764 const RootInfo& info ATTRIBUTE_UNUSED)
2765 override REQUIRES_SHARED(Locks::mutator_lock_) {
2766 LOG(FATAL) << "Unsupported";
2767 }
2768
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)2769 void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
2770 size_t count,
2771 const RootInfo& info ATTRIBUTE_UNUSED)
2772 override REQUIRES_SHARED(Locks::mutator_lock_) {
2773 for (size_t i = 0; i < count; ++i) {
2774 // Copy the reference. Since we do not have the address for recording the relocation,
2775 // it needs to be recorded explicitly by the user of FixupRootVisitor.
2776 ObjPtr<mirror::Object> old_ptr = roots[i]->AsMirrorPtr();
2777 roots[i]->Assign(image_writer_->GetImageAddress(old_ptr.Ptr()));
2778 }
2779 }
2780
2781 private:
2782 ImageWriter* const image_writer_;
2783 };
2784
CopyAndFixupImTable(ImTable * orig,ImTable * copy)2785 void ImageWriter::CopyAndFixupImTable(ImTable* orig, ImTable* copy) {
2786 for (size_t i = 0; i < ImTable::kSize; ++i) {
2787 ArtMethod* method = orig->Get(i, target_ptr_size_);
2788 void** address = reinterpret_cast<void**>(copy->AddressOfElement(i, target_ptr_size_));
2789 CopyAndFixupPointer(address, method);
2790 DCHECK_EQ(copy->Get(i, target_ptr_size_), NativeLocationInImage(method));
2791 }
2792 }
2793
CopyAndFixupImtConflictTable(ImtConflictTable * orig,ImtConflictTable * copy)2794 void ImageWriter::CopyAndFixupImtConflictTable(ImtConflictTable* orig, ImtConflictTable* copy) {
2795 const size_t count = orig->NumEntries(target_ptr_size_);
2796 for (size_t i = 0; i < count; ++i) {
2797 ArtMethod* interface_method = orig->GetInterfaceMethod(i, target_ptr_size_);
2798 ArtMethod* implementation_method = orig->GetImplementationMethod(i, target_ptr_size_);
2799 CopyAndFixupPointer(copy->AddressOfInterfaceMethod(i, target_ptr_size_), interface_method);
2800 CopyAndFixupPointer(
2801 copy->AddressOfImplementationMethod(i, target_ptr_size_), implementation_method);
2802 DCHECK_EQ(copy->GetInterfaceMethod(i, target_ptr_size_),
2803 NativeLocationInImage(interface_method));
2804 DCHECK_EQ(copy->GetImplementationMethod(i, target_ptr_size_),
2805 NativeLocationInImage(implementation_method));
2806 }
2807 }
2808
CopyAndFixupNativeData(size_t oat_index)2809 void ImageWriter::CopyAndFixupNativeData(size_t oat_index) {
2810 const ImageInfo& image_info = GetImageInfo(oat_index);
2811 // Copy ArtFields and methods to their locations and update the array for convenience.
2812 for (auto& pair : native_object_relocations_) {
2813 NativeObjectRelocation& relocation = pair.second;
2814 // Only work with fields and methods that are in the current oat file.
2815 if (relocation.oat_index != oat_index) {
2816 continue;
2817 }
2818 auto* dest = image_info.image_.Begin() + relocation.offset;
2819 DCHECK_GE(dest, image_info.image_.Begin() + image_info.image_end_);
2820 DCHECK(!IsInBootImage(pair.first));
2821 switch (relocation.type) {
2822 case NativeObjectRelocationType::kRuntimeMethod:
2823 case NativeObjectRelocationType::kArtMethodClean:
2824 case NativeObjectRelocationType::kArtMethodDirty: {
2825 CopyAndFixupMethod(reinterpret_cast<ArtMethod*>(pair.first),
2826 reinterpret_cast<ArtMethod*>(dest),
2827 oat_index);
2828 break;
2829 }
2830 case NativeObjectRelocationType::kArtFieldArray: {
2831 // Copy and fix up the entire field array.
2832 auto* src_array = reinterpret_cast<LengthPrefixedArray<ArtField>*>(pair.first);
2833 auto* dest_array = reinterpret_cast<LengthPrefixedArray<ArtField>*>(dest);
2834 size_t size = src_array->size();
2835 memcpy(dest_array, src_array, LengthPrefixedArray<ArtField>::ComputeSize(size));
2836 for (size_t i = 0; i != size; ++i) {
2837 CopyAndFixupReference(
2838 dest_array->At(i).GetDeclaringClassAddressWithoutBarrier(),
2839 src_array->At(i).GetDeclaringClass<kWithoutReadBarrier>());
2840 }
2841 break;
2842 }
2843 case NativeObjectRelocationType::kArtMethodArrayClean:
2844 case NativeObjectRelocationType::kArtMethodArrayDirty: {
2845 // For method arrays, copy just the header since the elements will
2846 // get copied by their corresponding relocations.
2847 size_t size = ArtMethod::Size(target_ptr_size_);
2848 size_t alignment = ArtMethod::Alignment(target_ptr_size_);
2849 memcpy(dest, pair.first, LengthPrefixedArray<ArtMethod>::ComputeSize(0, size, alignment));
2850 // Clear padding to avoid non-deterministic data in the image.
2851 // Historical note: We also did that to placate Valgrind.
2852 reinterpret_cast<LengthPrefixedArray<ArtMethod>*>(dest)->ClearPadding(size, alignment);
2853 break;
2854 }
2855 case NativeObjectRelocationType::kIMTable: {
2856 ImTable* orig_imt = reinterpret_cast<ImTable*>(pair.first);
2857 ImTable* dest_imt = reinterpret_cast<ImTable*>(dest);
2858 CopyAndFixupImTable(orig_imt, dest_imt);
2859 break;
2860 }
2861 case NativeObjectRelocationType::kIMTConflictTable: {
2862 auto* orig_table = reinterpret_cast<ImtConflictTable*>(pair.first);
2863 CopyAndFixupImtConflictTable(
2864 orig_table,
2865 new(dest)ImtConflictTable(orig_table->NumEntries(target_ptr_size_), target_ptr_size_));
2866 break;
2867 }
2868 case NativeObjectRelocationType::kGcRootPointer: {
2869 auto* orig_pointer = reinterpret_cast<GcRoot<mirror::Object>*>(pair.first);
2870 auto* dest_pointer = reinterpret_cast<GcRoot<mirror::Object>*>(dest);
2871 CopyAndFixupReference(dest_pointer->AddressWithoutBarrier(), orig_pointer->Read());
2872 break;
2873 }
2874 }
2875 }
2876 // Fixup the image method roots.
2877 auto* image_header = reinterpret_cast<ImageHeader*>(image_info.image_.Begin());
2878 for (size_t i = 0; i < ImageHeader::kImageMethodsCount; ++i) {
2879 ArtMethod* method = image_methods_[i];
2880 CHECK(method != nullptr);
2881 CopyAndFixupPointer(
2882 reinterpret_cast<void**>(&image_header->image_methods_[i]), method, PointerSize::k32);
2883 }
2884 FixupRootVisitor root_visitor(this);
2885
2886 // Write the intern table into the image.
2887 if (image_info.intern_table_bytes_ > 0) {
2888 const ImageSection& intern_table_section = image_header->GetInternedStringsSection();
2889 DCHECK(image_info.intern_table_.has_value());
2890 const InternTable::UnorderedSet& intern_table = *image_info.intern_table_;
2891 uint8_t* const intern_table_memory_ptr =
2892 image_info.image_.Begin() + intern_table_section.Offset();
2893 const size_t intern_table_bytes = intern_table.WriteToMemory(intern_table_memory_ptr);
2894 CHECK_EQ(intern_table_bytes, image_info.intern_table_bytes_);
2895 // Fixup the pointers in the newly written intern table to contain image addresses.
2896 InternTable temp_intern_table;
2897 // Note that we require that ReadFromMemory does not make an internal copy of the elements so
2898 // that the VisitRoots() will update the memory directly rather than the copies.
2899 // This also relies on visit roots not doing any verification which could fail after we update
2900 // the roots to be the image addresses.
2901 temp_intern_table.AddTableFromMemory(intern_table_memory_ptr,
2902 VoidFunctor(),
2903 /*is_boot_image=*/ false);
2904 CHECK_EQ(temp_intern_table.Size(), intern_table.size());
2905 temp_intern_table.VisitRoots(&root_visitor, kVisitRootFlagAllRoots);
2906
2907 if (kIsDebugBuild) {
2908 MutexLock lock(Thread::Current(), *Locks::intern_table_lock_);
2909 CHECK(!temp_intern_table.strong_interns_.tables_.empty());
2910 // The UnorderedSet was inserted at the beginning.
2911 CHECK_EQ(temp_intern_table.strong_interns_.tables_[0].Size(), intern_table.size());
2912 }
2913 }
2914
2915 // Write the class table(s) into the image. class_table_bytes_ may be 0 if there are multiple
2916 // class loaders. Writing multiple class tables into the image is currently unsupported.
2917 if (image_info.class_table_bytes_ > 0u) {
2918 const ImageSection& class_table_section = image_header->GetClassTableSection();
2919 uint8_t* const class_table_memory_ptr =
2920 image_info.image_.Begin() + class_table_section.Offset();
2921
2922 DCHECK(image_info.class_table_.has_value());
2923 const ClassTable::ClassSet& table = *image_info.class_table_;
2924 CHECK_EQ(table.size(), image_info.class_table_size_);
2925 const size_t class_table_bytes = table.WriteToMemory(class_table_memory_ptr);
2926 CHECK_EQ(class_table_bytes, image_info.class_table_bytes_);
2927
2928 // Fixup the pointers in the newly written class table to contain image addresses. See
2929 // above comment for intern tables.
2930 ClassTable temp_class_table;
2931 temp_class_table.ReadFromMemory(class_table_memory_ptr);
2932 CHECK_EQ(temp_class_table.NumReferencedZygoteClasses(), table.size());
2933 UnbufferedRootVisitor visitor(&root_visitor, RootInfo(kRootUnknown));
2934 temp_class_table.VisitRoots(visitor);
2935
2936 if (kIsDebugBuild) {
2937 ReaderMutexLock lock(Thread::Current(), temp_class_table.lock_);
2938 CHECK(!temp_class_table.classes_.empty());
2939 // The ClassSet was inserted at the beginning.
2940 CHECK_EQ(temp_class_table.classes_[0].size(), table.size());
2941 }
2942 }
2943 }
2944
CopyAndFixupMethodPointerArray(mirror::PointerArray * arr)2945 void ImageWriter::CopyAndFixupMethodPointerArray(mirror::PointerArray* arr) {
2946 // Pointer arrays are processed early and each is visited just once.
2947 // Therefore we know that this array has not been copied yet.
2948 mirror::Object* dst = CopyObject</*kCheckIfDone=*/ false>(arr);
2949 DCHECK(dst != nullptr);
2950 DCHECK(arr->IsIntArray() || arr->IsLongArray())
2951 << arr->GetClass<kVerifyNone, kWithoutReadBarrier>()->PrettyClass() << " " << arr;
2952 // Fixup int and long pointers for the ArtMethod or ArtField arrays.
2953 const size_t num_elements = arr->GetLength();
2954 CopyAndFixupReference(dst->GetFieldObjectReferenceAddr<kVerifyNone>(Class::ClassOffset()),
2955 arr->GetClass<kVerifyNone, kWithoutReadBarrier>());
2956 auto* dest_array = down_cast<mirror::PointerArray*>(dst);
2957 for (size_t i = 0, count = num_elements; i < count; ++i) {
2958 void* elem = arr->GetElementPtrSize<void*>(i, target_ptr_size_);
2959 if (kIsDebugBuild && elem != nullptr && !IsInBootImage(elem)) {
2960 auto it = native_object_relocations_.find(elem);
2961 if (UNLIKELY(it == native_object_relocations_.end())) {
2962 auto* method = reinterpret_cast<ArtMethod*>(elem);
2963 LOG(FATAL) << "No relocation entry for ArtMethod " << method->PrettyMethod() << " @ "
2964 << method << " idx=" << i << "/" << num_elements << " with declaring class "
2965 << Class::PrettyClass(method->GetDeclaringClass<kWithoutReadBarrier>());
2966 UNREACHABLE();
2967 }
2968 }
2969 CopyAndFixupPointer(dest_array->ElementAddress(i, target_ptr_size_), elem);
2970 }
2971 }
2972
CopyAndFixupObject(Object * obj)2973 void ImageWriter::CopyAndFixupObject(Object* obj) {
2974 if (!IsImageBinSlotAssigned(obj)) {
2975 return;
2976 }
2977 // Some objects (such as method pointer arrays) may have been processed before.
2978 mirror::Object* dst = CopyObject</*kCheckIfDone=*/ true>(obj);
2979 if (dst != nullptr) {
2980 FixupObject(obj, dst);
2981 }
2982 }
2983
2984 template <bool kCheckIfDone>
CopyObject(Object * obj)2985 inline Object* ImageWriter::CopyObject(Object* obj) {
2986 size_t oat_index = GetOatIndex(obj);
2987 size_t offset = GetImageOffset(obj, oat_index);
2988 ImageInfo& image_info = GetImageInfo(oat_index);
2989 auto* dst = reinterpret_cast<Object*>(image_info.image_.Begin() + offset);
2990 DCHECK_LT(offset, image_info.image_end_);
2991 const auto* src = reinterpret_cast<const uint8_t*>(obj);
2992
2993 bool done = image_info.image_bitmap_.Set(dst); // Mark the obj as live.
2994 // Check if the object was already copied, unless the caller indicated that it was not.
2995 if (kCheckIfDone && done) {
2996 return nullptr;
2997 }
2998 DCHECK(!done);
2999
3000 const size_t n = obj->SizeOf();
3001
3002 if (kIsDebugBuild && region_size_ != 0u) {
3003 const size_t offset_after_header = offset - sizeof(ImageHeader);
3004 const size_t next_region = RoundUp(offset_after_header, region_size_);
3005 if (offset_after_header != next_region) {
3006 // If the object is not on a region bondary, it must not be cross region.
3007 CHECK_LT(offset_after_header, next_region)
3008 << "offset_after_header=" << offset_after_header << " size=" << n;
3009 CHECK_LE(offset_after_header + n, next_region)
3010 << "offset_after_header=" << offset_after_header << " size=" << n;
3011 }
3012 }
3013 DCHECK_LE(offset + n, image_info.image_.Size());
3014 memcpy(dst, src, n);
3015
3016 // Write in a hash code of objects which have inflated monitors or a hash code in their monitor
3017 // word.
3018 const auto it = saved_hashcode_map_.find(obj);
3019 dst->SetLockWord(it != saved_hashcode_map_.end() ?
3020 LockWord::FromHashCode(it->second, 0u) : LockWord::Default(), false);
3021 if (kUseBakerReadBarrier && gc::collector::ConcurrentCopying::kGrayDirtyImmuneObjects) {
3022 // Treat all of the objects in the image as marked to avoid unnecessary dirty pages. This is
3023 // safe since we mark all of the objects that may reference non immune objects as gray.
3024 CHECK(dst->AtomicSetMarkBit(0, 1));
3025 }
3026 return dst;
3027 }
3028
3029 // Rewrite all the references in the copied object to point to their image address equivalent
3030 class ImageWriter::FixupVisitor {
3031 public:
FixupVisitor(ImageWriter * image_writer,Object * copy)3032 FixupVisitor(ImageWriter* image_writer, Object* copy)
3033 : image_writer_(image_writer), copy_(copy) {
3034 }
3035
3036 // We do not visit native roots. These are handled with other logic.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const3037 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
3038 const {
3039 LOG(FATAL) << "UNREACHABLE";
3040 }
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const3041 void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {
3042 LOG(FATAL) << "UNREACHABLE";
3043 }
3044
operator ()(ObjPtr<Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const3045 void operator()(ObjPtr<Object> obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
3046 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
3047 ObjPtr<Object> ref = obj->GetFieldObject<Object, kVerifyNone, kWithoutReadBarrier>(offset);
3048 // Copy the reference and record the fixup if necessary.
3049 image_writer_->CopyAndFixupReference(
3050 copy_->GetFieldObjectReferenceAddr<kVerifyNone>(offset), ref);
3051 }
3052
3053 // java.lang.ref.Reference visitor.
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const3054 void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
3055 ObjPtr<mirror::Reference> ref) const
3056 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
3057 operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
3058 }
3059
3060 protected:
3061 ImageWriter* const image_writer_;
3062 mirror::Object* const copy_;
3063 };
3064
CopyAndFixupObjects()3065 void ImageWriter::CopyAndFixupObjects() {
3066 // Copy and fix up pointer arrays first as they require special treatment.
3067 auto method_pointer_array_visitor =
3068 [&](ObjPtr<mirror::PointerArray> pointer_array) REQUIRES_SHARED(Locks::mutator_lock_) {
3069 CopyAndFixupMethodPointerArray(pointer_array.Ptr());
3070 };
3071 for (ImageInfo& image_info : image_infos_) {
3072 if (image_info.class_table_size_ != 0u) {
3073 DCHECK(image_info.class_table_.has_value());
3074 for (const ClassTable::TableSlot& slot : *image_info.class_table_) {
3075 ObjPtr<mirror::Class> klass = slot.Read<kWithoutReadBarrier>();
3076 DCHECK(klass != nullptr);
3077 // Do not process boot image classes present in app image class table.
3078 DCHECK(!IsInBootImage(klass.Ptr()) || compiler_options_.IsAppImage());
3079 if (!IsInBootImage(klass.Ptr())) {
3080 // Do not fix up method pointer arrays inherited from superclass. If they are part
3081 // of the current image, they were or shall be copied when visiting the superclass.
3082 VisitNewMethodPointerArrays(klass, method_pointer_array_visitor);
3083 }
3084 }
3085 }
3086 }
3087
3088 auto visitor = [&](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
3089 DCHECK(obj != nullptr);
3090 CopyAndFixupObject(obj);
3091 };
3092 Runtime::Current()->GetHeap()->VisitObjects(visitor);
3093
3094 // Fill the padding objects since they are required for in order traversal of the image space.
3095 for (ImageInfo& image_info : image_infos_) {
3096 for (const size_t start_offset : image_info.padding_offsets_) {
3097 const size_t offset_after_header = start_offset - sizeof(ImageHeader);
3098 size_t remaining_space =
3099 RoundUp(offset_after_header + 1u, region_size_) - offset_after_header;
3100 DCHECK_NE(remaining_space, 0u);
3101 DCHECK_LT(remaining_space, region_size_);
3102 Object* dst = reinterpret_cast<Object*>(image_info.image_.Begin() + start_offset);
3103 ObjPtr<Class> object_class = GetClassRoot<mirror::Object, kWithoutReadBarrier>();
3104 DCHECK_ALIGNED_PARAM(remaining_space, object_class->GetObjectSize());
3105 Object* end = dst + remaining_space / object_class->GetObjectSize();
3106 Class* image_object_class = GetImageAddress(object_class.Ptr());
3107 while (dst != end) {
3108 dst->SetClass<kVerifyNone>(image_object_class);
3109 dst->SetLockWord<kVerifyNone>(LockWord::Default(), /*as_volatile=*/ false);
3110 image_info.image_bitmap_.Set(dst); // Mark the obj as live.
3111 ++dst;
3112 }
3113 }
3114 }
3115
3116 // We no longer need the hashcode map, values have already been copied to target objects.
3117 saved_hashcode_map_.clear();
3118 }
3119
3120 class ImageWriter::FixupClassVisitor final : public FixupVisitor {
3121 public:
FixupClassVisitor(ImageWriter * image_writer,Object * copy)3122 FixupClassVisitor(ImageWriter* image_writer, Object* copy)
3123 : FixupVisitor(image_writer, copy) {}
3124
operator ()(ObjPtr<Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const3125 void operator()(ObjPtr<Object> obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
3126 REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
3127 DCHECK(obj->IsClass());
3128 FixupVisitor::operator()(obj, offset, /*is_static*/false);
3129 }
3130
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const3131 void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
3132 ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const
3133 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
3134 LOG(FATAL) << "Reference not expected here.";
3135 }
3136 };
3137
GetNativeRelocation(void * obj)3138 ImageWriter::NativeObjectRelocation ImageWriter::GetNativeRelocation(void* obj) {
3139 DCHECK(obj != nullptr);
3140 DCHECK(!IsInBootImage(obj));
3141 auto it = native_object_relocations_.find(obj);
3142 CHECK(it != native_object_relocations_.end()) << obj << " spaces "
3143 << Runtime::Current()->GetHeap()->DumpSpaces();
3144 return it->second;
3145 }
3146
3147 template <typename T>
PrettyPrint(T * ptr)3148 std::string PrettyPrint(T* ptr) REQUIRES_SHARED(Locks::mutator_lock_) {
3149 std::ostringstream oss;
3150 oss << ptr;
3151 return oss.str();
3152 }
3153
3154 template <>
PrettyPrint(ArtMethod * method)3155 std::string PrettyPrint(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) {
3156 return ArtMethod::PrettyMethod(method);
3157 }
3158
3159 template <typename T>
NativeLocationInImage(T * obj)3160 T* ImageWriter::NativeLocationInImage(T* obj) {
3161 if (obj == nullptr || IsInBootImage(obj)) {
3162 return obj;
3163 } else {
3164 NativeObjectRelocation relocation = GetNativeRelocation(obj);
3165 const ImageInfo& image_info = GetImageInfo(relocation.oat_index);
3166 return reinterpret_cast<T*>(image_info.image_begin_ + relocation.offset);
3167 }
3168 }
3169
NativeLocationInImage(ArtField * src_field)3170 ArtField* ImageWriter::NativeLocationInImage(ArtField* src_field) {
3171 // Fields are not individually stored in the native relocation map. Use the field array.
3172 ObjPtr<mirror::Class> declaring_class = src_field->GetDeclaringClass<kWithoutReadBarrier>();
3173 LengthPrefixedArray<ArtField>* src_fields =
3174 src_field->IsStatic() ? declaring_class->GetSFieldsPtr() : declaring_class->GetIFieldsPtr();
3175 DCHECK(src_fields != nullptr);
3176 LengthPrefixedArray<ArtField>* dst_fields = NativeLocationInImage(src_fields);
3177 DCHECK(dst_fields != nullptr);
3178 size_t field_offset =
3179 reinterpret_cast<uint8_t*>(src_field) - reinterpret_cast<uint8_t*>(src_fields);
3180 return reinterpret_cast<ArtField*>(reinterpret_cast<uint8_t*>(dst_fields) + field_offset);
3181 }
3182
3183 class ImageWriter::NativeLocationVisitor {
3184 public:
NativeLocationVisitor(ImageWriter * image_writer)3185 explicit NativeLocationVisitor(ImageWriter* image_writer)
3186 : image_writer_(image_writer) {}
3187
3188 template <typename T>
operator ()(T * ptr,void ** dest_addr) const3189 T* operator()(T* ptr, void** dest_addr) const REQUIRES_SHARED(Locks::mutator_lock_) {
3190 if (ptr != nullptr) {
3191 image_writer_->CopyAndFixupPointer(dest_addr, ptr);
3192 }
3193 // TODO: The caller shall overwrite the value stored by CopyAndFixupPointer()
3194 // with the value we return here. We should try to avoid the duplicate work.
3195 return image_writer_->NativeLocationInImage(ptr);
3196 }
3197
3198 private:
3199 ImageWriter* const image_writer_;
3200 };
3201
FixupClass(mirror::Class * orig,mirror::Class * copy)3202 void ImageWriter::FixupClass(mirror::Class* orig, mirror::Class* copy) {
3203 orig->FixupNativePointers(copy, target_ptr_size_, NativeLocationVisitor(this));
3204 FixupClassVisitor visitor(this, copy);
3205 ObjPtr<mirror::Object>(orig)->VisitReferences<
3206 /*kVisitNativeRoots=*/ false, kVerifyNone, kWithoutReadBarrier>(visitor, visitor);
3207
3208 if (kBitstringSubtypeCheckEnabled && !compiler_options_.IsBootImage()) {
3209 // When we call SubtypeCheck::EnsureInitialize, it Assigns new bitstring
3210 // values to the parent of that class.
3211 //
3212 // Every time this happens, the parent class has to mutate to increment
3213 // the "Next" value.
3214 //
3215 // If any of these parents are in the boot image, the changes [in the parents]
3216 // would be lost when the app image is reloaded.
3217 //
3218 // To prevent newly loaded classes (not in the app image) from being reassigned
3219 // the same bitstring value as an existing app image class, uninitialize
3220 // all the classes in the app image.
3221 //
3222 // On startup, the class linker will then re-initialize all the app
3223 // image bitstrings. See also ClassLinker::AddImageSpace.
3224 //
3225 // FIXME: Deal with boot image extensions.
3226 MutexLock subtype_check_lock(Thread::Current(), *Locks::subtype_check_lock_);
3227 // Lock every time to prevent a dcheck failure when we suspend with the lock held.
3228 SubtypeCheck<mirror::Class*>::ForceUninitialize(copy);
3229 }
3230
3231 // Remove the clinitThreadId. This is required for image determinism.
3232 copy->SetClinitThreadId(static_cast<pid_t>(0));
3233 // We never emit kRetryVerificationAtRuntime, instead we mark the class as
3234 // resolved and the class will therefore be re-verified at runtime.
3235 if (orig->ShouldVerifyAtRuntime()) {
3236 copy->SetStatusInternal(ClassStatus::kResolved);
3237 }
3238 }
3239
FixupObject(Object * orig,Object * copy)3240 void ImageWriter::FixupObject(Object* orig, Object* copy) {
3241 DCHECK(orig != nullptr);
3242 DCHECK(copy != nullptr);
3243 if (kUseBakerReadBarrier) {
3244 orig->AssertReadBarrierState();
3245 }
3246 ObjPtr<mirror::Class> klass = orig->GetClass<kVerifyNone, kWithoutReadBarrier>();
3247 if (klass->IsClassClass()) {
3248 FixupClass(orig->AsClass<kVerifyNone>().Ptr(), down_cast<mirror::Class*>(copy));
3249 } else {
3250 ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots =
3251 Runtime::Current()->GetClassLinker()->GetClassRoots<kWithoutReadBarrier>();
3252 if (klass == GetClassRoot<mirror::String, kWithoutReadBarrier>(class_roots)) {
3253 // Make sure all image strings have the hash code calculated, even if they are not interned.
3254 down_cast<mirror::String*>(copy)->GetHashCode();
3255 } else if (klass == GetClassRoot<mirror::Method, kWithoutReadBarrier>(class_roots) ||
3256 klass == GetClassRoot<mirror::Constructor, kWithoutReadBarrier>(class_roots)) {
3257 // Need to update the ArtMethod.
3258 auto* dest = down_cast<mirror::Executable*>(copy);
3259 auto* src = down_cast<mirror::Executable*>(orig);
3260 ArtMethod* src_method = src->GetArtMethod();
3261 CopyAndFixupPointer(dest, mirror::Executable::ArtMethodOffset(), src_method);
3262 } else if (klass == GetClassRoot<mirror::FieldVarHandle, kWithoutReadBarrier>(class_roots) ||
3263 klass == GetClassRoot<mirror::StaticFieldVarHandle, kWithoutReadBarrier>(class_roots)) {
3264 // Need to update the ArtField.
3265 auto* dest = down_cast<mirror::FieldVarHandle*>(copy);
3266 auto* src = down_cast<mirror::FieldVarHandle*>(orig);
3267 ArtField* src_field = src->GetArtField();
3268 CopyAndFixupPointer(dest, mirror::FieldVarHandle::ArtFieldOffset(), src_field);
3269 } else if (klass == GetClassRoot<mirror::DexCache, kWithoutReadBarrier>(class_roots)) {
3270 down_cast<mirror::DexCache*>(copy)->SetDexFile(nullptr);
3271 down_cast<mirror::DexCache*>(copy)->ResetNativeArrays();
3272 } else if (klass->IsClassLoaderClass()) {
3273 mirror::ClassLoader* copy_loader = down_cast<mirror::ClassLoader*>(copy);
3274 // If src is a ClassLoader, set the class table to null so that it gets recreated by the
3275 // ClassLinker.
3276 copy_loader->SetClassTable(nullptr);
3277 // Also set allocator to null to be safe. The allocator is created when we create the class
3278 // table. We also never expect to unload things in the image since they are held live as
3279 // roots.
3280 copy_loader->SetAllocator(nullptr);
3281 }
3282 FixupVisitor visitor(this, copy);
3283 orig->VisitReferences</*kVisitNativeRoots=*/ false, kVerifyNone, kWithoutReadBarrier>(
3284 visitor, visitor);
3285 }
3286 }
3287
GetOatAddress(StubType type) const3288 const uint8_t* ImageWriter::GetOatAddress(StubType type) const {
3289 DCHECK_LE(type, StubType::kLast);
3290 // If we are compiling a boot image extension or app image,
3291 // we need to use the stubs of the primary boot image.
3292 if (!compiler_options_.IsBootImage()) {
3293 // Use the current image pointers.
3294 const std::vector<gc::space::ImageSpace*>& image_spaces =
3295 Runtime::Current()->GetHeap()->GetBootImageSpaces();
3296 DCHECK(!image_spaces.empty());
3297 const OatFile* oat_file = image_spaces[0]->GetOatFile();
3298 CHECK(oat_file != nullptr);
3299 const OatHeader& header = oat_file->GetOatHeader();
3300 return header.GetOatAddress(type);
3301 }
3302 const ImageInfo& primary_image_info = GetImageInfo(0);
3303 return GetOatAddressForOffset(primary_image_info.GetStubOffset(type), primary_image_info);
3304 }
3305
GetQuickCode(ArtMethod * method,const ImageInfo & image_info)3306 const uint8_t* ImageWriter::GetQuickCode(ArtMethod* method, const ImageInfo& image_info) {
3307 DCHECK(!method->IsResolutionMethod()) << method->PrettyMethod();
3308 DCHECK_NE(method, Runtime::Current()->GetImtConflictMethod()) << method->PrettyMethod();
3309 DCHECK(!method->IsImtUnimplementedMethod()) << method->PrettyMethod();
3310 DCHECK(method->IsInvokable()) << method->PrettyMethod();
3311 DCHECK(!IsInBootImage(method)) << method->PrettyMethod();
3312
3313 // Use original code if it exists. Otherwise, set the code pointer to the resolution
3314 // trampoline.
3315
3316 // Quick entrypoint:
3317 const void* quick_oat_entry_point =
3318 method->GetEntryPointFromQuickCompiledCodePtrSize(target_ptr_size_);
3319 const uint8_t* quick_code;
3320
3321 if (UNLIKELY(IsInBootImage(method->GetDeclaringClass<kWithoutReadBarrier>().Ptr()))) {
3322 DCHECK(method->IsCopied());
3323 // If the code is not in the oat file corresponding to this image (e.g. default methods)
3324 quick_code = reinterpret_cast<const uint8_t*>(quick_oat_entry_point);
3325 } else {
3326 uint32_t quick_oat_code_offset = PointerToLowMemUInt32(quick_oat_entry_point);
3327 quick_code = GetOatAddressForOffset(quick_oat_code_offset, image_info);
3328 }
3329
3330 bool still_needs_clinit_check = method->StillNeedsClinitCheck<kWithoutReadBarrier>();
3331
3332 if (quick_code == nullptr) {
3333 // If we don't have code, use generic jni / interpreter.
3334 if (method->IsNative()) {
3335 // The generic JNI trampolines performs class initialization check if needed.
3336 quick_code = GetOatAddress(StubType::kQuickGenericJNITrampoline);
3337 } else if (CanMethodUseNterp(method, compiler_options_.GetInstructionSet())) {
3338 // The nterp trampoline doesn't do initialization checks, so install the
3339 // resolution stub if needed.
3340 if (still_needs_clinit_check) {
3341 quick_code = GetOatAddress(StubType::kQuickResolutionTrampoline);
3342 } else {
3343 quick_code = GetOatAddress(StubType::kNterpTrampoline);
3344 }
3345 } else {
3346 // The interpreter brige performs class initialization check if needed.
3347 quick_code = GetOatAddress(StubType::kQuickToInterpreterBridge);
3348 }
3349 } else if (still_needs_clinit_check && !compiler_options_.ShouldCompileWithClinitCheck(method)) {
3350 // If we do have code but the method needs a class initialization check before calling
3351 // that code, install the resolution stub that will perform the check.
3352 quick_code = GetOatAddress(StubType::kQuickResolutionTrampoline);
3353 }
3354 return quick_code;
3355 }
3356
CopyAndFixupMethod(ArtMethod * orig,ArtMethod * copy,size_t oat_index)3357 void ImageWriter::CopyAndFixupMethod(ArtMethod* orig,
3358 ArtMethod* copy,
3359 size_t oat_index) {
3360 if (orig->IsAbstract()) {
3361 // Ignore the single-implementation info for abstract method.
3362 // Do this on orig instead of copy, otherwise there is a crash due to methods
3363 // are copied before classes.
3364 // TODO: handle fixup of single-implementation method for abstract method.
3365 orig->SetHasSingleImplementation(false);
3366 orig->SetSingleImplementation(
3367 nullptr, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
3368 }
3369
3370 if (!orig->IsRuntimeMethod() &&
3371 (compiler_options_.IsBootImage() || compiler_options_.IsBootImageExtension())) {
3372 orig->SetMemorySharedMethod();
3373 }
3374
3375 memcpy(copy, orig, ArtMethod::Size(target_ptr_size_));
3376
3377 CopyAndFixupReference(copy->GetDeclaringClassAddressWithoutBarrier(),
3378 orig->GetDeclaringClassUnchecked<kWithoutReadBarrier>());
3379
3380 // OatWriter replaces the code_ with an offset value. Here we re-adjust to a pointer relative to
3381 // oat_begin_
3382
3383 // The resolution method has a special trampoline to call.
3384 Runtime* runtime = Runtime::Current();
3385 const void* quick_code;
3386 if (orig->IsRuntimeMethod()) {
3387 ImtConflictTable* orig_table = orig->GetImtConflictTable(target_ptr_size_);
3388 if (orig_table != nullptr) {
3389 // Special IMT conflict method, normal IMT conflict method or unimplemented IMT method.
3390 quick_code = GetOatAddress(StubType::kQuickIMTConflictTrampoline);
3391 CopyAndFixupPointer(copy, ArtMethod::DataOffset(target_ptr_size_), orig_table);
3392 } else if (UNLIKELY(orig == runtime->GetResolutionMethod())) {
3393 quick_code = GetOatAddress(StubType::kQuickResolutionTrampoline);
3394 // Set JNI entrypoint for resolving @CriticalNative methods called from compiled code .
3395 const void* jni_code = GetOatAddress(StubType::kJNIDlsymLookupCriticalTrampoline);
3396 copy->SetEntryPointFromJniPtrSize(jni_code, target_ptr_size_);
3397 } else {
3398 bool found_one = false;
3399 for (size_t i = 0; i < static_cast<size_t>(CalleeSaveType::kLastCalleeSaveType); ++i) {
3400 auto idx = static_cast<CalleeSaveType>(i);
3401 if (runtime->HasCalleeSaveMethod(idx) && runtime->GetCalleeSaveMethod(idx) == orig) {
3402 found_one = true;
3403 break;
3404 }
3405 }
3406 CHECK(found_one) << "Expected to find callee save method but got " << orig->PrettyMethod();
3407 CHECK(copy->IsRuntimeMethod());
3408 CHECK(copy->GetEntryPointFromQuickCompiledCode() == nullptr);
3409 quick_code = nullptr;
3410 }
3411 } else {
3412 // We assume all methods have code. If they don't currently then we set them to the use the
3413 // resolution trampoline. Abstract methods never have code and so we need to make sure their
3414 // use results in an AbstractMethodError. We use the interpreter to achieve this.
3415 if (UNLIKELY(!orig->IsInvokable())) {
3416 quick_code = GetOatAddress(StubType::kQuickToInterpreterBridge);
3417 } else {
3418 const ImageInfo& image_info = image_infos_[oat_index];
3419 quick_code = GetQuickCode(orig, image_info);
3420
3421 // JNI entrypoint:
3422 if (orig->IsNative()) {
3423 // The native method's pointer is set to a stub to lookup via dlsym.
3424 // Note this is not the code_ pointer, that is handled above.
3425 StubType stub_type = orig->IsCriticalNative() ? StubType::kJNIDlsymLookupCriticalTrampoline
3426 : StubType::kJNIDlsymLookupTrampoline;
3427 copy->SetEntryPointFromJniPtrSize(GetOatAddress(stub_type), target_ptr_size_);
3428 } else if (!orig->HasCodeItem()) {
3429 CHECK(copy->GetDataPtrSize(target_ptr_size_) == nullptr);
3430 } else {
3431 CHECK(copy->GetDataPtrSize(target_ptr_size_) != nullptr);
3432 }
3433 }
3434 }
3435 if (quick_code != nullptr) {
3436 copy->SetEntryPointFromQuickCompiledCodePtrSize(quick_code, target_ptr_size_);
3437 }
3438 }
3439
GetBinSizeSum(Bin up_to) const3440 size_t ImageWriter::ImageInfo::GetBinSizeSum(Bin up_to) const {
3441 DCHECK_LE(static_cast<size_t>(up_to), kNumberOfBins);
3442 return std::accumulate(&bin_slot_sizes_[0],
3443 &bin_slot_sizes_[0] + static_cast<size_t>(up_to),
3444 /*init*/ static_cast<size_t>(0));
3445 }
3446
BinSlot(uint32_t lockword)3447 ImageWriter::BinSlot::BinSlot(uint32_t lockword) : lockword_(lockword) {
3448 // These values may need to get updated if more bins are added to the enum Bin
3449 static_assert(kBinBits == 3, "wrong number of bin bits");
3450 static_assert(kBinShift == 27, "wrong number of shift");
3451 static_assert(sizeof(BinSlot) == sizeof(LockWord), "BinSlot/LockWord must have equal sizes");
3452
3453 DCHECK_LT(GetBin(), Bin::kMirrorCount);
3454 DCHECK_ALIGNED(GetOffset(), kObjectAlignment);
3455 }
3456
BinSlot(Bin bin,uint32_t index)3457 ImageWriter::BinSlot::BinSlot(Bin bin, uint32_t index)
3458 : BinSlot(index | (static_cast<uint32_t>(bin) << kBinShift)) {
3459 DCHECK_EQ(index, GetOffset());
3460 }
3461
GetBin() const3462 ImageWriter::Bin ImageWriter::BinSlot::GetBin() const {
3463 return static_cast<Bin>((lockword_ & kBinMask) >> kBinShift);
3464 }
3465
GetOffset() const3466 uint32_t ImageWriter::BinSlot::GetOffset() const {
3467 return lockword_ & ~kBinMask;
3468 }
3469
BinTypeForNativeRelocationType(NativeObjectRelocationType type)3470 ImageWriter::Bin ImageWriter::BinTypeForNativeRelocationType(NativeObjectRelocationType type) {
3471 switch (type) {
3472 case NativeObjectRelocationType::kArtFieldArray:
3473 return Bin::kArtField;
3474 case NativeObjectRelocationType::kArtMethodClean:
3475 case NativeObjectRelocationType::kArtMethodArrayClean:
3476 return Bin::kArtMethodClean;
3477 case NativeObjectRelocationType::kArtMethodDirty:
3478 case NativeObjectRelocationType::kArtMethodArrayDirty:
3479 return Bin::kArtMethodDirty;
3480 case NativeObjectRelocationType::kRuntimeMethod:
3481 return Bin::kRuntimeMethod;
3482 case NativeObjectRelocationType::kIMTable:
3483 return Bin::kImTable;
3484 case NativeObjectRelocationType::kIMTConflictTable:
3485 return Bin::kIMTConflictTable;
3486 case NativeObjectRelocationType::kGcRootPointer:
3487 return Bin::kMetadata;
3488 }
3489 UNREACHABLE();
3490 }
3491
GetOatIndex(mirror::Object * obj) const3492 size_t ImageWriter::GetOatIndex(mirror::Object* obj) const {
3493 if (!IsMultiImage()) {
3494 DCHECK(oat_index_map_.empty());
3495 return GetDefaultOatIndex();
3496 }
3497 auto it = oat_index_map_.find(obj);
3498 DCHECK(it != oat_index_map_.end()) << obj;
3499 return it->second;
3500 }
3501
GetOatIndexForDexFile(const DexFile * dex_file) const3502 size_t ImageWriter::GetOatIndexForDexFile(const DexFile* dex_file) const {
3503 if (!IsMultiImage()) {
3504 return GetDefaultOatIndex();
3505 }
3506 auto it = dex_file_oat_index_map_.find(dex_file);
3507 DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
3508 return it->second;
3509 }
3510
GetOatIndexForClass(ObjPtr<mirror::Class> klass) const3511 size_t ImageWriter::GetOatIndexForClass(ObjPtr<mirror::Class> klass) const {
3512 while (klass->IsArrayClass()) {
3513 klass = klass->GetComponentType<kVerifyNone, kWithoutReadBarrier>();
3514 }
3515 if (UNLIKELY(klass->IsPrimitive())) {
3516 DCHECK((klass->GetDexCache<kVerifyNone, kWithoutReadBarrier>()) == nullptr);
3517 return GetDefaultOatIndex();
3518 } else {
3519 DCHECK((klass->GetDexCache<kVerifyNone, kWithoutReadBarrier>()) != nullptr);
3520 return GetOatIndexForDexFile(&klass->GetDexFile());
3521 }
3522 }
3523
UpdateOatFileLayout(size_t oat_index,size_t oat_loaded_size,size_t oat_data_offset,size_t oat_data_size)3524 void ImageWriter::UpdateOatFileLayout(size_t oat_index,
3525 size_t oat_loaded_size,
3526 size_t oat_data_offset,
3527 size_t oat_data_size) {
3528 DCHECK_GE(oat_loaded_size, oat_data_offset);
3529 DCHECK_GE(oat_loaded_size - oat_data_offset, oat_data_size);
3530
3531 const uint8_t* images_end = image_infos_.back().image_begin_ + image_infos_.back().image_size_;
3532 DCHECK(images_end != nullptr); // Image space must be ready.
3533 for (const ImageInfo& info : image_infos_) {
3534 DCHECK_LE(info.image_begin_ + info.image_size_, images_end);
3535 }
3536
3537 ImageInfo& cur_image_info = GetImageInfo(oat_index);
3538 cur_image_info.oat_file_begin_ = images_end + cur_image_info.oat_offset_;
3539 cur_image_info.oat_loaded_size_ = oat_loaded_size;
3540 cur_image_info.oat_data_begin_ = cur_image_info.oat_file_begin_ + oat_data_offset;
3541 cur_image_info.oat_size_ = oat_data_size;
3542
3543 if (compiler_options_.IsAppImage()) {
3544 CHECK_EQ(oat_filenames_.size(), 1u) << "App image should have no next image.";
3545 return;
3546 }
3547
3548 // Update the oat_offset of the next image info.
3549 if (oat_index + 1u != oat_filenames_.size()) {
3550 // There is a following one.
3551 ImageInfo& next_image_info = GetImageInfo(oat_index + 1u);
3552 next_image_info.oat_offset_ = cur_image_info.oat_offset_ + oat_loaded_size;
3553 }
3554 }
3555
UpdateOatFileHeader(size_t oat_index,const OatHeader & oat_header)3556 void ImageWriter::UpdateOatFileHeader(size_t oat_index, const OatHeader& oat_header) {
3557 ImageInfo& cur_image_info = GetImageInfo(oat_index);
3558 cur_image_info.oat_checksum_ = oat_header.GetChecksum();
3559
3560 if (oat_index == GetDefaultOatIndex()) {
3561 // Primary oat file, read the trampolines.
3562 cur_image_info.SetStubOffset(StubType::kJNIDlsymLookupTrampoline,
3563 oat_header.GetJniDlsymLookupTrampolineOffset());
3564 cur_image_info.SetStubOffset(StubType::kJNIDlsymLookupCriticalTrampoline,
3565 oat_header.GetJniDlsymLookupCriticalTrampolineOffset());
3566 cur_image_info.SetStubOffset(StubType::kQuickGenericJNITrampoline,
3567 oat_header.GetQuickGenericJniTrampolineOffset());
3568 cur_image_info.SetStubOffset(StubType::kQuickIMTConflictTrampoline,
3569 oat_header.GetQuickImtConflictTrampolineOffset());
3570 cur_image_info.SetStubOffset(StubType::kQuickResolutionTrampoline,
3571 oat_header.GetQuickResolutionTrampolineOffset());
3572 cur_image_info.SetStubOffset(StubType::kQuickToInterpreterBridge,
3573 oat_header.GetQuickToInterpreterBridgeOffset());
3574 cur_image_info.SetStubOffset(StubType::kNterpTrampoline,
3575 oat_header.GetNterpTrampolineOffset());
3576 }
3577 }
3578
ImageWriter(const CompilerOptions & compiler_options,uintptr_t image_begin,ImageHeader::StorageMode image_storage_mode,const std::vector<std::string> & oat_filenames,const HashMap<const DexFile *,size_t> & dex_file_oat_index_map,jobject class_loader,const HashSet<std::string> * dirty_image_objects)3579 ImageWriter::ImageWriter(
3580 const CompilerOptions& compiler_options,
3581 uintptr_t image_begin,
3582 ImageHeader::StorageMode image_storage_mode,
3583 const std::vector<std::string>& oat_filenames,
3584 const HashMap<const DexFile*, size_t>& dex_file_oat_index_map,
3585 jobject class_loader,
3586 const HashSet<std::string>* dirty_image_objects)
3587 : compiler_options_(compiler_options),
3588 boot_image_begin_(Runtime::Current()->GetHeap()->GetBootImagesStartAddress()),
3589 boot_image_size_(Runtime::Current()->GetHeap()->GetBootImagesSize()),
3590 global_image_begin_(reinterpret_cast<uint8_t*>(image_begin)),
3591 image_objects_offset_begin_(0),
3592 target_ptr_size_(InstructionSetPointerSize(compiler_options.GetInstructionSet())),
3593 image_infos_(oat_filenames.size()),
3594 dirty_methods_(0u),
3595 clean_methods_(0u),
3596 app_class_loader_(class_loader),
3597 boot_image_live_objects_(nullptr),
3598 image_roots_(),
3599 image_storage_mode_(image_storage_mode),
3600 oat_filenames_(oat_filenames),
3601 dex_file_oat_index_map_(dex_file_oat_index_map),
3602 dirty_image_objects_(dirty_image_objects) {
3603 DCHECK(compiler_options.IsBootImage() ||
3604 compiler_options.IsBootImageExtension() ||
3605 compiler_options.IsAppImage());
3606 DCHECK_EQ(compiler_options.IsBootImage(), boot_image_begin_ == 0u);
3607 DCHECK_EQ(compiler_options.IsBootImage(), boot_image_size_ == 0u);
3608 CHECK_NE(image_begin, 0U);
3609 std::fill_n(image_methods_, arraysize(image_methods_), nullptr);
3610 CHECK_EQ(compiler_options.IsBootImage(),
3611 Runtime::Current()->GetHeap()->GetBootImageSpaces().empty())
3612 << "Compiling a boot image should occur iff there are no boot image spaces loaded";
3613 if (compiler_options_.IsAppImage()) {
3614 // Make sure objects are not crossing region boundaries for app images.
3615 region_size_ = gc::space::RegionSpace::kRegionSize;
3616 }
3617 }
3618
~ImageWriter()3619 ImageWriter::~ImageWriter() {
3620 if (!image_roots_.empty()) {
3621 Thread* self = Thread::Current();
3622 JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
3623 for (jobject image_roots : image_roots_) {
3624 vm->DeleteGlobalRef(self, image_roots);
3625 }
3626 }
3627 }
3628
ImageInfo()3629 ImageWriter::ImageInfo::ImageInfo()
3630 : intern_table_(),
3631 class_table_() {}
3632
3633 template <typename DestType>
CopyAndFixupReference(DestType * dest,ObjPtr<mirror::Object> src)3634 void ImageWriter::CopyAndFixupReference(DestType* dest, ObjPtr<mirror::Object> src) {
3635 static_assert(std::is_same<DestType, mirror::CompressedReference<mirror::Object>>::value ||
3636 std::is_same<DestType, mirror::HeapReference<mirror::Object>>::value,
3637 "DestType must be a Compressed-/HeapReference<Object>.");
3638 dest->Assign(GetImageAddress(src.Ptr()));
3639 }
3640
3641 template <typename ValueType>
CopyAndFixupPointer(void ** target,ValueType src_value,PointerSize pointer_size)3642 void ImageWriter::CopyAndFixupPointer(
3643 void** target, ValueType src_value, PointerSize pointer_size) {
3644 DCHECK(src_value != nullptr);
3645 void* new_value = NativeLocationInImage(src_value);
3646 DCHECK(new_value != nullptr);
3647 if (pointer_size == PointerSize::k32) {
3648 *reinterpret_cast<uint32_t*>(target) = reinterpret_cast32<uint32_t>(new_value);
3649 } else {
3650 *reinterpret_cast<uint64_t*>(target) = reinterpret_cast64<uint64_t>(new_value);
3651 }
3652 }
3653
3654 template <typename ValueType>
CopyAndFixupPointer(void ** target,ValueType src_value)3655 void ImageWriter::CopyAndFixupPointer(void** target, ValueType src_value)
3656 REQUIRES_SHARED(Locks::mutator_lock_) {
3657 CopyAndFixupPointer(target, src_value, target_ptr_size_);
3658 }
3659
3660 template <typename ValueType>
CopyAndFixupPointer(void * object,MemberOffset offset,ValueType src_value,PointerSize pointer_size)3661 void ImageWriter::CopyAndFixupPointer(
3662 void* object, MemberOffset offset, ValueType src_value, PointerSize pointer_size) {
3663 void** target =
3664 reinterpret_cast<void**>(reinterpret_cast<uint8_t*>(object) + offset.Uint32Value());
3665 return CopyAndFixupPointer(target, src_value, pointer_size);
3666 }
3667
3668 template <typename ValueType>
CopyAndFixupPointer(void * object,MemberOffset offset,ValueType src_value)3669 void ImageWriter::CopyAndFixupPointer(void* object, MemberOffset offset, ValueType src_value) {
3670 return CopyAndFixupPointer(object, offset, src_value, target_ptr_size_);
3671 }
3672
3673 } // namespace linker
3674 } // namespace art
3675