• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "image_writer.h"
18 
19 #include <lz4.h>
20 #include <lz4hc.h>
21 #include <sys/stat.h>
22 #include <zlib.h>
23 
24 #include <charconv>
25 #include <memory>
26 #include <numeric>
27 #include <vector>
28 
29 #include "android-base/strings.h"
30 #include "art_field-inl.h"
31 #include "art_method-inl.h"
32 #include "base/callee_save_type.h"
33 #include "base/enums.h"
34 #include "base/globals.h"
35 #include "base/logging.h"  // For VLOG.
36 #include "base/stl_util.h"
37 #include "base/unix_file/fd_file.h"
38 #include "class_linker-inl.h"
39 #include "class_root-inl.h"
40 #include "dex/dex_file-inl.h"
41 #include "dex/dex_file_types.h"
42 #include "driver/compiler_options.h"
43 #include "elf/elf_utils.h"
44 #include "elf_file.h"
45 #include "entrypoints/entrypoint_utils-inl.h"
46 #include "gc/accounting/card_table-inl.h"
47 #include "gc/accounting/heap_bitmap.h"
48 #include "gc/accounting/space_bitmap-inl.h"
49 #include "gc/collector/concurrent_copying.h"
50 #include "gc/heap-visit-objects-inl.h"
51 #include "gc/heap.h"
52 #include "gc/space/large_object_space.h"
53 #include "gc/space/region_space.h"
54 #include "gc/space/space-inl.h"
55 #include "gc/verification.h"
56 #include "handle_scope-inl.h"
57 #include "image-inl.h"
58 #include "imt_conflict_table.h"
59 #include "indirect_reference_table-inl.h"
60 #include "intern_table-inl.h"
61 #include "jni/java_vm_ext-inl.h"
62 #include "jni/jni_internal.h"
63 #include "linear_alloc.h"
64 #include "lock_word.h"
65 #include "mirror/array-inl.h"
66 #include "mirror/class-inl.h"
67 #include "mirror/class_ext-inl.h"
68 #include "mirror/class_loader.h"
69 #include "mirror/dex_cache-inl.h"
70 #include "mirror/dex_cache.h"
71 #include "mirror/executable.h"
72 #include "mirror/method.h"
73 #include "mirror/object-inl.h"
74 #include "mirror/object-refvisitor-inl.h"
75 #include "mirror/object_array-alloc-inl.h"
76 #include "mirror/object_array-inl.h"
77 #include "mirror/string-inl.h"
78 #include "mirror/var_handle.h"
79 #include "nterp_helpers.h"
80 #include "oat.h"
81 #include "oat_file.h"
82 #include "oat_file_manager.h"
83 #include "optimizing/intrinsic_objects.h"
84 #include "runtime.h"
85 #include "scoped_thread_state_change-inl.h"
86 #include "subtype_check.h"
87 #include "well_known_classes-inl.h"
88 
89 using ::art::mirror::Class;
90 using ::art::mirror::DexCache;
91 using ::art::mirror::Object;
92 using ::art::mirror::ObjectArray;
93 using ::art::mirror::String;
94 
95 namespace art {
96 namespace linker {
97 
98 // The actual value of `kImageClassTableMinLoadFactor` is irrelevant because image class tables
99 // are never resized, but we still need to pass a reasonable value to the constructor.
100 constexpr double kImageClassTableMinLoadFactor = 0.5;
101 // We use `kImageClassTableMaxLoadFactor` to determine the buffer size for image class tables
102 // to make them full. We never insert additional elements to them, so we do not want to waste
103 // extra memory. And unlike runtime class tables, we do not want this to depend on runtime
104 // properties (see `Runtime::GetHashTableMaxLoadFactor()` checking for low memory mode).
105 constexpr double kImageClassTableMaxLoadFactor = 0.6;
106 
107 // The actual value of `kImageInternTableMinLoadFactor` is irrelevant because image intern tables
108 // are never resized, but we still need to pass a reasonable value to the constructor.
109 constexpr double kImageInternTableMinLoadFactor = 0.5;
110 // We use `kImageInternTableMaxLoadFactor` to determine the buffer size for image intern tables
111 // to make them full. We never insert additional elements to them, so we do not want to waste
112 // extra memory. And unlike runtime intern tables, we do not want this to depend on runtime
113 // properties (see `Runtime::GetHashTableMaxLoadFactor()` checking for low memory mode).
114 constexpr double kImageInternTableMaxLoadFactor = 0.6;
115 
116 // Separate objects into multiple bins to optimize dirty memory use.
117 static constexpr bool kBinObjects = true;
118 
AllocateBootImageLiveObjects(Thread * self,Runtime * runtime)119 static ObjPtr<mirror::ObjectArray<mirror::Object>> AllocateBootImageLiveObjects(
120     Thread* self, Runtime* runtime) REQUIRES_SHARED(Locks::mutator_lock_) {
121   ClassLinker* class_linker = runtime->GetClassLinker();
122   // The objects used for the Integer.valueOf() intrinsic must remain live even if references
123   // to them are removed using reflection. Image roots are not accessible through reflection,
124   // so the array we construct here shall keep them alive.
125   StackHandleScope<1> hs(self);
126   Handle<mirror::ObjectArray<mirror::Object>> integer_cache =
127       hs.NewHandle(IntrinsicObjects::LookupIntegerCache(self, class_linker));
128   size_t live_objects_size =
129       enum_cast<size_t>(ImageHeader::kIntrinsicObjectsStart) +
130       ((integer_cache != nullptr) ? (/* cache */ 1u + integer_cache->GetLength()) : 0u);
131   ObjPtr<mirror::ObjectArray<mirror::Object>> live_objects =
132       mirror::ObjectArray<mirror::Object>::Alloc(
133           self, GetClassRoot<mirror::ObjectArray<mirror::Object>>(class_linker), live_objects_size);
134   if (live_objects == nullptr) {
135     return nullptr;
136   }
137   int32_t index = 0u;
138   auto set_entry = [&](ImageHeader::BootImageLiveObjects entry,
139                        ObjPtr<mirror::Object> value) REQUIRES_SHARED(Locks::mutator_lock_) {
140     DCHECK_EQ(index, enum_cast<int32_t>(entry));
141     live_objects->Set</*kTransacrionActive=*/ false>(index, value);
142     ++index;
143   };
144   set_entry(ImageHeader::kOomeWhenThrowingException,
145             runtime->GetPreAllocatedOutOfMemoryErrorWhenThrowingException());
146   set_entry(ImageHeader::kOomeWhenThrowingOome,
147             runtime->GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME());
148   set_entry(ImageHeader::kOomeWhenHandlingStackOverflow,
149             runtime->GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow());
150   set_entry(ImageHeader::kNoClassDefFoundError, runtime->GetPreAllocatedNoClassDefFoundError());
151   set_entry(ImageHeader::kClearedJniWeakSentinel, runtime->GetSentinel().Read());
152 
153   DCHECK_EQ(index, enum_cast<int32_t>(ImageHeader::kIntrinsicObjectsStart));
154   if (integer_cache != nullptr) {
155     live_objects->Set(index++, integer_cache.Get());
156     for (int32_t i = 0, length = integer_cache->GetLength(); i != length; ++i) {
157       live_objects->Set(index++, integer_cache->Get(i));
158     }
159   }
160   CHECK_EQ(index, live_objects->GetLength());
161 
162   if (kIsDebugBuild && integer_cache != nullptr) {
163     CHECK_EQ(integer_cache.Get(), IntrinsicObjects::GetIntegerValueOfCache(live_objects));
164     for (int32_t i = 0, len = integer_cache->GetLength(); i != len; ++i) {
165       CHECK_EQ(integer_cache->GetWithoutChecks(i),
166                IntrinsicObjects::GetIntegerValueOfObject(live_objects, i));
167     }
168   }
169   return live_objects;
170 }
171 
172 template <typename MirrorType>
DecodeGlobalWithoutRB(JavaVMExt * vm,jobject obj)173 ObjPtr<MirrorType> ImageWriter::DecodeGlobalWithoutRB(JavaVMExt* vm, jobject obj) {
174   DCHECK_EQ(IndirectReferenceTable::GetIndirectRefKind(obj), kGlobal);
175   return ObjPtr<MirrorType>::DownCast(vm->globals_.Get<kWithoutReadBarrier>(obj));
176 }
177 
178 template <typename MirrorType>
DecodeWeakGlobalWithoutRB(JavaVMExt * vm,Thread * self,jobject obj)179 ObjPtr<MirrorType> ImageWriter::DecodeWeakGlobalWithoutRB(
180     JavaVMExt* vm, Thread* self, jobject obj) {
181   DCHECK_EQ(IndirectReferenceTable::GetIndirectRefKind(obj), kWeakGlobal);
182   DCHECK(vm->MayAccessWeakGlobals(self));
183   return ObjPtr<MirrorType>::DownCast(vm->weak_globals_.Get<kWithoutReadBarrier>(obj));
184 }
185 
GetAppClassLoader() const186 ObjPtr<mirror::ClassLoader> ImageWriter::GetAppClassLoader() const
187     REQUIRES_SHARED(Locks::mutator_lock_) {
188   return compiler_options_.IsAppImage()
189       ? ObjPtr<mirror::ClassLoader>::DownCast(Thread::Current()->DecodeJObject(app_class_loader_))
190       : nullptr;
191 }
192 
IsImageDexCache(ObjPtr<mirror::DexCache> dex_cache) const193 bool ImageWriter::IsImageDexCache(ObjPtr<mirror::DexCache> dex_cache) const {
194   // For boot image, we keep all dex caches.
195   if (compiler_options_.IsBootImage()) {
196     return true;
197   }
198   // Dex caches already in the boot image do not belong to the image being written.
199   if (IsInBootImage(dex_cache.Ptr())) {
200     return false;
201   }
202   // Dex caches for the boot class path components that are not part of the boot image
203   // cannot be garbage collected in PrepareImageAddressSpace() but we do not want to
204   // include them in the app image.
205   if (!ContainsElement(compiler_options_.GetDexFilesForOatFile(), dex_cache->GetDexFile())) {
206     return false;
207   }
208   return true;
209 }
210 
ClearDexFileCookies()211 static void ClearDexFileCookies() REQUIRES_SHARED(Locks::mutator_lock_) {
212   auto visitor = [](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
213     DCHECK(obj != nullptr);
214     Class* klass = obj->GetClass();
215     if (klass == WellKnownClasses::dalvik_system_DexFile) {
216       ArtField* field = WellKnownClasses::dalvik_system_DexFile_cookie;
217       // Null out the cookie to enable determinism. b/34090128
218       field->SetObject</*kTransactionActive*/false>(obj, nullptr);
219     }
220   };
221   Runtime::Current()->GetHeap()->VisitObjects(visitor);
222 }
223 
PrepareImageAddressSpace(TimingLogger * timings)224 bool ImageWriter::PrepareImageAddressSpace(TimingLogger* timings) {
225   target_ptr_size_ = InstructionSetPointerSize(compiler_options_.GetInstructionSet());
226 
227   Thread* const self = Thread::Current();
228 
229   gc::Heap* const heap = Runtime::Current()->GetHeap();
230   {
231     ScopedObjectAccess soa(self);
232     {
233       TimingLogger::ScopedTiming t("PruneNonImageClasses", timings);
234       PruneNonImageClasses();  // Remove junk
235     }
236 
237     if (UNLIKELY(!CreateImageRoots())) {
238       self->AssertPendingOOMException();
239       self->ClearException();
240       return false;
241     }
242 
243     if (compiler_options_.IsAppImage()) {
244       TimingLogger::ScopedTiming t("ClearDexFileCookies", timings);
245       // Clear dex file cookies for app images to enable app image determinism. This is required
246       // since the cookie field contains long pointers to DexFiles which are not deterministic.
247       // b/34090128
248       ClearDexFileCookies();
249     }
250   }
251 
252   {
253     TimingLogger::ScopedTiming t("CollectGarbage", timings);
254     heap->CollectGarbage(/* clear_soft_references */ false);  // Remove garbage.
255   }
256 
257   if (kIsDebugBuild) {
258     ScopedObjectAccess soa(self);
259     CheckNonImageClassesRemoved();
260   }
261 
262   // From this point on, there should be no GC, so we should not use unnecessary read barriers.
263   ScopedDebugDisallowReadBarriers sddrb(self);
264 
265   {
266     // All remaining weak interns are referenced. Promote them to strong interns. Whether a
267     // string was strongly or weakly interned, we shall make it strongly interned in the image.
268     TimingLogger::ScopedTiming t("PromoteInterns", timings);
269     ScopedObjectAccess soa(self);
270     PromoteWeakInternsToStrong(self);
271   }
272 
273   {
274     TimingLogger::ScopedTiming t("CalculateNewObjectOffsets", timings);
275     ScopedObjectAccess soa(self);
276     CalculateNewObjectOffsets();
277 
278     // If dirty_image_objects_ is present - try optimizing object layout.
279     // It can only be done after the first CalculateNewObjectOffsets,
280     // because calculated offsets are used to match dirty objects between imgdiag and dex2oat.
281     if (compiler_options_.IsBootImage() && dirty_image_objects_ != nullptr) {
282       TryRecalculateOffsetsWithDirtyObjects();
283     }
284   }
285 
286   // This needs to happen after CalculateNewObjectOffsets since it relies on intern_table_bytes_ and
287   // bin size sums being calculated.
288   TimingLogger::ScopedTiming t("AllocMemory", timings);
289   return AllocMemory();
290 }
291 
CopyMetadata()292 void ImageWriter::CopyMetadata() {
293   DCHECK(compiler_options_.IsAppImage());
294   CHECK_EQ(image_infos_.size(), 1u);
295 
296   const ImageInfo& image_info = image_infos_.back();
297   dchecked_vector<ImageSection> image_sections = image_info.CreateImageSections().second;
298 
299   auto* sfo_section_base = reinterpret_cast<AppImageReferenceOffsetInfo*>(
300       image_info.image_.Begin() +
301       image_sections[ImageHeader::kSectionStringReferenceOffsets].Offset());
302 
303   std::copy(image_info.string_reference_offsets_.begin(),
304             image_info.string_reference_offsets_.end(),
305             sfo_section_base);
306 }
307 
308 // NO_THREAD_SAFETY_ANALYSIS: Avoid locking the `Locks::intern_table_lock_` while single-threaded.
IsStronglyInternedString(ObjPtr<mirror::String> str)309 bool ImageWriter::IsStronglyInternedString(ObjPtr<mirror::String> str) NO_THREAD_SAFETY_ANALYSIS {
310   uint32_t hash = static_cast<uint32_t>(str->GetStoredHashCode());
311   if (hash == 0u && str->ComputeHashCode() != 0) {
312     // A string with uninitialized hash code cannot be interned.
313     return false;
314   }
315   InternTable* intern_table = Runtime::Current()->GetInternTable();
316   for (InternTable::Table::InternalTable& table : intern_table->strong_interns_.tables_) {
317     auto it = table.set_.FindWithHash(GcRoot<mirror::String>(str), hash);
318     if (it != table.set_.end()) {
319       return it->Read<kWithoutReadBarrier>() == str;
320     }
321   }
322   return false;
323 }
324 
IsInternedAppImageStringReference(ObjPtr<mirror::Object> referred_obj) const325 bool ImageWriter::IsInternedAppImageStringReference(ObjPtr<mirror::Object> referred_obj) const {
326   return referred_obj != nullptr &&
327          !IsInBootImage(referred_obj.Ptr()) &&
328          referred_obj->IsString() &&
329          IsStronglyInternedString(referred_obj->AsString());
330 }
331 
Write(int image_fd,const std::vector<std::string> & image_filenames,size_t component_count)332 bool ImageWriter::Write(int image_fd,
333                         const std::vector<std::string>& image_filenames,
334                         size_t component_count) {
335   // If image_fd or oat_fd are not File::kInvalidFd then we may have empty strings in
336   // image_filenames or oat_filenames.
337   CHECK(!image_filenames.empty());
338   if (image_fd != File::kInvalidFd) {
339     CHECK_EQ(image_filenames.size(), 1u);
340   }
341   DCHECK(!oat_filenames_.empty());
342   CHECK_EQ(image_filenames.size(), oat_filenames_.size());
343 
344   Thread* const self = Thread::Current();
345   ScopedDebugDisallowReadBarriers sddrb(self);
346   {
347     ScopedObjectAccess soa(self);
348     for (size_t i = 0; i < oat_filenames_.size(); ++i) {
349       CreateHeader(i, component_count);
350       CopyAndFixupNativeData(i);
351     }
352   }
353 
354   {
355     // TODO: heap validation can't handle these fix up passes.
356     ScopedObjectAccess soa(self);
357     Runtime::Current()->GetHeap()->DisableObjectValidation();
358     CopyAndFixupObjects();
359   }
360 
361   if (compiler_options_.IsAppImage()) {
362     CopyMetadata();
363   }
364 
365   // Primary image header shall be written last for two reasons. First, this ensures
366   // that we shall not end up with a valid primary image and invalid secondary image.
367   // Second, its checksum shall include the checksums of the secondary images (XORed).
368   // This way only the primary image checksum needs to be checked to determine whether
369   // any of the images or oat files are out of date. (Oat file checksums are included
370   // in the image checksum calculation.)
371   ImageHeader* primary_header = reinterpret_cast<ImageHeader*>(image_infos_[0].image_.Begin());
372   ImageFileGuard primary_image_file;
373   for (size_t i = 0; i < image_filenames.size(); ++i) {
374     const std::string& image_filename = image_filenames[i];
375     ImageInfo& image_info = GetImageInfo(i);
376     ImageFileGuard image_file;
377     if (image_fd != File::kInvalidFd) {
378       // Ignore image_filename, it is supplied only for better diagnostic.
379       image_file.reset(new File(image_fd, unix_file::kCheckSafeUsage));
380       // Empty the file in case it already exists.
381       if (image_file != nullptr) {
382         TEMP_FAILURE_RETRY(image_file->SetLength(0));
383         TEMP_FAILURE_RETRY(image_file->Flush());
384       }
385     } else {
386       image_file.reset(OS::CreateEmptyFile(image_filename.c_str()));
387     }
388 
389     if (image_file == nullptr) {
390       LOG(ERROR) << "Failed to open image file " << image_filename;
391       return false;
392     }
393 
394     // Make file world readable if we have created it, i.e. when not passed as file descriptor.
395     if (image_fd == -1 && !compiler_options_.IsAppImage() && fchmod(image_file->Fd(), 0644) != 0) {
396       PLOG(ERROR) << "Failed to make image file world readable: " << image_filename;
397       return false;
398     }
399 
400     // Image data size excludes the bitmap and the header.
401     ImageHeader* const image_header = reinterpret_cast<ImageHeader*>(image_info.image_.Begin());
402     std::string error_msg;
403     if (!image_header->WriteData(image_file,
404                                  image_info.image_.Begin(),
405                                  reinterpret_cast<const uint8_t*>(image_info.image_bitmap_.Begin()),
406                                  image_storage_mode_,
407                                  compiler_options_.MaxImageBlockSize(),
408                                  /* update_checksum= */ true,
409                                  &error_msg)) {
410       LOG(ERROR) << error_msg;
411       return false;
412     }
413 
414     // Write header last in case the compiler gets killed in the middle of image writing.
415     // We do not want to have a corrupted image with a valid header.
416     // Delay the writing of the primary image header until after writing secondary images.
417     if (i == 0u) {
418       primary_image_file = std::move(image_file);
419     } else {
420       if (!image_file.WriteHeaderAndClose(image_filename, image_header, &error_msg)) {
421         LOG(ERROR) << error_msg;
422         return false;
423       }
424       // Update the primary image checksum with the secondary image checksum.
425       primary_header->SetImageChecksum(
426           primary_header->GetImageChecksum() ^ image_header->GetImageChecksum());
427     }
428   }
429   DCHECK(primary_image_file != nullptr);
430   std::string error_msg;
431   if (!primary_image_file.WriteHeaderAndClose(image_filenames[0], primary_header, &error_msg)) {
432     LOG(ERROR) << error_msg;
433     return false;
434   }
435 
436   return true;
437 }
438 
GetImageOffset(mirror::Object * object,size_t oat_index) const439 size_t ImageWriter::GetImageOffset(mirror::Object* object, size_t oat_index) const {
440   BinSlot bin_slot = GetImageBinSlot(object, oat_index);
441   const ImageInfo& image_info = GetImageInfo(oat_index);
442   size_t offset = image_info.GetBinSlotOffset(bin_slot.GetBin()) + bin_slot.GetOffset();
443   DCHECK_LT(offset, image_info.image_end_);
444   return offset;
445 }
446 
SetImageBinSlot(mirror::Object * object,BinSlot bin_slot)447 void ImageWriter::SetImageBinSlot(mirror::Object* object, BinSlot bin_slot) {
448   DCHECK(object != nullptr);
449   DCHECK(!IsImageBinSlotAssigned(object));
450 
451   // Before we stomp over the lock word, save the hash code for later.
452   LockWord lw(object->GetLockWord(false));
453   switch (lw.GetState()) {
454     case LockWord::kFatLocked:
455       FALLTHROUGH_INTENDED;
456     case LockWord::kThinLocked: {
457       std::ostringstream oss;
458       bool thin = (lw.GetState() == LockWord::kThinLocked);
459       oss << (thin ? "Thin" : "Fat")
460           << " locked object " << object << "(" << object->PrettyTypeOf()
461           << ") found during object copy";
462       if (thin) {
463         oss << ". Lock owner:" << lw.ThinLockOwner();
464       }
465       LOG(FATAL) << oss.str();
466       UNREACHABLE();
467     }
468     case LockWord::kUnlocked:
469       // No hash, don't need to save it.
470       break;
471     case LockWord::kHashCode:
472       DCHECK(saved_hashcode_map_.find(object) == saved_hashcode_map_.end());
473       saved_hashcode_map_.insert(std::make_pair(object, lw.GetHashCode()));
474       break;
475     default:
476       LOG(FATAL) << "UNREACHABLE";
477       UNREACHABLE();
478   }
479   object->SetLockWord(LockWord::FromForwardingAddress(bin_slot.Uint32Value()),
480                       /*as_volatile=*/ false);
481   DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
482   DCHECK(IsImageBinSlotAssigned(object));
483 }
484 
AssignImageBinSlot(mirror::Object * object,size_t oat_index)485 ImageWriter::Bin ImageWriter::AssignImageBinSlot(mirror::Object* object, size_t oat_index) {
486   DCHECK(object != nullptr);
487 
488   // The magic happens here. We segregate objects into different bins based
489   // on how likely they are to get dirty at runtime.
490   //
491   // Likely-to-dirty objects get packed together into the same bin so that
492   // at runtime their page dirtiness ratio (how many dirty objects a page has) is
493   // maximized.
494   //
495   // This means more pages will stay either clean or shared dirty (with zygote) and
496   // the app will use less of its own (private) memory.
497   Bin bin = Bin::kRegular;
498 
499   if (kBinObjects) {
500     //
501     // Changing the bin of an object is purely a memory-use tuning.
502     // It has no change on runtime correctness.
503     //
504     // Memory analysis has determined that the following types of objects get dirtied
505     // the most:
506     //
507     // * Class'es which are verified [their clinit runs only at runtime]
508     //   - classes in general [because their static fields get overwritten]
509     //   - initialized classes with all-final statics are unlikely to be ever dirty,
510     //     so bin them separately
511     // * Art Methods that are:
512     //   - native [their native entry point is not looked up until runtime]
513     //   - have declaring classes that aren't initialized
514     //            [their interpreter/quick entry points are trampolines until the class
515     //             becomes initialized]
516     //
517     // We also assume the following objects get dirtied either never or extremely rarely:
518     //  * Strings (they are immutable)
519     //  * Art methods that aren't native and have initialized declared classes
520     //
521     // We assume that "regular" bin objects are highly unlikely to become dirtied,
522     // so packing them together will not result in a noticeably tighter dirty-to-clean ratio.
523     //
524     ObjPtr<mirror::Class> klass = object->GetClass<kVerifyNone, kWithoutReadBarrier>();
525     if (klass->IsStringClass<kVerifyNone>()) {
526       // Assign strings to their bin before checking dirty objects, because
527       // string intern processing expects strings to be in Bin::kString.
528       bin = Bin::kString;  // Strings are almost always immutable (except for object header).
529     } else if (dirty_objects_.find(object) != dirty_objects_.end()) {
530       bin = Bin::kKnownDirty;
531     } else if (klass->IsClassClass()) {
532       bin = Bin::kClassVerified;
533       ObjPtr<mirror::Class> as_klass = object->AsClass<kVerifyNone>();
534 
535       // Move known dirty objects into their own sections. This includes:
536       //   - classes with dirty static fields.
537       auto is_dirty = [&](ObjPtr<mirror::Class> k) REQUIRES_SHARED(Locks::mutator_lock_) {
538         std::string temp;
539         std::string_view descriptor = k->GetDescriptor(&temp);
540         return dirty_image_objects_->find(descriptor) != dirty_image_objects_->end();
541       };
542       if (dirty_image_objects_ != nullptr && is_dirty(as_klass)) {
543         bin = Bin::kKnownDirty;
544       } else if (as_klass->IsVisiblyInitialized<kVerifyNone>()) {
545         bin = Bin::kClassInitialized;
546 
547         // If the class's static fields are all final, put it into a separate bin
548         // since it's very likely it will stay clean.
549         uint32_t num_static_fields = as_klass->NumStaticFields();
550         if (num_static_fields == 0) {
551           bin = Bin::kClassInitializedFinalStatics;
552         } else {
553           // Maybe all the statics are final?
554           bool all_final = true;
555           for (uint32_t i = 0; i < num_static_fields; ++i) {
556             ArtField* field = as_klass->GetStaticField(i);
557             if (!field->IsFinal()) {
558               all_final = false;
559               break;
560             }
561           }
562 
563           if (all_final) {
564             bin = Bin::kClassInitializedFinalStatics;
565           }
566         }
567       }
568     } else if (!klass->HasSuperClass()) {
569       // Only `j.l.Object` and primitive classes lack the superclass and
570       // there are no instances of primitive classes.
571       DCHECK(klass->IsObjectClass());
572       // Instance of java lang object, probably a lock object. This means it will be dirty when we
573       // synchronize on it.
574       bin = Bin::kMiscDirty;
575     } else if (klass->IsDexCacheClass<kVerifyNone>()) {
576       // Dex file field becomes dirty when the image is loaded.
577       bin = Bin::kMiscDirty;
578     }
579     // else bin = kBinRegular
580   }
581 
582   AssignImageBinSlot(object, oat_index, bin);
583   return bin;
584 }
585 
AssignImageBinSlot(mirror::Object * object,size_t oat_index,Bin bin)586 void ImageWriter::AssignImageBinSlot(mirror::Object* object, size_t oat_index, Bin bin) {
587   DCHECK(object != nullptr);
588   size_t object_size = object->SizeOf();
589 
590   // Assign the oat index too.
591   if (IsMultiImage()) {
592     DCHECK(oat_index_map_.find(object) == oat_index_map_.end());
593     oat_index_map_.insert(std::make_pair(object, oat_index));
594   } else {
595     DCHECK(oat_index_map_.empty());
596   }
597 
598   ImageInfo& image_info = GetImageInfo(oat_index);
599 
600   size_t offset_delta = RoundUp(object_size, kObjectAlignment);  // 64-bit alignment
601   // How many bytes the current bin is at (aligned).
602   size_t current_offset = image_info.GetBinSlotSize(bin);
603   // Move the current bin size up to accommodate the object we just assigned a bin slot.
604   image_info.IncrementBinSlotSize(bin, offset_delta);
605 
606   BinSlot new_bin_slot(bin, current_offset);
607   SetImageBinSlot(object, new_bin_slot);
608 
609   image_info.IncrementBinSlotCount(bin, 1u);
610 
611   // Grow the image closer to the end by the object we just assigned.
612   image_info.image_end_ += offset_delta;
613 }
614 
WillMethodBeDirty(ArtMethod * m) const615 bool ImageWriter::WillMethodBeDirty(ArtMethod* m) const {
616   if (m->IsNative()) {
617     return true;
618   }
619   ObjPtr<mirror::Class> declaring_class = m->GetDeclaringClass<kWithoutReadBarrier>();
620   // Initialized is highly unlikely to dirty since there's no entry points to mutate.
621   return declaring_class == nullptr ||
622          declaring_class->GetStatus() != ClassStatus::kVisiblyInitialized;
623 }
624 
IsImageBinSlotAssigned(mirror::Object * object) const625 bool ImageWriter::IsImageBinSlotAssigned(mirror::Object* object) const {
626   DCHECK(object != nullptr);
627 
628   // We always stash the bin slot into a lockword, in the 'forwarding address' state.
629   // If it's in some other state, then we haven't yet assigned an image bin slot.
630   if (object->GetLockWord(false).GetState() != LockWord::kForwardingAddress) {
631     return false;
632   } else if (kIsDebugBuild) {
633     LockWord lock_word = object->GetLockWord(false);
634     size_t offset = lock_word.ForwardingAddress();
635     BinSlot bin_slot(offset);
636     size_t oat_index = GetOatIndex(object);
637     const ImageInfo& image_info = GetImageInfo(oat_index);
638     DCHECK_LT(bin_slot.GetOffset(), image_info.GetBinSlotSize(bin_slot.GetBin()))
639         << "bin slot offset should not exceed the size of that bin";
640   }
641   return true;
642 }
643 
GetImageBinSlot(mirror::Object * object,size_t oat_index) const644 ImageWriter::BinSlot ImageWriter::GetImageBinSlot(mirror::Object* object, size_t oat_index) const {
645   DCHECK(object != nullptr);
646   DCHECK(IsImageBinSlotAssigned(object));
647 
648   LockWord lock_word = object->GetLockWord(false);
649   size_t offset = lock_word.ForwardingAddress();  // TODO: ForwardingAddress should be uint32_t
650   DCHECK_LE(offset, std::numeric_limits<uint32_t>::max());
651 
652   BinSlot bin_slot(static_cast<uint32_t>(offset));
653   DCHECK_LT(bin_slot.GetOffset(), GetImageInfo(oat_index).GetBinSlotSize(bin_slot.GetBin()));
654 
655   return bin_slot;
656 }
657 
UpdateImageBinSlotOffset(mirror::Object * object,size_t oat_index,size_t new_offset)658 void ImageWriter::UpdateImageBinSlotOffset(mirror::Object* object,
659                                            size_t oat_index,
660                                            size_t new_offset) {
661   BinSlot old_bin_slot = GetImageBinSlot(object, oat_index);
662   DCHECK_LT(new_offset, GetImageInfo(oat_index).GetBinSlotSize(old_bin_slot.GetBin()));
663   BinSlot new_bin_slot(old_bin_slot.GetBin(), new_offset);
664   object->SetLockWord(LockWord::FromForwardingAddress(new_bin_slot.Uint32Value()),
665                       /*as_volatile=*/ false);
666   DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
667   DCHECK(IsImageBinSlotAssigned(object));
668 }
669 
AllocMemory()670 bool ImageWriter::AllocMemory() {
671   for (ImageInfo& image_info : image_infos_) {
672     const size_t length = RoundUp(image_info.CreateImageSections().first, kPageSize);
673 
674     std::string error_msg;
675     image_info.image_ = MemMap::MapAnonymous("image writer image",
676                                              length,
677                                              PROT_READ | PROT_WRITE,
678                                              /*low_4gb=*/ false,
679                                              &error_msg);
680     if (UNLIKELY(!image_info.image_.IsValid())) {
681       LOG(ERROR) << "Failed to allocate memory for image file generation: " << error_msg;
682       return false;
683     }
684 
685     // Create the image bitmap, only needs to cover mirror object section which is up to image_end_.
686     CHECK_LE(image_info.image_end_, length);
687     image_info.image_bitmap_ = gc::accounting::ContinuousSpaceBitmap::Create(
688         "image bitmap", image_info.image_.Begin(), RoundUp(image_info.image_end_, kPageSize));
689     if (!image_info.image_bitmap_.IsValid()) {
690       LOG(ERROR) << "Failed to allocate memory for image bitmap";
691       return false;
692     }
693   }
694   return true;
695 }
696 
697 // This visitor follows the references of an instance, recursively then prune this class
698 // if a type of any field is pruned.
699 class ImageWriter::PruneObjectReferenceVisitor {
700  public:
PruneObjectReferenceVisitor(ImageWriter * image_writer,bool * early_exit,HashSet<mirror::Object * > * visited,bool * result)701   PruneObjectReferenceVisitor(ImageWriter* image_writer,
702                         bool* early_exit,
703                         HashSet<mirror::Object*>* visited,
704                         bool* result)
705       : image_writer_(image_writer), early_exit_(early_exit), visited_(visited), result_(result) {}
706 
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const707   ALWAYS_INLINE void VisitRootIfNonNull(
708       mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const
709       REQUIRES_SHARED(Locks::mutator_lock_) { }
710 
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const711   ALWAYS_INLINE void VisitRoot(
712       mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const
713       REQUIRES_SHARED(Locks::mutator_lock_) { }
714 
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const715   ALWAYS_INLINE void operator() (ObjPtr<mirror::Object> obj,
716                                  MemberOffset offset,
717                                  bool is_static ATTRIBUTE_UNUSED) const
718       REQUIRES_SHARED(Locks::mutator_lock_) {
719     mirror::Object* ref =
720         obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
721     if (ref == nullptr || visited_->find(ref) != visited_->end()) {
722       return;
723     }
724 
725     ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots =
726         Runtime::Current()->GetClassLinker()->GetClassRoots();
727     ObjPtr<mirror::Class> klass = ref->IsClass() ? ref->AsClass() : ref->GetClass();
728     if (klass == GetClassRoot<mirror::Method>(class_roots) ||
729         klass == GetClassRoot<mirror::Constructor>(class_roots)) {
730       // Prune all classes using reflection because the content they held will not be fixup.
731       *result_ = true;
732     }
733 
734     if (ref->IsClass()) {
735       *result_ = *result_ ||
736           image_writer_->PruneImageClassInternal(ref->AsClass(), early_exit_, visited_);
737     } else {
738       // Record the object visited in case of circular reference.
739       visited_->insert(ref);
740       *result_ = *result_ ||
741           image_writer_->PruneImageClassInternal(klass, early_exit_, visited_);
742       ref->VisitReferences(*this, *this);
743       // Clean up before exit for next call of this function.
744       auto it = visited_->find(ref);
745       DCHECK(it != visited_->end());
746       visited_->erase(it);
747     }
748   }
749 
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const750   ALWAYS_INLINE void operator() (ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
751                                  ObjPtr<mirror::Reference> ref) const
752       REQUIRES_SHARED(Locks::mutator_lock_) {
753     operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
754   }
755 
756  private:
757   ImageWriter* image_writer_;
758   bool* early_exit_;
759   HashSet<mirror::Object*>* visited_;
760   bool* const result_;
761 };
762 
763 
PruneImageClass(ObjPtr<mirror::Class> klass)764 bool ImageWriter::PruneImageClass(ObjPtr<mirror::Class> klass) {
765   bool early_exit = false;
766   HashSet<mirror::Object*> visited;
767   return PruneImageClassInternal(klass, &early_exit, &visited);
768 }
769 
PruneImageClassInternal(ObjPtr<mirror::Class> klass,bool * early_exit,HashSet<mirror::Object * > * visited)770 bool ImageWriter::PruneImageClassInternal(
771     ObjPtr<mirror::Class> klass,
772     bool* early_exit,
773     HashSet<mirror::Object*>* visited) {
774   DCHECK(early_exit != nullptr);
775   DCHECK(visited != nullptr);
776   DCHECK(compiler_options_.IsAppImage() || compiler_options_.IsBootImageExtension());
777   if (klass == nullptr || IsInBootImage(klass.Ptr())) {
778     return false;
779   }
780   auto found = prune_class_memo_.find(klass.Ptr());
781   if (found != prune_class_memo_.end()) {
782     // Already computed, return the found value.
783     return found->second;
784   }
785   // Circular dependencies, return false but do not store the result in the memoization table.
786   if (visited->find(klass.Ptr()) != visited->end()) {
787     *early_exit = true;
788     return false;
789   }
790   visited->insert(klass.Ptr());
791   bool result = klass->IsBootStrapClassLoaded();
792   std::string temp;
793   // Prune if not an image class, this handles any broken sets of image classes such as having a
794   // class in the set but not it's superclass.
795   result = result || !compiler_options_.IsImageClass(klass->GetDescriptor(&temp));
796   bool my_early_exit = false;  // Only for ourselves, ignore caller.
797   // Remove classes that failed to verify since we don't want to have java.lang.VerifyError in the
798   // app image.
799   if (klass->IsErroneous()) {
800     result = true;
801   } else {
802     ObjPtr<mirror::ClassExt> ext(klass->GetExtData());
803     CHECK(ext.IsNull() || ext->GetErroneousStateError() == nullptr) << klass->PrettyClass();
804   }
805   if (!result) {
806     // Check interfaces since these wont be visited through VisitReferences.)
807     ObjPtr<mirror::IfTable> if_table = klass->GetIfTable();
808     for (size_t i = 0, num_interfaces = klass->GetIfTableCount(); i < num_interfaces; ++i) {
809       result = result || PruneImageClassInternal(if_table->GetInterface(i),
810                                                  &my_early_exit,
811                                                  visited);
812     }
813   }
814   if (klass->IsObjectArrayClass()) {
815     result = result || PruneImageClassInternal(klass->GetComponentType(),
816                                                &my_early_exit,
817                                                visited);
818   }
819   // Check static fields and their classes.
820   if (klass->IsResolved() && klass->NumReferenceStaticFields() != 0) {
821     size_t num_static_fields = klass->NumReferenceStaticFields();
822     // Presumably GC can happen when we are cross compiling, it should not cause performance
823     // problems to do pointer size logic.
824     MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset(
825         Runtime::Current()->GetClassLinker()->GetImagePointerSize());
826     for (size_t i = 0u; i < num_static_fields; ++i) {
827       mirror::Object* ref = klass->GetFieldObject<mirror::Object>(field_offset);
828       if (ref != nullptr) {
829         if (ref->IsClass()) {
830           result = result || PruneImageClassInternal(ref->AsClass(), &my_early_exit, visited);
831         } else {
832           mirror::Class* type = ref->GetClass();
833           result = result || PruneImageClassInternal(type, &my_early_exit, visited);
834           if (!result) {
835             // For non-class case, also go through all the types mentioned by it's fields'
836             // references recursively to decide whether to keep this class.
837             bool tmp = false;
838             PruneObjectReferenceVisitor visitor(this, &my_early_exit, visited, &tmp);
839             ref->VisitReferences(visitor, visitor);
840             result = result || tmp;
841           }
842         }
843       }
844       field_offset = MemberOffset(field_offset.Uint32Value() +
845                                   sizeof(mirror::HeapReference<mirror::Object>));
846     }
847   }
848   result = result || PruneImageClassInternal(klass->GetSuperClass(), &my_early_exit, visited);
849   // Remove the class if the dex file is not in the set of dex files. This happens for classes that
850   // are from uses-library if there is no profile. b/30688277
851   ObjPtr<mirror::DexCache> dex_cache = klass->GetDexCache();
852   if (dex_cache != nullptr) {
853     result = result ||
854         dex_file_oat_index_map_.find(dex_cache->GetDexFile()) == dex_file_oat_index_map_.end();
855   }
856   // Erase the element we stored earlier since we are exiting the function.
857   auto it = visited->find(klass.Ptr());
858   DCHECK(it != visited->end());
859   visited->erase(it);
860   // Only store result if it is true or none of the calls early exited due to circular
861   // dependencies. If visited is empty then we are the root caller, in this case the cycle was in
862   // a child call and we can remember the result.
863   if (result == true || !my_early_exit || visited->empty()) {
864     prune_class_memo_.Overwrite(klass.Ptr(), result);
865   }
866   *early_exit |= my_early_exit;
867   return result;
868 }
869 
KeepClass(ObjPtr<mirror::Class> klass)870 bool ImageWriter::KeepClass(ObjPtr<mirror::Class> klass) {
871   if (klass == nullptr) {
872     return false;
873   }
874   if (IsInBootImage(klass.Ptr())) {
875     // Already in boot image, return true.
876     DCHECK(!compiler_options_.IsBootImage());
877     return true;
878   }
879   std::string temp;
880   if (!compiler_options_.IsImageClass(klass->GetDescriptor(&temp))) {
881     return false;
882   }
883   if (compiler_options_.IsAppImage()) {
884     // For app images, we need to prune classes that
885     // are defined by the boot class path we're compiling against but not in
886     // the boot image spaces since these may have already been loaded at
887     // run time when this image is loaded. Keep classes in the boot image
888     // spaces we're compiling against since we don't want to re-resolve these.
889     return !PruneImageClass(klass);
890   }
891   return true;
892 }
893 
894 class ImageWriter::PruneClassesVisitor : public ClassVisitor {
895  public:
PruneClassesVisitor(ImageWriter * image_writer,ObjPtr<mirror::ClassLoader> class_loader)896   PruneClassesVisitor(ImageWriter* image_writer, ObjPtr<mirror::ClassLoader> class_loader)
897       : image_writer_(image_writer),
898         class_loader_(class_loader),
899         classes_to_prune_(),
900         defined_class_count_(0u) { }
901 
operator ()(ObjPtr<mirror::Class> klass)902   bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES_SHARED(Locks::mutator_lock_) {
903     if (!image_writer_->KeepClass(klass.Ptr())) {
904       classes_to_prune_.insert(klass.Ptr());
905       if (klass->GetClassLoader() == class_loader_) {
906         ++defined_class_count_;
907       }
908     }
909     return true;
910   }
911 
Prune()912   size_t Prune() REQUIRES_SHARED(Locks::mutator_lock_) {
913     ClassTable* class_table =
914         Runtime::Current()->GetClassLinker()->ClassTableForClassLoader(class_loader_);
915     WriterMutexLock mu(Thread::Current(), class_table->lock_);
916     // App class loader class tables contain only one internal set. The boot class path class
917     // table also contains class sets from boot images we're compiling against but we are not
918     // pruning these boot image classes, so all classes to remove are in the last set.
919     DCHECK(!class_table->classes_.empty());
920     ClassTable::ClassSet& last_class_set = class_table->classes_.back();
921     for (mirror::Class* klass : classes_to_prune_) {
922       uint32_t hash = klass->DescriptorHash();
923       auto it = last_class_set.FindWithHash(ClassTable::TableSlot(klass, hash), hash);
924       DCHECK(it != last_class_set.end());
925       last_class_set.erase(it);
926       DCHECK(std::none_of(class_table->classes_.begin(),
927                           class_table->classes_.end(),
928                           [klass, hash](ClassTable::ClassSet& class_set)
929                               REQUIRES_SHARED(Locks::mutator_lock_) {
930                             ClassTable::TableSlot slot(klass, hash);
931                             return class_set.FindWithHash(slot, hash) != class_set.end();
932                           }));
933     }
934     return defined_class_count_;
935   }
936 
937  private:
938   ImageWriter* const image_writer_;
939   const ObjPtr<mirror::ClassLoader> class_loader_;
940   HashSet<mirror::Class*> classes_to_prune_;
941   size_t defined_class_count_;
942 };
943 
944 class ImageWriter::PruneClassLoaderClassesVisitor : public ClassLoaderVisitor {
945  public:
PruneClassLoaderClassesVisitor(ImageWriter * image_writer)946   explicit PruneClassLoaderClassesVisitor(ImageWriter* image_writer)
947       : image_writer_(image_writer), removed_class_count_(0) {}
948 
Visit(ObjPtr<mirror::ClassLoader> class_loader)949   void Visit(ObjPtr<mirror::ClassLoader> class_loader) override
950       REQUIRES_SHARED(Locks::mutator_lock_) {
951     PruneClassesVisitor classes_visitor(image_writer_, class_loader);
952     ClassTable* class_table =
953         Runtime::Current()->GetClassLinker()->ClassTableForClassLoader(class_loader);
954     class_table->Visit(classes_visitor);
955     removed_class_count_ += classes_visitor.Prune();
956   }
957 
GetRemovedClassCount() const958   size_t GetRemovedClassCount() const {
959     return removed_class_count_;
960   }
961 
962  private:
963   ImageWriter* const image_writer_;
964   size_t removed_class_count_;
965 };
966 
VisitClassLoaders(ClassLoaderVisitor * visitor)967 void ImageWriter::VisitClassLoaders(ClassLoaderVisitor* visitor) {
968   WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
969   visitor->Visit(nullptr);  // Visit boot class loader.
970   Runtime::Current()->GetClassLinker()->VisitClassLoaders(visitor);
971 }
972 
PruneNonImageClasses()973 void ImageWriter::PruneNonImageClasses() {
974   Runtime* runtime = Runtime::Current();
975   ClassLinker* class_linker = runtime->GetClassLinker();
976   Thread* self = Thread::Current();
977   ScopedAssertNoThreadSuspension sa(__FUNCTION__);
978 
979   // Prune uses-library dex caches. Only prune the uses-library dex caches since we want to make
980   // sure the other ones don't get unloaded before the OatWriter runs.
981   class_linker->VisitClassTables(
982       [&](ClassTable* table) REQUIRES_SHARED(Locks::mutator_lock_) {
983     table->RemoveStrongRoots(
984         [&](GcRoot<mirror::Object> root) REQUIRES_SHARED(Locks::mutator_lock_) {
985       ObjPtr<mirror::Object> obj = root.Read();
986       if (obj->IsDexCache()) {
987         // Return true if the dex file is not one of the ones in the map.
988         return dex_file_oat_index_map_.find(obj->AsDexCache()->GetDexFile()) ==
989             dex_file_oat_index_map_.end();
990       }
991       // Return false to avoid removing.
992       return false;
993     });
994   });
995 
996   // Remove the undesired classes from the class roots.
997   {
998     PruneClassLoaderClassesVisitor class_loader_visitor(this);
999     VisitClassLoaders(&class_loader_visitor);
1000     VLOG(compiler) << "Pruned " << class_loader_visitor.GetRemovedClassCount() << " classes";
1001   }
1002 
1003   // Completely clear DexCaches.
1004   dchecked_vector<ObjPtr<mirror::DexCache>> dex_caches = FindDexCaches(self);
1005   for (ObjPtr<mirror::DexCache> dex_cache : dex_caches) {
1006     dex_cache->ResetNativeArrays();
1007   }
1008 
1009   // Drop the array class cache in the ClassLinker, as these are roots holding those classes live.
1010   class_linker->DropFindArrayClassCache();
1011 
1012   // Clear to save RAM.
1013   prune_class_memo_.clear();
1014 }
1015 
FindDexCaches(Thread * self)1016 dchecked_vector<ObjPtr<mirror::DexCache>> ImageWriter::FindDexCaches(Thread* self) {
1017   dchecked_vector<ObjPtr<mirror::DexCache>> dex_caches;
1018   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1019   ReaderMutexLock mu2(self, *Locks::dex_lock_);
1020   dex_caches.reserve(class_linker->GetDexCachesData().size());
1021   for (const auto& entry : class_linker->GetDexCachesData()) {
1022     const ClassLinker::DexCacheData& data = entry.second;
1023     if (self->IsJWeakCleared(data.weak_root)) {
1024       continue;
1025     }
1026     dex_caches.push_back(self->DecodeJObject(data.weak_root)->AsDexCache());
1027   }
1028   return dex_caches;
1029 }
1030 
CheckNonImageClassesRemoved()1031 void ImageWriter::CheckNonImageClassesRemoved() {
1032   auto visitor = [&](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
1033     if (obj->IsClass() && !IsInBootImage(obj)) {
1034       ObjPtr<Class> klass = obj->AsClass();
1035       if (!KeepClass(klass)) {
1036         DumpImageClasses();
1037         CHECK(KeepClass(klass))
1038             << Runtime::Current()->GetHeap()->GetVerification()->FirstPathFromRootSet(klass);
1039       }
1040     }
1041   };
1042   gc::Heap* heap = Runtime::Current()->GetHeap();
1043   heap->VisitObjects(visitor);
1044 }
1045 
PromoteWeakInternsToStrong(Thread * self)1046 void ImageWriter::PromoteWeakInternsToStrong(Thread* self) {
1047   InternTable* intern_table = Runtime::Current()->GetInternTable();
1048   MutexLock mu(self, *Locks::intern_table_lock_);
1049   DCHECK_EQ(intern_table->weak_interns_.tables_.size(), 1u);
1050   for (GcRoot<mirror::String>& entry : intern_table->weak_interns_.tables_.front().set_) {
1051     ObjPtr<mirror::String> s = entry.Read<kWithoutReadBarrier>();
1052     DCHECK(!IsStronglyInternedString(s));
1053     uint32_t hash = static_cast<uint32_t>(s->GetStoredHashCode());
1054     intern_table->InsertStrong(s, hash);
1055   }
1056   intern_table->weak_interns_.tables_.front().set_.clear();
1057 }
1058 
DumpImageClasses()1059 void ImageWriter::DumpImageClasses() {
1060   for (const std::string& image_class : compiler_options_.GetImageClasses()) {
1061     LOG(INFO) << " " << image_class;
1062   }
1063 }
1064 
CreateImageRoots()1065 bool ImageWriter::CreateImageRoots() {
1066   Runtime* runtime = Runtime::Current();
1067   ClassLinker* class_linker = runtime->GetClassLinker();
1068   Thread* self = Thread::Current();
1069   VariableSizedHandleScope handles(self);
1070 
1071   // Prepare boot image live objects if we're compiling a boot image or boot image extension.
1072   Handle<mirror::ObjectArray<mirror::Object>> boot_image_live_objects;
1073   if (compiler_options_.IsBootImage()) {
1074     boot_image_live_objects = handles.NewHandle(AllocateBootImageLiveObjects(self, runtime));
1075     if (boot_image_live_objects == nullptr) {
1076       return false;
1077     }
1078   } else if (compiler_options_.IsBootImageExtension()) {
1079     gc::Heap* heap = runtime->GetHeap();
1080     DCHECK(!heap->GetBootImageSpaces().empty());
1081     const ImageHeader& primary_header = heap->GetBootImageSpaces().front()->GetImageHeader();
1082     boot_image_live_objects = handles.NewHandle(ObjPtr<ObjectArray<Object>>::DownCast(
1083         primary_header.GetImageRoot<kWithReadBarrier>(ImageHeader::kBootImageLiveObjects)));
1084     DCHECK(boot_image_live_objects != nullptr);
1085   }
1086 
1087   // Collect dex caches and the sizes of dex cache arrays.
1088   struct DexCacheRecord {
1089     uint64_t registration_index;
1090     Handle<mirror::DexCache> dex_cache;
1091     size_t oat_index;
1092   };
1093   size_t num_oat_files = oat_filenames_.size();
1094   dchecked_vector<size_t> dex_cache_counts(num_oat_files, 0u);
1095   dchecked_vector<DexCacheRecord> dex_cache_records;
1096   dex_cache_records.reserve(dex_file_oat_index_map_.size());
1097   {
1098     ReaderMutexLock mu(self, *Locks::dex_lock_);
1099     // Count number of dex caches not in the boot image.
1100     for (const auto& entry : class_linker->GetDexCachesData()) {
1101       const ClassLinker::DexCacheData& data = entry.second;
1102       ObjPtr<mirror::DexCache> dex_cache =
1103           ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root));
1104       if (dex_cache == nullptr) {
1105         continue;
1106       }
1107       const DexFile* dex_file = dex_cache->GetDexFile();
1108       auto it = dex_file_oat_index_map_.find(dex_file);
1109       if (it != dex_file_oat_index_map_.end()) {
1110         size_t oat_index = it->second;
1111         DCHECK(IsImageDexCache(dex_cache));
1112         ++dex_cache_counts[oat_index];
1113         Handle<mirror::DexCache> h_dex_cache = handles.NewHandle(dex_cache);
1114         dex_cache_records.push_back({data.registration_index, h_dex_cache, oat_index});
1115       }
1116     }
1117   }
1118 
1119   // Allocate dex cache arrays.
1120   dchecked_vector<Handle<ObjectArray<Object>>> dex_cache_arrays;
1121   dex_cache_arrays.reserve(num_oat_files);
1122   for (size_t oat_index = 0; oat_index != num_oat_files; ++oat_index) {
1123     ObjPtr<ObjectArray<Object>> dex_caches = ObjectArray<Object>::Alloc(
1124         self, GetClassRoot<ObjectArray<Object>>(class_linker), dex_cache_counts[oat_index]);
1125     if (dex_caches == nullptr) {
1126       return false;
1127     }
1128     dex_cache_counts[oat_index] = 0u;  // Reset count for filling in dex caches below.
1129     dex_cache_arrays.push_back(handles.NewHandle(dex_caches));
1130   }
1131 
1132   // Sort dex caches by registration index to make output deterministic.
1133   std::sort(dex_cache_records.begin(),
1134             dex_cache_records.end(),
1135             [](const DexCacheRecord& lhs, const DexCacheRecord&rhs) {
1136               return lhs.registration_index < rhs.registration_index;
1137             });
1138 
1139   // Fill dex cache arrays.
1140   for (const DexCacheRecord& record : dex_cache_records) {
1141     ObjPtr<ObjectArray<Object>> dex_caches = dex_cache_arrays[record.oat_index].Get();
1142     dex_caches->SetWithoutChecks</*kTransactionActive=*/ false>(
1143         dex_cache_counts[record.oat_index], record.dex_cache.Get());
1144     ++dex_cache_counts[record.oat_index];
1145   }
1146 
1147   // Create image roots with empty dex cache arrays.
1148   image_roots_.reserve(num_oat_files);
1149   JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
1150   for (size_t oat_index = 0; oat_index != num_oat_files; ++oat_index) {
1151     // Build an Object[] of the roots needed to restore the runtime.
1152     int32_t image_roots_size = ImageHeader::NumberOfImageRoots(compiler_options_.IsAppImage());
1153     ObjPtr<ObjectArray<Object>> image_roots = ObjectArray<Object>::Alloc(
1154         self, GetClassRoot<ObjectArray<Object>>(class_linker), image_roots_size);
1155     if (image_roots == nullptr) {
1156       return false;
1157     }
1158     ObjPtr<ObjectArray<Object>> dex_caches = dex_cache_arrays[oat_index].Get();
1159     CHECK_EQ(dex_cache_counts[oat_index],
1160              dchecked_integral_cast<size_t>(dex_caches->GetLength<kVerifyNone>()))
1161         << "The number of non-image dex caches changed.";
1162     image_roots->SetWithoutChecks</*kTransactionActive=*/ false>(
1163         ImageHeader::kDexCaches, dex_caches);
1164     image_roots->SetWithoutChecks</*kTransactionActive=*/ false>(
1165         ImageHeader::kClassRoots, class_linker->GetClassRoots());
1166     if (!compiler_options_.IsAppImage()) {
1167       DCHECK(boot_image_live_objects != nullptr);
1168       image_roots->SetWithoutChecks</*kTransactionActive=*/ false>(
1169           ImageHeader::kBootImageLiveObjects, boot_image_live_objects.Get());
1170     } else {
1171       DCHECK(boot_image_live_objects.GetReference() == nullptr);
1172       image_roots->SetWithoutChecks</*kTransactionActive=*/ false>(
1173           ImageHeader::kAppImageClassLoader, GetAppClassLoader());
1174     }
1175     for (int32_t i = 0; i != image_roots_size; ++i) {
1176       CHECK(image_roots->Get(i) != nullptr);
1177     }
1178     image_roots_.push_back(vm->AddGlobalRef(self, image_roots));
1179   }
1180 
1181   return true;
1182 }
1183 
RecordNativeRelocations(ObjPtr<mirror::Class> klass,size_t oat_index)1184 void ImageWriter::RecordNativeRelocations(ObjPtr<mirror::Class> klass, size_t oat_index) {
1185   // Visit and assign offsets for fields and field arrays.
1186   DCHECK_EQ(oat_index, GetOatIndexForClass(klass));
1187   DCHECK(!klass->IsErroneous()) << klass->GetStatus();
1188   if (compiler_options_.IsAppImage()) {
1189     // Extra consistency check: no boot loader classes should be left!
1190     CHECK(!klass->IsBootStrapClassLoaded()) << klass->PrettyClass();
1191   }
1192   LengthPrefixedArray<ArtField>* fields[] = {
1193       klass->GetSFieldsPtr(), klass->GetIFieldsPtr(),
1194   };
1195   ImageInfo& image_info = GetImageInfo(oat_index);
1196   for (LengthPrefixedArray<ArtField>* cur_fields : fields) {
1197     // Total array length including header.
1198     if (cur_fields != nullptr) {
1199       // Forward the entire array at once.
1200       size_t offset = image_info.GetBinSlotSize(Bin::kArtField);
1201       DCHECK(!IsInBootImage(cur_fields));
1202       bool inserted =
1203           native_object_relocations_.insert(std::make_pair(
1204               cur_fields,
1205               NativeObjectRelocation{
1206                   oat_index, offset, NativeObjectRelocationType::kArtFieldArray
1207               })).second;
1208       CHECK(inserted) << "Field array " << cur_fields << " already forwarded";
1209       const size_t size = LengthPrefixedArray<ArtField>::ComputeSize(cur_fields->size());
1210       offset += size;
1211       image_info.IncrementBinSlotSize(Bin::kArtField, size);
1212       DCHECK_EQ(offset, image_info.GetBinSlotSize(Bin::kArtField));
1213     }
1214   }
1215   // Visit and assign offsets for methods.
1216   size_t num_methods = klass->NumMethods();
1217   if (num_methods != 0) {
1218     bool any_dirty = false;
1219     for (auto& m : klass->GetMethods(target_ptr_size_)) {
1220       if (WillMethodBeDirty(&m)) {
1221         any_dirty = true;
1222         break;
1223       }
1224     }
1225     NativeObjectRelocationType type = any_dirty
1226         ? NativeObjectRelocationType::kArtMethodDirty
1227         : NativeObjectRelocationType::kArtMethodClean;
1228     Bin bin_type = BinTypeForNativeRelocationType(type);
1229     // Forward the entire array at once, but header first.
1230     const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_);
1231     const size_t method_size = ArtMethod::Size(target_ptr_size_);
1232     const size_t header_size = LengthPrefixedArray<ArtMethod>::ComputeSize(0,
1233                                                                            method_size,
1234                                                                            method_alignment);
1235     LengthPrefixedArray<ArtMethod>* array = klass->GetMethodsPtr();
1236     size_t offset = image_info.GetBinSlotSize(bin_type);
1237     DCHECK(!IsInBootImage(array));
1238     bool inserted =
1239         native_object_relocations_.insert(std::make_pair(
1240             array,
1241             NativeObjectRelocation{
1242                 oat_index,
1243                 offset,
1244                 any_dirty ? NativeObjectRelocationType::kArtMethodArrayDirty
1245                           : NativeObjectRelocationType::kArtMethodArrayClean
1246             })).second;
1247     CHECK(inserted) << "Method array " << array << " already forwarded";
1248     image_info.IncrementBinSlotSize(bin_type, header_size);
1249     for (auto& m : klass->GetMethods(target_ptr_size_)) {
1250       AssignMethodOffset(&m, type, oat_index);
1251     }
1252     (any_dirty ? dirty_methods_ : clean_methods_) += num_methods;
1253   }
1254   // Assign offsets for all runtime methods in the IMT since these may hold conflict tables
1255   // live.
1256   if (klass->ShouldHaveImt()) {
1257     ImTable* imt = klass->GetImt(target_ptr_size_);
1258     if (TryAssignImTableOffset(imt, oat_index)) {
1259       // Since imt's can be shared only do this the first time to not double count imt method
1260       // fixups.
1261       for (size_t i = 0; i < ImTable::kSize; ++i) {
1262         ArtMethod* imt_method = imt->Get(i, target_ptr_size_);
1263         DCHECK(imt_method != nullptr);
1264         if (imt_method->IsRuntimeMethod() &&
1265             !IsInBootImage(imt_method) &&
1266             !NativeRelocationAssigned(imt_method)) {
1267           AssignMethodOffset(imt_method, NativeObjectRelocationType::kRuntimeMethod, oat_index);
1268         }
1269       }
1270     }
1271   }
1272 }
1273 
NativeRelocationAssigned(void * ptr) const1274 bool ImageWriter::NativeRelocationAssigned(void* ptr) const {
1275   return native_object_relocations_.find(ptr) != native_object_relocations_.end();
1276 }
1277 
TryAssignImTableOffset(ImTable * imt,size_t oat_index)1278 bool ImageWriter::TryAssignImTableOffset(ImTable* imt, size_t oat_index) {
1279   // No offset, or already assigned.
1280   if (imt == nullptr || IsInBootImage(imt) || NativeRelocationAssigned(imt)) {
1281     return false;
1282   }
1283   // If the method is a conflict method we also want to assign the conflict table offset.
1284   ImageInfo& image_info = GetImageInfo(oat_index);
1285   const size_t size = ImTable::SizeInBytes(target_ptr_size_);
1286   native_object_relocations_.insert(std::make_pair(
1287       imt,
1288       NativeObjectRelocation{
1289           oat_index,
1290           image_info.GetBinSlotSize(Bin::kImTable),
1291           NativeObjectRelocationType::kIMTable
1292       }));
1293   image_info.IncrementBinSlotSize(Bin::kImTable, size);
1294   return true;
1295 }
1296 
TryAssignConflictTableOffset(ImtConflictTable * table,size_t oat_index)1297 void ImageWriter::TryAssignConflictTableOffset(ImtConflictTable* table, size_t oat_index) {
1298   // No offset, or already assigned.
1299   if (table == nullptr || NativeRelocationAssigned(table)) {
1300     return;
1301   }
1302   CHECK(!IsInBootImage(table));
1303   // If the method is a conflict method we also want to assign the conflict table offset.
1304   ImageInfo& image_info = GetImageInfo(oat_index);
1305   const size_t size = table->ComputeSize(target_ptr_size_);
1306   native_object_relocations_.insert(std::make_pair(
1307       table,
1308       NativeObjectRelocation{
1309           oat_index,
1310           image_info.GetBinSlotSize(Bin::kIMTConflictTable),
1311           NativeObjectRelocationType::kIMTConflictTable
1312       }));
1313   image_info.IncrementBinSlotSize(Bin::kIMTConflictTable, size);
1314 }
1315 
AssignMethodOffset(ArtMethod * method,NativeObjectRelocationType type,size_t oat_index)1316 void ImageWriter::AssignMethodOffset(ArtMethod* method,
1317                                      NativeObjectRelocationType type,
1318                                      size_t oat_index) {
1319   DCHECK(!IsInBootImage(method));
1320   CHECK(!NativeRelocationAssigned(method)) << "Method " << method << " already assigned "
1321       << ArtMethod::PrettyMethod(method);
1322   if (method->IsRuntimeMethod()) {
1323     TryAssignConflictTableOffset(method->GetImtConflictTable(target_ptr_size_), oat_index);
1324   }
1325   ImageInfo& image_info = GetImageInfo(oat_index);
1326   Bin bin_type = BinTypeForNativeRelocationType(type);
1327   size_t offset = image_info.GetBinSlotSize(bin_type);
1328   native_object_relocations_.insert(
1329       std::make_pair(method, NativeObjectRelocation{oat_index, offset, type}));
1330   image_info.IncrementBinSlotSize(bin_type, ArtMethod::Size(target_ptr_size_));
1331 }
1332 
1333 class ImageWriter::LayoutHelper {
1334  public:
LayoutHelper(ImageWriter * image_writer)1335   explicit LayoutHelper(ImageWriter* image_writer)
1336       : image_writer_(image_writer) {
1337     bin_objects_.resize(image_writer_->image_infos_.size());
1338     for (auto& inner : bin_objects_) {
1339       inner.resize(enum_cast<size_t>(Bin::kMirrorCount));
1340     }
1341   }
1342 
1343   void ProcessDexFileObjects(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
1344   void ProcessRoots(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
1345   void FinalizeInternTables() REQUIRES_SHARED(Locks::mutator_lock_);
1346   // Recreate dirty object offsets (kKnownDirty bin) with objects sorted by sort_key.
1347   void SortDirtyObjects(const HashMap<mirror::Object*, uint32_t>& dirty_objects, size_t oat_index)
1348       REQUIRES_SHARED(Locks::mutator_lock_);
1349 
1350   void VerifyImageBinSlotsAssigned() REQUIRES_SHARED(Locks::mutator_lock_);
1351 
1352   void FinalizeBinSlotOffsets() REQUIRES_SHARED(Locks::mutator_lock_);
1353 
1354   /*
1355    * Collects the string reference info necessary for loading app images.
1356    *
1357    * Because AppImages may contain interned strings that must be deduplicated
1358    * with previously interned strings when loading the app image, we need to
1359    * visit references to these strings and update them to point to the correct
1360    * string. To speed up the visiting of references at load time we include
1361    * a list of offsets to string references in the AppImage.
1362    */
1363   void CollectStringReferenceInfo() REQUIRES_SHARED(Locks::mutator_lock_);
1364 
1365  private:
1366   class CollectClassesVisitor;
1367   class CollectStringReferenceVisitor;
1368   class VisitReferencesVisitor;
1369 
1370   void ProcessInterns(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
1371   void ProcessWorkQueue() REQUIRES_SHARED(Locks::mutator_lock_);
1372 
1373   using WorkQueue = std::deque<std::pair<ObjPtr<mirror::Object>, size_t>>;
1374 
1375   void VisitReferences(ObjPtr<mirror::Object> obj, size_t oat_index)
1376       REQUIRES_SHARED(Locks::mutator_lock_);
1377   bool TryAssignBinSlot(ObjPtr<mirror::Object> obj, size_t oat_index)
1378       REQUIRES_SHARED(Locks::mutator_lock_);
1379   void AssignImageBinSlot(ObjPtr<mirror::Object> object, size_t oat_index, Bin bin)
1380       REQUIRES_SHARED(Locks::mutator_lock_);
1381 
1382   ImageWriter* const image_writer_;
1383 
1384   // Work list of <object, oat_index> for objects. Everything in the queue must already be
1385   // assigned a bin slot.
1386   WorkQueue work_queue_;
1387 
1388   // Objects for individual bins. Indexed by `oat_index` and `bin`.
1389   // Cannot use ObjPtr<> because of invalidation in Heap::VisitObjects().
1390   dchecked_vector<dchecked_vector<dchecked_vector<mirror::Object*>>> bin_objects_;
1391 
1392   // Interns that do not have a corresponding StringId in any of the input dex files.
1393   // These shall be assigned to individual images based on the `oat_index` that we
1394   // see as we visit them during the work queue processing.
1395   dchecked_vector<mirror::String*> non_dex_file_interns_;
1396 };
1397 
1398 class ImageWriter::LayoutHelper::CollectClassesVisitor {
1399  public:
CollectClassesVisitor(ImageWriter * image_writer)1400   explicit CollectClassesVisitor(ImageWriter* image_writer)
1401       : image_writer_(image_writer),
1402         dex_files_(image_writer_->compiler_options_.GetDexFilesForOatFile()) {}
1403 
operator ()(ObjPtr<mirror::Class> klass)1404   bool operator()(ObjPtr<mirror::Class> klass) REQUIRES_SHARED(Locks::mutator_lock_) {
1405     if (!image_writer_->IsInBootImage(klass.Ptr())) {
1406       ObjPtr<mirror::Class> component_type = klass;
1407       size_t dimension = 0u;
1408       while (component_type->IsArrayClass<kVerifyNone>()) {
1409         ++dimension;
1410         component_type = component_type->GetComponentType<kVerifyNone, kWithoutReadBarrier>();
1411       }
1412       DCHECK(!component_type->IsProxyClass());
1413       size_t dex_file_index;
1414       uint32_t class_def_index = 0u;
1415       if (UNLIKELY(component_type->IsPrimitive())) {
1416         DCHECK(image_writer_->compiler_options_.IsBootImage());
1417         dex_file_index = 0u;
1418         class_def_index = enum_cast<uint32_t>(component_type->GetPrimitiveType());
1419       } else {
1420         auto it = std::find(dex_files_.begin(), dex_files_.end(), &component_type->GetDexFile());
1421         DCHECK(it != dex_files_.end()) << klass->PrettyDescriptor();
1422         dex_file_index = std::distance(dex_files_.begin(), it) + 1u;  // 0 is for primitive types.
1423         class_def_index = component_type->GetDexClassDefIndex();
1424       }
1425       klasses_.push_back({klass, dex_file_index, class_def_index, dimension});
1426     }
1427     return true;
1428   }
1429 
ProcessCollectedClasses(Thread * self)1430   WorkQueue ProcessCollectedClasses(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) {
1431     std::sort(klasses_.begin(), klasses_.end());
1432 
1433     ImageWriter* image_writer = image_writer_;
1434     WorkQueue work_queue;
1435     size_t last_dex_file_index = static_cast<size_t>(-1);
1436     size_t last_oat_index = static_cast<size_t>(-1);
1437     for (const ClassEntry& entry : klasses_) {
1438       if (last_dex_file_index != entry.dex_file_index) {
1439         if (UNLIKELY(entry.dex_file_index == 0u)) {
1440           last_oat_index = GetDefaultOatIndex();  // Primitive type.
1441         } else {
1442           uint32_t dex_file_index = entry.dex_file_index - 1u;  // 0 is for primitive types.
1443           last_oat_index = image_writer->GetOatIndexForDexFile(dex_files_[dex_file_index]);
1444         }
1445         last_dex_file_index = entry.dex_file_index;
1446       }
1447       // Count the number of classes for class tables.
1448       image_writer->image_infos_[last_oat_index].class_table_size_ += 1u;
1449       work_queue.emplace_back(entry.klass, last_oat_index);
1450     }
1451     klasses_.clear();
1452 
1453     // Prepare image class tables.
1454     dchecked_vector<mirror::Class*> boot_image_classes;
1455     if (image_writer->compiler_options_.IsAppImage()) {
1456       DCHECK_EQ(image_writer->image_infos_.size(), 1u);
1457       ImageInfo& image_info = image_writer->image_infos_[0];
1458       // Log the non-boot image class count for app image for debugging purposes.
1459       VLOG(compiler) << "Dex2Oat:AppImage:classCount = " << image_info.class_table_size_;
1460       // Collect boot image classes referenced by app class loader's class table.
1461       JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
1462       auto app_class_loader = DecodeGlobalWithoutRB<mirror::ClassLoader>(
1463           vm, image_writer->app_class_loader_);
1464       ClassTable* app_class_table = app_class_loader->GetClassTable();
1465       ReaderMutexLock lock(self, app_class_table->lock_);
1466       DCHECK_EQ(app_class_table->classes_.size(), 1u);
1467       const ClassTable::ClassSet& app_class_set = app_class_table->classes_[0];
1468       DCHECK_GE(app_class_set.size(), image_info.class_table_size_);
1469       boot_image_classes.reserve(app_class_set.size() - image_info.class_table_size_);
1470       for (const ClassTable::TableSlot& slot : app_class_set) {
1471         mirror::Class* klass = slot.Read<kWithoutReadBarrier>().Ptr();
1472         if (image_writer->IsInBootImage(klass)) {
1473           boot_image_classes.push_back(klass);
1474         }
1475       }
1476       DCHECK_EQ(app_class_set.size() - image_info.class_table_size_, boot_image_classes.size());
1477       // Increase the app class table size to include referenced boot image classes.
1478       image_info.class_table_size_ = app_class_set.size();
1479     }
1480     for (ImageInfo& image_info : image_writer->image_infos_) {
1481       if (image_info.class_table_size_ != 0u) {
1482         // Make sure the class table shall be full by allocating a buffer of the right size.
1483         size_t buffer_size = static_cast<size_t>(
1484             ceil(image_info.class_table_size_ / kImageClassTableMaxLoadFactor));
1485         image_info.class_table_buffer_.reset(new ClassTable::TableSlot[buffer_size]);
1486         DCHECK(image_info.class_table_buffer_ != nullptr);
1487         image_info.class_table_.emplace(kImageClassTableMinLoadFactor,
1488                                         kImageClassTableMaxLoadFactor,
1489                                         image_info.class_table_buffer_.get(),
1490                                         buffer_size);
1491       }
1492     }
1493     for (const auto& pair : work_queue) {
1494       ObjPtr<mirror::Class> klass = pair.first->AsClass();
1495       size_t oat_index = pair.second;
1496       DCHECK(image_writer->image_infos_[oat_index].class_table_.has_value());
1497       ClassTable::ClassSet& class_table = *image_writer->image_infos_[oat_index].class_table_;
1498       uint32_t hash = klass->DescriptorHash();
1499       bool inserted = class_table.InsertWithHash(ClassTable::TableSlot(klass, hash), hash).second;
1500       DCHECK(inserted) << "Class " << klass->PrettyDescriptor()
1501           << " (" << klass.Ptr() << ") already inserted";
1502     }
1503     if (image_writer->compiler_options_.IsAppImage()) {
1504       DCHECK_EQ(image_writer->image_infos_.size(), 1u);
1505       ImageInfo& image_info = image_writer->image_infos_[0];
1506       if (image_info.class_table_size_ != 0u) {
1507         // Insert boot image class references to the app class table.
1508         // The order of insertion into the app class loader's ClassTable is non-deterministic,
1509         // so sort the boot image classes by the boot image address to get deterministic table.
1510         std::sort(boot_image_classes.begin(), boot_image_classes.end());
1511         DCHECK(image_info.class_table_.has_value());
1512         ClassTable::ClassSet& table = *image_info.class_table_;
1513         for (mirror::Class* klass : boot_image_classes) {
1514           uint32_t hash = klass->DescriptorHash();
1515           bool inserted = table.InsertWithHash(ClassTable::TableSlot(klass, hash), hash).second;
1516           DCHECK(inserted) << "Boot image class " << klass->PrettyDescriptor()
1517               << " (" << klass << ") already inserted";
1518         }
1519         DCHECK_EQ(table.size(), image_info.class_table_size_);
1520       }
1521     }
1522     for (ImageInfo& image_info : image_writer->image_infos_) {
1523       DCHECK_EQ(image_info.class_table_bytes_, 0u);
1524       if (image_info.class_table_size_ != 0u) {
1525         DCHECK(image_info.class_table_.has_value());
1526         DCHECK_EQ(image_info.class_table_->size(), image_info.class_table_size_);
1527         image_info.class_table_bytes_ = image_info.class_table_->WriteToMemory(nullptr);
1528         DCHECK_NE(image_info.class_table_bytes_, 0u);
1529       } else {
1530         DCHECK(!image_info.class_table_.has_value());
1531       }
1532     }
1533 
1534     return work_queue;
1535   }
1536 
1537  private:
1538   struct ClassEntry {
1539     ObjPtr<mirror::Class> klass;
1540     // We shall sort classes by dex file, class def index and array dimension.
1541     size_t dex_file_index;
1542     uint32_t class_def_index;
1543     size_t dimension;
1544 
operator <art::linker::ImageWriter::LayoutHelper::CollectClassesVisitor::ClassEntry1545     bool operator<(const ClassEntry& other) const {
1546       return std::tie(dex_file_index, class_def_index, dimension) <
1547              std::tie(other.dex_file_index, other.class_def_index, other.dimension);
1548     }
1549   };
1550 
1551   ImageWriter* const image_writer_;
1552   const ArrayRef<const DexFile* const> dex_files_;
1553   std::deque<ClassEntry> klasses_;
1554 };
1555 
1556 class ImageWriter::LayoutHelper::CollectStringReferenceVisitor {
1557  public:
CollectStringReferenceVisitor(const ImageWriter * image_writer,size_t oat_index,dchecked_vector<AppImageReferenceOffsetInfo> * const string_reference_offsets,ObjPtr<mirror::Object> current_obj)1558   explicit CollectStringReferenceVisitor(
1559       const ImageWriter* image_writer,
1560       size_t oat_index,
1561       dchecked_vector<AppImageReferenceOffsetInfo>* const string_reference_offsets,
1562       ObjPtr<mirror::Object> current_obj)
1563       : image_writer_(image_writer),
1564         oat_index_(oat_index),
1565         string_reference_offsets_(string_reference_offsets),
1566         current_obj_(current_obj) {}
1567 
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1568   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1569       REQUIRES_SHARED(Locks::mutator_lock_) {
1570     if (!root->IsNull()) {
1571       VisitRoot(root);
1572     }
1573   }
1574 
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1575   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1576       REQUIRES_SHARED(Locks::mutator_lock_)  {
1577     // Only dex caches have native String roots. These are collected separately.
1578     DCHECK((current_obj_->IsDexCache<kVerifyNone, kWithoutReadBarrier>()) ||
1579            !image_writer_->IsInternedAppImageStringReference(root->AsMirrorPtr()))
1580         << mirror::Object::PrettyTypeOf(current_obj_);
1581   }
1582 
1583   // Collects info for managed fields that reference managed Strings.
operator ()(ObjPtr<mirror::Object> obj,MemberOffset member_offset,bool is_static ATTRIBUTE_UNUSED) const1584   void operator() (ObjPtr<mirror::Object> obj,
1585                    MemberOffset member_offset,
1586                    bool is_static ATTRIBUTE_UNUSED) const
1587       REQUIRES_SHARED(Locks::mutator_lock_) {
1588     ObjPtr<mirror::Object> referred_obj =
1589         obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(member_offset);
1590 
1591     if (image_writer_->IsInternedAppImageStringReference(referred_obj)) {
1592       size_t base_offset = image_writer_->GetImageOffset(current_obj_.Ptr(), oat_index_);
1593       string_reference_offsets_->emplace_back(base_offset, member_offset.Uint32Value());
1594     }
1595   }
1596 
1597   ALWAYS_INLINE
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const1598   void operator() (ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
1599                    ObjPtr<mirror::Reference> ref) const
1600       REQUIRES_SHARED(Locks::mutator_lock_) {
1601     operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
1602   }
1603 
1604  private:
1605   const ImageWriter* const image_writer_;
1606   const size_t oat_index_;
1607   dchecked_vector<AppImageReferenceOffsetInfo>* const string_reference_offsets_;
1608   const ObjPtr<mirror::Object> current_obj_;
1609 };
1610 
1611 class ImageWriter::LayoutHelper::VisitReferencesVisitor {
1612  public:
VisitReferencesVisitor(LayoutHelper * helper,size_t oat_index)1613   VisitReferencesVisitor(LayoutHelper* helper, size_t oat_index)
1614       : helper_(helper), oat_index_(oat_index) {}
1615 
1616   // We do not visit native roots. These are handled with other logic.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const1617   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
1618       const {
1619     LOG(FATAL) << "UNREACHABLE";
1620   }
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const1621   void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {
1622     LOG(FATAL) << "UNREACHABLE";
1623   }
1624 
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const1625   ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> obj,
1626                                 MemberOffset offset,
1627                                 bool is_static ATTRIBUTE_UNUSED) const
1628       REQUIRES_SHARED(Locks::mutator_lock_) {
1629     mirror::Object* ref =
1630         obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
1631     VisitReference(ref);
1632   }
1633 
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const1634   ALWAYS_INLINE void operator() (ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
1635                                  ObjPtr<mirror::Reference> ref) const
1636       REQUIRES_SHARED(Locks::mutator_lock_) {
1637     operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
1638   }
1639 
1640  private:
VisitReference(mirror::Object * ref) const1641   void VisitReference(mirror::Object* ref) const REQUIRES_SHARED(Locks::mutator_lock_) {
1642     if (helper_->TryAssignBinSlot(ref, oat_index_)) {
1643       // Remember how many objects we're adding at the front of the queue as we want
1644       // to reverse that range to process these references in the order of addition.
1645       helper_->work_queue_.emplace_front(ref, oat_index_);
1646     }
1647     if (ClassLinker::kAppImageMayContainStrings &&
1648         helper_->image_writer_->compiler_options_.IsAppImage() &&
1649         helper_->image_writer_->IsInternedAppImageStringReference(ref)) {
1650       helper_->image_writer_->image_infos_[oat_index_].num_string_references_ += 1u;
1651     }
1652   }
1653 
1654   LayoutHelper* const helper_;
1655   const size_t oat_index_;
1656 };
1657 
1658 // Visit method pointer arrays in `klass` that were not inherited from its superclass.
1659 template <typename Visitor>
VisitNewMethodPointerArrays(ObjPtr<mirror::Class> klass,Visitor && visitor)1660 static void VisitNewMethodPointerArrays(ObjPtr<mirror::Class> klass, Visitor&& visitor)
1661     REQUIRES_SHARED(Locks::mutator_lock_) {
1662   ObjPtr<mirror::Class> super = klass->GetSuperClass<kVerifyNone, kWithoutReadBarrier>();
1663   ObjPtr<mirror::PointerArray> vtable = klass->GetVTable<kVerifyNone, kWithoutReadBarrier>();
1664   if (vtable != nullptr &&
1665       (super == nullptr || vtable != super->GetVTable<kVerifyNone, kWithoutReadBarrier>())) {
1666     visitor(vtable);
1667   }
1668   int32_t iftable_count = klass->GetIfTableCount();
1669   int32_t super_iftable_count = (super != nullptr) ? super->GetIfTableCount() : 0;
1670   ObjPtr<mirror::IfTable> iftable = klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>();
1671   ObjPtr<mirror::IfTable> super_iftable =
1672       (super != nullptr) ? super->GetIfTable<kVerifyNone, kWithoutReadBarrier>() : nullptr;
1673   for (int32_t i = 0; i < iftable_count; ++i) {
1674     ObjPtr<mirror::PointerArray> methods =
1675         iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i);
1676     ObjPtr<mirror::PointerArray> super_methods = (i < super_iftable_count)
1677         ? super_iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i)
1678         : nullptr;
1679     if (methods != super_methods) {
1680       DCHECK(methods != nullptr);
1681       if (i < super_iftable_count) {
1682         DCHECK(super_methods != nullptr);
1683         DCHECK_EQ(methods->GetLength(), super_methods->GetLength());
1684       }
1685       visitor(methods);
1686     }
1687   }
1688 }
1689 
ProcessDexFileObjects(Thread * self)1690 void ImageWriter::LayoutHelper::ProcessDexFileObjects(Thread* self) {
1691   Runtime* runtime = Runtime::Current();
1692   ClassLinker* class_linker = runtime->GetClassLinker();
1693   const CompilerOptions& compiler_options = image_writer_->compiler_options_;
1694   JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
1695 
1696   // To ensure deterministic output, populate the work queue with objects in a pre-defined order.
1697   // Note: If we decide to implement a profile-guided layout, this is the place to do so.
1698 
1699   // Get initial work queue with the image classes and assign their bin slots.
1700   CollectClassesVisitor visitor(image_writer_);
1701   {
1702     WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
1703     if (compiler_options.IsBootImage() || compiler_options.IsBootImageExtension()) {
1704       // No need to filter based on class loader, boot class table contains only
1705       // classes defined by the boot class loader.
1706       ClassTable* class_table = class_linker->boot_class_table_.get();
1707       class_table->Visit<kWithoutReadBarrier>(visitor);
1708     } else {
1709       // No need to visit boot class table as there are no classes there for the app image.
1710       for (const ClassLinker::ClassLoaderData& data : class_linker->class_loaders_) {
1711         auto class_loader =
1712             DecodeWeakGlobalWithoutRB<mirror::ClassLoader>(vm, self, data.weak_root);
1713         if (class_loader != nullptr) {
1714           ClassTable* class_table = class_loader->GetClassTable();
1715           if (class_table != nullptr) {
1716             // Visit only classes defined in this class loader (avoid visiting multiple times).
1717             auto filtering_visitor = [&visitor, class_loader](ObjPtr<mirror::Class> klass)
1718                 REQUIRES_SHARED(Locks::mutator_lock_) {
1719               if (klass->GetClassLoader<kVerifyNone, kWithoutReadBarrier>() == class_loader) {
1720                 visitor(klass);
1721               }
1722               return true;
1723             };
1724             class_table->Visit<kWithoutReadBarrier>(filtering_visitor);
1725           }
1726         }
1727       }
1728     }
1729   }
1730   DCHECK(work_queue_.empty());
1731   work_queue_ = visitor.ProcessCollectedClasses(self);
1732   for (const std::pair<ObjPtr<mirror::Object>, size_t>& entry : work_queue_) {
1733     DCHECK(entry.first != nullptr);
1734     ObjPtr<mirror::Class> klass = entry.first->AsClass();
1735     size_t oat_index = entry.second;
1736     DCHECK(!image_writer_->IsInBootImage(klass.Ptr()));
1737     DCHECK(!image_writer_->IsImageBinSlotAssigned(klass.Ptr()));
1738     image_writer_->RecordNativeRelocations(klass, oat_index);
1739     Bin klass_bin = image_writer_->AssignImageBinSlot(klass.Ptr(), oat_index);
1740     bin_objects_[oat_index][enum_cast<size_t>(klass_bin)].push_back(klass.Ptr());
1741 
1742     auto method_pointer_array_visitor =
1743         [&](ObjPtr<mirror::PointerArray> pointer_array) REQUIRES_SHARED(Locks::mutator_lock_) {
1744           constexpr Bin bin = kBinObjects ? Bin::kInternalClean : Bin::kRegular;
1745           image_writer_->AssignImageBinSlot(pointer_array.Ptr(), oat_index, bin);
1746           bin_objects_[oat_index][enum_cast<size_t>(bin)].push_back(pointer_array.Ptr());
1747           // No need to add to the work queue. The class reference, if not in the boot image
1748           // (that is, when compiling the primary boot image), is already in the work queue.
1749         };
1750     VisitNewMethodPointerArrays(klass, method_pointer_array_visitor);
1751   }
1752 
1753   // Assign bin slots to dex caches.
1754   {
1755     ReaderMutexLock mu(self, *Locks::dex_lock_);
1756     for (const DexFile* dex_file : compiler_options.GetDexFilesForOatFile()) {
1757       auto it = image_writer_->dex_file_oat_index_map_.find(dex_file);
1758       DCHECK(it != image_writer_->dex_file_oat_index_map_.end()) << dex_file->GetLocation();
1759       const size_t oat_index = it->second;
1760       // Assign bin slot to this file's dex cache and add it to the end of the work queue.
1761       auto dcd_it = class_linker->GetDexCachesData().find(dex_file);
1762       DCHECK(dcd_it != class_linker->GetDexCachesData().end()) << dex_file->GetLocation();
1763       auto dex_cache =
1764           DecodeWeakGlobalWithoutRB<mirror::DexCache>(vm, self, dcd_it->second.weak_root);
1765       DCHECK(dex_cache != nullptr);
1766       bool assigned = TryAssignBinSlot(dex_cache, oat_index);
1767       DCHECK(assigned);
1768       work_queue_.emplace_back(dex_cache, oat_index);
1769     }
1770   }
1771 
1772   // Assign interns to images depending on the first dex file they appear in.
1773   // Record those that do not have a StringId in any dex file.
1774   ProcessInterns(self);
1775 
1776   // Since classes and dex caches have been assigned to their bins, when we process a class
1777   // we do not follow through the class references or dex caches, so we correctly process
1778   // only objects actually belonging to that class before taking a new class from the queue.
1779   // If multiple class statics reference the same object (directly or indirectly), the object
1780   // is treated as belonging to the first encountered referencing class.
1781   ProcessWorkQueue();
1782 }
1783 
ProcessRoots(Thread * self)1784 void ImageWriter::LayoutHelper::ProcessRoots(Thread* self) {
1785   // Assign bin slots to the image roots and boot image live objects, add them to the work queue
1786   // and process the work queue. These objects reference other objects needed for the image, for
1787   // example the array of dex cache references, or the pre-allocated exceptions for the boot image.
1788   DCHECK(work_queue_.empty());
1789 
1790   constexpr Bin clean_bin = kBinObjects ? Bin::kInternalClean : Bin::kRegular;
1791   size_t num_oat_files = image_writer_->oat_filenames_.size();
1792   JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
1793   for (size_t oat_index = 0; oat_index != num_oat_files; ++oat_index) {
1794     // Put image roots and dex caches into `clean_bin`.
1795     auto image_roots = DecodeGlobalWithoutRB<mirror::ObjectArray<mirror::Object>>(
1796        vm, image_writer_->image_roots_[oat_index]);
1797     AssignImageBinSlot(image_roots, oat_index, clean_bin);
1798     work_queue_.emplace_back(image_roots, oat_index);
1799     // Do not rely on the `work_queue_` for dex cache arrays, it would assign a different bin.
1800     ObjPtr<ObjectArray<Object>> dex_caches = ObjPtr<ObjectArray<Object>>::DownCast(
1801         image_roots->GetWithoutChecks<kVerifyNone, kWithoutReadBarrier>(ImageHeader::kDexCaches));
1802     AssignImageBinSlot(dex_caches, oat_index, clean_bin);
1803     work_queue_.emplace_back(dex_caches, oat_index);
1804   }
1805   // Do not rely on the `work_queue_` for boot image live objects, it would assign a different bin.
1806   if (image_writer_->compiler_options_.IsBootImage()) {
1807     ObjPtr<mirror::ObjectArray<mirror::Object>> boot_image_live_objects =
1808         image_writer_->boot_image_live_objects_;
1809     AssignImageBinSlot(boot_image_live_objects, GetDefaultOatIndex(), clean_bin);
1810     work_queue_.emplace_back(boot_image_live_objects, GetDefaultOatIndex());
1811   }
1812 
1813   ProcessWorkQueue();
1814 }
1815 
ProcessInterns(Thread * self)1816 void ImageWriter::LayoutHelper::ProcessInterns(Thread* self) {
1817   // String bins are empty at this point.
1818   DCHECK(std::all_of(bin_objects_.begin(),
1819                      bin_objects_.end(),
1820                      [](const auto& bins) {
1821                        return bins[enum_cast<size_t>(Bin::kString)].empty();
1822                      }));
1823 
1824   // There is only one non-boot image intern table and it's the last one.
1825   InternTable* const intern_table = Runtime::Current()->GetInternTable();
1826   MutexLock mu(self, *Locks::intern_table_lock_);
1827   DCHECK_EQ(std::count_if(intern_table->strong_interns_.tables_.begin(),
1828                           intern_table->strong_interns_.tables_.end(),
1829                           [](const InternTable::Table::InternalTable& table) {
1830                             return !table.IsBootImage();
1831                           }),
1832             1);
1833   DCHECK(!intern_table->strong_interns_.tables_.back().IsBootImage());
1834   const InternTable::UnorderedSet& intern_set = intern_table->strong_interns_.tables_.back().set_;
1835 
1836   // Assign bin slots to all interns with a corresponding StringId in one of the input dex files.
1837   ImageWriter* image_writer = image_writer_;
1838   for (const DexFile* dex_file : image_writer->compiler_options_.GetDexFilesForOatFile()) {
1839     auto it = image_writer->dex_file_oat_index_map_.find(dex_file);
1840     DCHECK(it != image_writer->dex_file_oat_index_map_.end()) << dex_file->GetLocation();
1841     const size_t oat_index = it->second;
1842     // Assign bin slots for strings defined in this dex file in StringId (lexicographical) order.
1843     auto& string_bin_objects = bin_objects_[oat_index][enum_cast<size_t>(Bin::kString)];
1844     for (size_t i = 0, count = dex_file->NumStringIds(); i != count; ++i) {
1845       uint32_t utf16_length;
1846       const char* utf8_data = dex_file->StringDataAndUtf16LengthByIdx(dex::StringIndex(i),
1847                                                                       &utf16_length);
1848       uint32_t hash = InternTable::Utf8String::Hash(utf16_length, utf8_data);
1849       auto intern_it =
1850           intern_set.FindWithHash(InternTable::Utf8String(utf16_length, utf8_data), hash);
1851       if (intern_it != intern_set.end()) {
1852         mirror::String* string = intern_it->Read<kWithoutReadBarrier>();
1853         DCHECK(string != nullptr);
1854         DCHECK(!image_writer->IsInBootImage(string));
1855         if (!image_writer->IsImageBinSlotAssigned(string)) {
1856           Bin bin = image_writer->AssignImageBinSlot(string, oat_index);
1857           DCHECK_EQ(bin, kBinObjects ? Bin::kString : Bin::kRegular);
1858           string_bin_objects.push_back(string);
1859         } else {
1860           // We have already seen this string in a previous dex file.
1861           DCHECK(dex_file != image_writer->compiler_options_.GetDexFilesForOatFile().front());
1862         }
1863       }
1864     }
1865   }
1866 
1867   // String bins have been filled with dex file interns. Record their numbers in image infos.
1868   DCHECK_EQ(bin_objects_.size(), image_writer_->image_infos_.size());
1869   size_t total_dex_file_interns = 0u;
1870   for (size_t oat_index = 0, size = bin_objects_.size(); oat_index != size; ++oat_index) {
1871     size_t num_dex_file_interns = bin_objects_[oat_index][enum_cast<size_t>(Bin::kString)].size();
1872     ImageInfo& image_info = image_writer_->GetImageInfo(oat_index);
1873     DCHECK_EQ(image_info.intern_table_size_, 0u);
1874     image_info.intern_table_size_ = num_dex_file_interns;
1875     total_dex_file_interns += num_dex_file_interns;
1876   }
1877 
1878   // Collect interns that do not have a corresponding StringId in any of the input dex files.
1879   non_dex_file_interns_.reserve(intern_set.size() - total_dex_file_interns);
1880   for (const GcRoot<mirror::String>& root : intern_set) {
1881     mirror::String* string = root.Read<kWithoutReadBarrier>();
1882     if (!image_writer->IsImageBinSlotAssigned(string)) {
1883       non_dex_file_interns_.push_back(string);
1884     }
1885   }
1886   DCHECK_EQ(intern_set.size(), total_dex_file_interns + non_dex_file_interns_.size());
1887 }
1888 
FinalizeInternTables()1889 void ImageWriter::LayoutHelper::FinalizeInternTables() {
1890   // Remove interns that do not have a bin slot assigned. These correspond
1891   // to the DexCache locations excluded in VerifyImageBinSlotsAssigned().
1892   ImageWriter* image_writer = image_writer_;
1893   auto retained_end = std::remove_if(
1894       non_dex_file_interns_.begin(),
1895       non_dex_file_interns_.end(),
1896       [=](mirror::String* string) REQUIRES_SHARED(Locks::mutator_lock_) {
1897         return !image_writer->IsImageBinSlotAssigned(string);
1898       });
1899   non_dex_file_interns_.resize(std::distance(non_dex_file_interns_.begin(), retained_end));
1900 
1901   // Sort `non_dex_file_interns_` based on oat index and bin offset.
1902   ArrayRef<mirror::String*> non_dex_file_interns(non_dex_file_interns_);
1903   std::sort(non_dex_file_interns.begin(),
1904             non_dex_file_interns.end(),
1905             [=](mirror::String* lhs, mirror::String* rhs) REQUIRES_SHARED(Locks::mutator_lock_) {
1906               size_t lhs_oat_index = image_writer->GetOatIndex(lhs);
1907               size_t rhs_oat_index = image_writer->GetOatIndex(rhs);
1908               if (lhs_oat_index != rhs_oat_index) {
1909                 return lhs_oat_index < rhs_oat_index;
1910               }
1911               BinSlot lhs_bin_slot = image_writer->GetImageBinSlot(lhs, lhs_oat_index);
1912               BinSlot rhs_bin_slot = image_writer->GetImageBinSlot(rhs, rhs_oat_index);
1913               return lhs_bin_slot < rhs_bin_slot;
1914             });
1915 
1916   // Allocate and fill intern tables.
1917   size_t ndfi_index = 0u;
1918   DCHECK_EQ(bin_objects_.size(), image_writer->image_infos_.size());
1919   for (size_t oat_index = 0, size = bin_objects_.size(); oat_index != size; ++oat_index) {
1920     // Find the end of `non_dex_file_interns` for this oat file.
1921     size_t ndfi_end = ndfi_index;
1922     while (ndfi_end != non_dex_file_interns.size() &&
1923            image_writer->GetOatIndex(non_dex_file_interns[ndfi_end]) == oat_index) {
1924       ++ndfi_end;
1925     }
1926 
1927     // Calculate final intern table size.
1928     ImageInfo& image_info = image_writer->GetImageInfo(oat_index);
1929     DCHECK_EQ(image_info.intern_table_bytes_, 0u);
1930     size_t num_dex_file_interns = image_info.intern_table_size_;
1931     size_t num_non_dex_file_interns = ndfi_end - ndfi_index;
1932     image_info.intern_table_size_ = num_dex_file_interns + num_non_dex_file_interns;
1933     if (image_info.intern_table_size_ != 0u) {
1934       // Make sure the intern table shall be full by allocating a buffer of the right size.
1935       size_t buffer_size = static_cast<size_t>(
1936           ceil(image_info.intern_table_size_ / kImageInternTableMaxLoadFactor));
1937       image_info.intern_table_buffer_.reset(new GcRoot<mirror::String>[buffer_size]);
1938       DCHECK(image_info.intern_table_buffer_ != nullptr);
1939       image_info.intern_table_.emplace(kImageInternTableMinLoadFactor,
1940                                        kImageInternTableMaxLoadFactor,
1941                                        image_info.intern_table_buffer_.get(),
1942                                        buffer_size);
1943 
1944       // Fill the intern table. Dex file interns are at the start of the bin_objects[.][kString].
1945       InternTable::UnorderedSet& table = *image_info.intern_table_;
1946       const auto& oat_file_strings = bin_objects_[oat_index][enum_cast<size_t>(Bin::kString)];
1947       DCHECK_LE(num_dex_file_interns, oat_file_strings.size());
1948       ArrayRef<mirror::Object* const> dex_file_interns(
1949           oat_file_strings.data(), num_dex_file_interns);
1950       for (mirror::Object* string : dex_file_interns) {
1951         bool inserted = table.insert(GcRoot<mirror::String>(string->AsString())).second;
1952         DCHECK(inserted) << "String already inserted: " << string->AsString()->ToModifiedUtf8();
1953       }
1954       ArrayRef<mirror::String*> current_non_dex_file_interns =
1955           non_dex_file_interns.SubArray(ndfi_index, num_non_dex_file_interns);
1956       for (mirror::String* string : current_non_dex_file_interns) {
1957         bool inserted = table.insert(GcRoot<mirror::String>(string)).second;
1958         DCHECK(inserted) << "String already inserted: " << string->ToModifiedUtf8();
1959       }
1960 
1961       // Record the intern table size in bytes.
1962       image_info.intern_table_bytes_ = table.WriteToMemory(nullptr);
1963     }
1964 
1965     ndfi_index = ndfi_end;
1966   }
1967 }
1968 
ProcessWorkQueue()1969 void ImageWriter::LayoutHelper::ProcessWorkQueue() {
1970   while (!work_queue_.empty()) {
1971     std::pair<ObjPtr<mirror::Object>, size_t> pair = work_queue_.front();
1972     work_queue_.pop_front();
1973     VisitReferences(/*obj=*/ pair.first, /*oat_index=*/ pair.second);
1974   }
1975 }
1976 
SortDirtyObjects(const HashMap<mirror::Object *,uint32_t> & dirty_objects,size_t oat_index)1977 void ImageWriter::LayoutHelper::SortDirtyObjects(
1978     const HashMap<mirror::Object*, uint32_t>& dirty_objects, size_t oat_index) {
1979   constexpr Bin bin = Bin::kKnownDirty;
1980   ImageInfo& image_info = image_writer_->GetImageInfo(oat_index);
1981 
1982   dchecked_vector<mirror::Object*>& known_dirty = bin_objects_[oat_index][enum_cast<size_t>(bin)];
1983   if (known_dirty.empty()) {
1984     return;
1985   }
1986 
1987   // Collect objects and their combined sort_keys.
1988   // Combined key contains sort_key and original offset to ensure deterministic sorting.
1989   using CombinedKey = std::pair<uint32_t, uint32_t>;
1990   using ObjSortPair = std::pair<mirror::Object*, CombinedKey>;
1991   dchecked_vector<ObjSortPair> objects;
1992   objects.reserve(known_dirty.size());
1993   for (mirror::Object* obj : known_dirty) {
1994     const BinSlot bin_slot = image_writer_->GetImageBinSlot(obj, oat_index);
1995     const uint32_t original_offset = bin_slot.GetOffset();
1996     const auto it = dirty_objects.find(obj);
1997     const uint32_t sort_key = (it != dirty_objects.end()) ? it->second : 0;
1998     objects.emplace_back(obj, std::make_pair(sort_key, original_offset));
1999   }
2000   // Sort by combined sort_key.
2001   std::sort(std::begin(objects), std::end(objects), [&](ObjSortPair& lhs, ObjSortPair& rhs) {
2002     return lhs.second < rhs.second;
2003   });
2004 
2005   // Fill known_dirty objects in sorted order, update bin offsets.
2006   known_dirty.clear();
2007   size_t offset = 0;
2008   for (const ObjSortPair& entry : objects) {
2009     mirror::Object* obj = entry.first;
2010 
2011     known_dirty.push_back(obj);
2012     image_writer_->UpdateImageBinSlotOffset(obj, oat_index, offset);
2013 
2014     const size_t aligned_object_size = RoundUp(obj->SizeOf<kVerifyNone>(), kObjectAlignment);
2015     offset += aligned_object_size;
2016   }
2017   DCHECK_EQ(offset, image_info.GetBinSlotSize(bin));
2018 }
2019 
VerifyImageBinSlotsAssigned()2020 void ImageWriter::LayoutHelper::VerifyImageBinSlotsAssigned() {
2021   dchecked_vector<mirror::Object*> carveout;
2022   JavaVMExt* vm = nullptr;
2023   if (image_writer_->compiler_options_.IsAppImage()) {
2024     // Exclude boot class path dex caches that are not part of the boot image.
2025     // Also exclude their locations if they have not been visited through another path.
2026     ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2027     Thread* self = Thread::Current();
2028     vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
2029     ReaderMutexLock mu(self, *Locks::dex_lock_);
2030     for (const auto& entry : class_linker->GetDexCachesData()) {
2031       const ClassLinker::DexCacheData& data = entry.second;
2032       auto dex_cache = DecodeWeakGlobalWithoutRB<mirror::DexCache>(vm, self, data.weak_root);
2033       if (dex_cache == nullptr ||
2034           image_writer_->IsInBootImage(dex_cache.Ptr()) ||
2035           ContainsElement(image_writer_->compiler_options_.GetDexFilesForOatFile(),
2036                           dex_cache->GetDexFile())) {
2037         continue;
2038       }
2039       CHECK(!image_writer_->IsImageBinSlotAssigned(dex_cache.Ptr()));
2040       carveout.push_back(dex_cache.Ptr());
2041       ObjPtr<mirror::String> location = dex_cache->GetLocation<kVerifyNone, kWithoutReadBarrier>();
2042       if (!image_writer_->IsImageBinSlotAssigned(location.Ptr())) {
2043         carveout.push_back(location.Ptr());
2044       }
2045     }
2046   }
2047 
2048   dchecked_vector<mirror::Object*> missed_objects;
2049   auto ensure_bin_slots_assigned = [&](mirror::Object* obj)
2050       REQUIRES_SHARED(Locks::mutator_lock_) {
2051     if (!image_writer_->IsInBootImage(obj)) {
2052       if (!UNLIKELY(image_writer_->IsImageBinSlotAssigned(obj))) {
2053         // Ignore the `carveout` objects.
2054         if (ContainsElement(carveout, obj)) {
2055           return;
2056         }
2057         // Ignore finalizer references for the dalvik.system.DexFile objects referenced by
2058         // the app class loader.
2059         ObjPtr<mirror::Class> klass = obj->GetClass<kVerifyNone, kWithoutReadBarrier>();
2060         if (klass->IsFinalizerReferenceClass<kVerifyNone>()) {
2061           ObjPtr<mirror::Class> reference_class =
2062               klass->GetSuperClass<kVerifyNone, kWithoutReadBarrier>();
2063           DCHECK(reference_class->DescriptorEquals("Ljava/lang/ref/Reference;"));
2064           ArtField* ref_field = reference_class->FindDeclaredInstanceField(
2065               "referent", "Ljava/lang/Object;");
2066           CHECK(ref_field != nullptr);
2067           ObjPtr<mirror::Object> ref = ref_field->GetObject<kWithoutReadBarrier>(obj);
2068           CHECK(ref != nullptr);
2069           CHECK(image_writer_->IsImageBinSlotAssigned(ref.Ptr()));
2070           ObjPtr<mirror::Class> ref_klass = ref->GetClass<kVerifyNone, kWithoutReadBarrier>();
2071           CHECK(ref_klass == WellKnownClasses::dalvik_system_DexFile.Get<kWithoutReadBarrier>());
2072           // Note: The app class loader is used only for checking against the runtime
2073           // class loader, the dex file cookie is cleared and therefore we do not need
2074           // to run the finalizer even if we implement app image objects collection.
2075           ArtField* field = WellKnownClasses::dalvik_system_DexFile_cookie;
2076           CHECK(field->GetObject<kWithoutReadBarrier>(ref) == nullptr);
2077           return;
2078         }
2079         if (klass->IsStringClass()) {
2080           // Ignore interned strings. These may come from reflection interning method names.
2081           // TODO: Make dex file strings weak interns and GC them before writing the image.
2082           if (IsStronglyInternedString(obj->AsString())) {
2083             return;
2084           }
2085         }
2086         missed_objects.push_back(obj);
2087       }
2088     }
2089   };
2090   Runtime::Current()->GetHeap()->VisitObjects(ensure_bin_slots_assigned);
2091   if (!missed_objects.empty()) {
2092     const gc::Verification* v = Runtime::Current()->GetHeap()->GetVerification();
2093     size_t num_missed_objects = missed_objects.size();
2094     size_t num_paths = std::min<size_t>(num_missed_objects, 5u);  // Do not flood the output.
2095     ArrayRef<mirror::Object*> missed_objects_head =
2096         ArrayRef<mirror::Object*>(missed_objects).SubArray(/*pos=*/ 0u, /*length=*/ num_paths);
2097     for (mirror::Object* obj : missed_objects_head) {
2098       LOG(ERROR) << "Image object without assigned bin slot: "
2099           << mirror::Object::PrettyTypeOf(obj) << " " << obj
2100           << " " << v->FirstPathFromRootSet(obj);
2101     }
2102     LOG(FATAL) << "Found " << num_missed_objects << " objects without assigned bin slots.";
2103   }
2104 }
2105 
FinalizeBinSlotOffsets()2106 void ImageWriter::LayoutHelper::FinalizeBinSlotOffsets() {
2107   // Calculate bin slot offsets and adjust for region padding if needed.
2108   const size_t region_size = image_writer_->region_size_;
2109   const size_t num_image_infos = image_writer_->image_infos_.size();
2110   for (size_t oat_index = 0; oat_index != num_image_infos; ++oat_index) {
2111     ImageInfo& image_info = image_writer_->image_infos_[oat_index];
2112     size_t bin_offset = image_writer_->image_objects_offset_begin_;
2113 
2114     for (size_t i = 0; i != kNumberOfBins; ++i) {
2115       Bin bin = enum_cast<Bin>(i);
2116       switch (bin) {
2117         case Bin::kArtMethodClean:
2118         case Bin::kArtMethodDirty: {
2119           bin_offset = RoundUp(bin_offset, ArtMethod::Alignment(image_writer_->target_ptr_size_));
2120           break;
2121         }
2122         case Bin::kImTable:
2123         case Bin::kIMTConflictTable: {
2124           bin_offset = RoundUp(bin_offset, static_cast<size_t>(image_writer_->target_ptr_size_));
2125           break;
2126         }
2127         default: {
2128           // Normal alignment.
2129         }
2130       }
2131       image_info.bin_slot_offsets_[i] = bin_offset;
2132 
2133       // If the bin is for mirror objects, we may need to add region padding and update offsets.
2134       if (i < enum_cast<size_t>(Bin::kMirrorCount) && region_size != 0u) {
2135         const size_t offset_after_header = bin_offset - sizeof(ImageHeader);
2136         size_t remaining_space =
2137             RoundUp(offset_after_header + 1u, region_size) - offset_after_header;
2138         // Exercise the loop below in debug builds to get coverage.
2139         if (kIsDebugBuild || remaining_space < image_info.bin_slot_sizes_[i]) {
2140           // The bin crosses a region boundary. Add padding if needed.
2141           size_t object_offset = 0u;
2142           size_t padding = 0u;
2143           for (mirror::Object* object : bin_objects_[oat_index][i]) {
2144             BinSlot bin_slot = image_writer_->GetImageBinSlot(object, oat_index);
2145             DCHECK_EQ(enum_cast<size_t>(bin_slot.GetBin()), i);
2146             DCHECK_EQ(bin_slot.GetOffset() + padding, object_offset);
2147             size_t object_size = RoundUp(object->SizeOf<kVerifyNone>(), kObjectAlignment);
2148 
2149             auto add_padding = [&](bool tail_region) {
2150               DCHECK_NE(remaining_space, 0u);
2151               DCHECK_LT(remaining_space, region_size);
2152               DCHECK_ALIGNED(remaining_space, kObjectAlignment);
2153               // TODO When copying to heap regions, leave the tail region padding zero-filled.
2154               if (!tail_region || true) {
2155                 image_info.padding_offsets_.push_back(bin_offset + object_offset);
2156               }
2157               image_info.bin_slot_sizes_[i] += remaining_space;
2158               padding += remaining_space;
2159               object_offset += remaining_space;
2160               remaining_space = region_size;
2161             };
2162             if (object_size > remaining_space) {
2163               // Padding needed if we're not at region boundary (with a multi-region object).
2164               if (remaining_space != region_size) {
2165                 // TODO: Instead of adding padding, we should consider reordering the bins
2166                 // or objects to reduce wasted space.
2167                 add_padding(/*tail_region=*/ false);
2168               }
2169               DCHECK_EQ(remaining_space, region_size);
2170               // For huge objects, adjust the remaining space to hold the object and some more.
2171               if (object_size > region_size) {
2172                 remaining_space = RoundUp(object_size + 1u, region_size);
2173               }
2174             } else if (remaining_space == object_size) {
2175               // Move to the next region, no padding needed.
2176               remaining_space += region_size;
2177             }
2178             DCHECK_GT(remaining_space, object_size);
2179             remaining_space -= object_size;
2180             image_writer_->UpdateImageBinSlotOffset(object, oat_index, object_offset);
2181             object_offset += object_size;
2182             // Add padding to the tail region of huge objects if not region-aligned.
2183             if (object_size > region_size && remaining_space != region_size) {
2184               DCHECK(!IsAlignedParam(object_size, region_size));
2185               add_padding(/*tail_region=*/ true);
2186             }
2187           }
2188           image_writer_->region_alignment_wasted_ += padding;
2189           image_info.image_end_ += padding;
2190         }
2191       }
2192       bin_offset += image_info.bin_slot_sizes_[i];
2193     }
2194     // NOTE: There may be additional padding between the bin slots and the intern table.
2195     DCHECK_EQ(
2196         image_info.image_end_,
2197         image_info.GetBinSizeSum(Bin::kMirrorCount) + image_writer_->image_objects_offset_begin_);
2198   }
2199 
2200   VLOG(image) << "Space wasted for region alignment " << image_writer_->region_alignment_wasted_;
2201 }
2202 
CollectStringReferenceInfo()2203 void ImageWriter::LayoutHelper::CollectStringReferenceInfo() {
2204   size_t total_string_refs = 0u;
2205 
2206   const size_t num_image_infos = image_writer_->image_infos_.size();
2207   for (size_t oat_index = 0; oat_index != num_image_infos; ++oat_index) {
2208     ImageInfo& image_info = image_writer_->image_infos_[oat_index];
2209     DCHECK(image_info.string_reference_offsets_.empty());
2210     image_info.string_reference_offsets_.reserve(image_info.num_string_references_);
2211 
2212     for (size_t i = 0; i < enum_cast<size_t>(Bin::kMirrorCount); ++i) {
2213       for (mirror::Object* obj : bin_objects_[oat_index][i]) {
2214         CollectStringReferenceVisitor visitor(image_writer_,
2215                                               oat_index,
2216                                               &image_info.string_reference_offsets_,
2217                                               obj);
2218         /*
2219          * References to managed strings can occur either in the managed heap or in
2220          * native memory regions. Information about managed references is collected
2221          * by the CollectStringReferenceVisitor and directly added to the image info.
2222          *
2223          * Native references to managed strings can only occur through DexCache
2224          * objects. This is verified by the visitor in debug mode and the references
2225          * are collected separately below.
2226          */
2227         obj->VisitReferences</*kVisitNativeRoots=*/ kIsDebugBuild,
2228                              kVerifyNone,
2229                              kWithoutReadBarrier>(visitor, visitor);
2230       }
2231     }
2232 
2233     total_string_refs += image_info.string_reference_offsets_.size();
2234 
2235     // Check that we collected the same number of string references as we saw in the previous pass.
2236     CHECK_EQ(image_info.string_reference_offsets_.size(), image_info.num_string_references_);
2237   }
2238 
2239   VLOG(compiler) << "Dex2Oat:AppImage:stringReferences = " << total_string_refs;
2240 }
2241 
VisitReferences(ObjPtr<mirror::Object> obj,size_t oat_index)2242 void ImageWriter::LayoutHelper::VisitReferences(ObjPtr<mirror::Object> obj, size_t oat_index) {
2243   size_t old_work_queue_size = work_queue_.size();
2244   VisitReferencesVisitor visitor(this, oat_index);
2245   // Walk references and assign bin slots for them.
2246   obj->VisitReferences</*kVisitNativeRoots=*/ false, kVerifyNone, kWithoutReadBarrier>(
2247       visitor,
2248       visitor);
2249   // Put the added references in the queue in the order in which they were added.
2250   // The visitor just pushes them to the front as it visits them.
2251   DCHECK_LE(old_work_queue_size, work_queue_.size());
2252   size_t num_added = work_queue_.size() - old_work_queue_size;
2253   std::reverse(work_queue_.begin(), work_queue_.begin() + num_added);
2254 }
2255 
TryAssignBinSlot(ObjPtr<mirror::Object> obj,size_t oat_index)2256 bool ImageWriter::LayoutHelper::TryAssignBinSlot(ObjPtr<mirror::Object> obj, size_t oat_index) {
2257   if (obj == nullptr || image_writer_->IsInBootImage(obj.Ptr())) {
2258     // Object is null or already in the image, there is no work to do.
2259     return false;
2260   }
2261   bool assigned = false;
2262   if (!image_writer_->IsImageBinSlotAssigned(obj.Ptr())) {
2263     Bin bin = image_writer_->AssignImageBinSlot(obj.Ptr(), oat_index);
2264     bin_objects_[oat_index][enum_cast<size_t>(bin)].push_back(obj.Ptr());
2265     assigned = true;
2266   }
2267   return assigned;
2268 }
2269 
AssignImageBinSlot(ObjPtr<mirror::Object> object,size_t oat_index,Bin bin)2270 void ImageWriter::LayoutHelper::AssignImageBinSlot(
2271     ObjPtr<mirror::Object> object, size_t oat_index, Bin bin) {
2272   DCHECK(object != nullptr);
2273   DCHECK(!image_writer_->IsInBootImage(object.Ptr()));
2274   DCHECK(!image_writer_->IsImageBinSlotAssigned(object.Ptr()));
2275   image_writer_->AssignImageBinSlot(object.Ptr(), oat_index, bin);
2276   bin_objects_[oat_index][enum_cast<size_t>(bin)].push_back(object.Ptr());
2277 }
2278 
CalculateNewObjectOffsets()2279 void ImageWriter::CalculateNewObjectOffsets() {
2280   Thread* const self = Thread::Current();
2281   Runtime* const runtime = Runtime::Current();
2282   gc::Heap* const heap = runtime->GetHeap();
2283 
2284   // Leave space for the header, but do not write it yet, we need to
2285   // know where image_roots is going to end up
2286   image_objects_offset_begin_ = RoundUp(sizeof(ImageHeader), kObjectAlignment);  // 64-bit-alignment
2287 
2288   // Write the image runtime methods.
2289   image_methods_[ImageHeader::kResolutionMethod] = runtime->GetResolutionMethod();
2290   image_methods_[ImageHeader::kImtConflictMethod] = runtime->GetImtConflictMethod();
2291   image_methods_[ImageHeader::kImtUnimplementedMethod] = runtime->GetImtUnimplementedMethod();
2292   image_methods_[ImageHeader::kSaveAllCalleeSavesMethod] =
2293       runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveAllCalleeSaves);
2294   image_methods_[ImageHeader::kSaveRefsOnlyMethod] =
2295       runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsOnly);
2296   image_methods_[ImageHeader::kSaveRefsAndArgsMethod] =
2297       runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs);
2298   image_methods_[ImageHeader::kSaveEverythingMethod] =
2299       runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverything);
2300   image_methods_[ImageHeader::kSaveEverythingMethodForClinit] =
2301       runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForClinit);
2302   image_methods_[ImageHeader::kSaveEverythingMethodForSuspendCheck] =
2303       runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForSuspendCheck);
2304   // Visit image methods first to have the main runtime methods in the first image.
2305   for (auto* m : image_methods_) {
2306     CHECK(m != nullptr);
2307     CHECK(m->IsRuntimeMethod());
2308     DCHECK_EQ(!compiler_options_.IsBootImage(), IsInBootImage(m))
2309         << "Trampolines should be in boot image";
2310     if (!IsInBootImage(m)) {
2311       AssignMethodOffset(m, NativeObjectRelocationType::kRuntimeMethod, GetDefaultOatIndex());
2312     }
2313   }
2314 
2315   // Deflate monitors before we visit roots since deflating acquires the monitor lock. Acquiring
2316   // this lock while holding other locks may cause lock order violations.
2317   {
2318     auto deflate_monitor = [](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
2319       Monitor::Deflate(Thread::Current(), obj);
2320     };
2321     heap->VisitObjects(deflate_monitor);
2322   }
2323 
2324   // From this point on, there shall be no GC anymore and no objects shall be allocated.
2325   // We can now assign a BitSlot to each object and store it in its lockword.
2326 
2327   JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
2328   if (compiler_options_.IsBootImage() || compiler_options_.IsBootImageExtension()) {
2329     // Record the address of boot image live objects.
2330     auto image_roots = DecodeGlobalWithoutRB<mirror::ObjectArray<mirror::Object>>(
2331         vm, image_roots_[0]);
2332     boot_image_live_objects_ = ObjPtr<ObjectArray<Object>>::DownCast(
2333         image_roots->GetWithoutChecks<kVerifyNone, kWithoutReadBarrier>(
2334             ImageHeader::kBootImageLiveObjects)).Ptr();
2335   }
2336 
2337   LayoutHelper layout_helper(this);
2338   layout_helper.ProcessDexFileObjects(self);
2339   layout_helper.ProcessRoots(self);
2340   layout_helper.FinalizeInternTables();
2341 
2342   // Sort objects in dirty bin.
2343   if (!dirty_objects_.empty()) {
2344     for (size_t oat_index = 0; oat_index < image_infos_.size(); ++oat_index) {
2345       layout_helper.SortDirtyObjects(dirty_objects_, oat_index);
2346     }
2347   }
2348 
2349   // Verify that all objects have assigned image bin slots.
2350   layout_helper.VerifyImageBinSlotsAssigned();
2351 
2352   // Finalize bin slot offsets. This may add padding for regions.
2353   layout_helper.FinalizeBinSlotOffsets();
2354 
2355   // Collect string reference info for app images.
2356   if (ClassLinker::kAppImageMayContainStrings && compiler_options_.IsAppImage()) {
2357     layout_helper.CollectStringReferenceInfo();
2358   }
2359 
2360   // Calculate image offsets.
2361   size_t image_offset = 0;
2362   for (ImageInfo& image_info : image_infos_) {
2363     image_info.image_begin_ = global_image_begin_ + image_offset;
2364     image_info.image_offset_ = image_offset;
2365     image_info.image_size_ = RoundUp(image_info.CreateImageSections().first, kPageSize);
2366     // There should be no gaps until the next image.
2367     image_offset += image_info.image_size_;
2368   }
2369 
2370   size_t oat_index = 0;
2371   for (ImageInfo& image_info : image_infos_) {
2372     auto image_roots = DecodeGlobalWithoutRB<mirror::ObjectArray<mirror::Object>>(
2373         vm, image_roots_[oat_index]);
2374     image_info.image_roots_address_ = PointerToLowMemUInt32(GetImageAddress(image_roots.Ptr()));
2375     ++oat_index;
2376   }
2377 
2378   // Update the native relocations by adding their bin sums.
2379   for (auto& pair : native_object_relocations_) {
2380     NativeObjectRelocation& relocation = pair.second;
2381     Bin bin_type = BinTypeForNativeRelocationType(relocation.type);
2382     ImageInfo& image_info = GetImageInfo(relocation.oat_index);
2383     relocation.offset += image_info.GetBinSlotOffset(bin_type);
2384   }
2385 }
2386 
MatchDirtyObjectOffsets(const HashMap<uint32_t,DirtyEntry> & dirty_entries)2387 std::optional<HashMap<mirror::Object*, uint32_t>> ImageWriter::MatchDirtyObjectOffsets(
2388     const HashMap<uint32_t, DirtyEntry>& dirty_entries) REQUIRES_SHARED(Locks::mutator_lock_) {
2389   HashMap<mirror::Object*, uint32_t> dirty_objects;
2390   bool mismatch_found = false;
2391 
2392   auto visitor = [&](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
2393     DCHECK(obj != nullptr);
2394     if (mismatch_found) {
2395       return;
2396     }
2397     if (!IsImageBinSlotAssigned(obj)) {
2398       return;
2399     }
2400 
2401     uint8_t* image_address = reinterpret_cast<uint8_t*>(GetImageAddress(obj));
2402     uint32_t offset = static_cast<uint32_t>(image_address - global_image_begin_);
2403 
2404     auto entry_it = dirty_entries.find(offset);
2405     if (entry_it == dirty_entries.end()) {
2406       return;
2407     }
2408 
2409     const DirtyEntry& entry = entry_it->second;
2410 
2411     const bool is_class = obj->IsClass();
2412     const uint32_t descriptor_hash =
2413         is_class ? obj->AsClass()->DescriptorHash() : obj->GetClass()->DescriptorHash();
2414 
2415     if (is_class != entry.is_class || descriptor_hash != entry.descriptor_hash) {
2416       LOG(WARNING) << "Dirty image objects offset mismatch (outdated file?)";
2417       mismatch_found = true;
2418       return;
2419     }
2420 
2421     dirty_objects.insert(std::make_pair(obj, entry.sort_key));
2422   };
2423   Runtime::Current()->GetHeap()->VisitObjects(visitor);
2424 
2425   // A single mismatch indicates that dirty-image-objects layout differs from
2426   // current ImageWriter layout. In this case any "valid" matches are likely to be accidental,
2427   // so there's no point in optimizing the layout with such data.
2428   if (mismatch_found) {
2429     return {};
2430   }
2431   if (dirty_objects.size() != dirty_entries.size()) {
2432     LOG(WARNING) << "Dirty image objects missing offsets (outdated file?)";
2433     return {};
2434   }
2435   return dirty_objects;
2436 }
2437 
ResetObjectOffsets()2438 void ImageWriter::ResetObjectOffsets() {
2439   const size_t image_infos_size = image_infos_.size();
2440   image_infos_.clear();
2441   image_infos_.resize(image_infos_size);
2442 
2443   native_object_relocations_.clear();
2444 
2445   // CalculateNewObjectOffsets stores image offsets of the objects in lock words,
2446   // while original lock words are preserved in saved_hashcode_map.
2447   // Restore original lock words.
2448   auto visitor = [&](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
2449     DCHECK(obj != nullptr);
2450     const auto it = saved_hashcode_map_.find(obj);
2451     obj->SetLockWord(it != saved_hashcode_map_.end() ? LockWord::FromHashCode(it->second, 0u) :
2452                                                        LockWord::Default(),
2453                      false);
2454   };
2455   Runtime::Current()->GetHeap()->VisitObjects(visitor);
2456 
2457   saved_hashcode_map_.clear();
2458 }
2459 
TryRecalculateOffsetsWithDirtyObjects()2460 void ImageWriter::TryRecalculateOffsetsWithDirtyObjects() {
2461   const std::optional<HashMap<uint32_t, ImageWriter::DirtyEntry>> dirty_entries =
2462       ParseDirtyObjectOffsets(*dirty_image_objects_);
2463   if (!dirty_entries || dirty_entries->empty()) {
2464     return;
2465   }
2466 
2467   std::optional<HashMap<mirror::Object*, uint32_t>> dirty_objects =
2468       MatchDirtyObjectOffsets(*dirty_entries);
2469   if (!dirty_objects || dirty_objects->empty()) {
2470     return;
2471   }
2472   // Calculate offsets again, now with dirty object offsets.
2473   LOG(INFO) << "Recalculating object offsets using dirty-image-objects";
2474   dirty_objects_ = std::move(*dirty_objects);
2475   ResetObjectOffsets();
2476   CalculateNewObjectOffsets();
2477 }
2478 
ParseDirtyObjectOffsets(const HashSet<std::string> & dirty_image_objects)2479 std::optional<HashMap<uint32_t, ImageWriter::DirtyEntry>> ImageWriter::ParseDirtyObjectOffsets(
2480     const HashSet<std::string>& dirty_image_objects) REQUIRES_SHARED(Locks::mutator_lock_) {
2481   HashMap<uint32_t, DirtyEntry> dirty_entries;
2482 
2483   // Go through each dirty-image-object line, parse only lines of the format:
2484   // "dirty_obj: <offset> <type> <descriptor_hash> <sort_key>"
2485   // <offset> -- decimal uint32.
2486   // <type> -- "class" or "instance" (defines if descriptor is referring to a class or an instance).
2487   // <descriptor_hash> -- decimal uint32 (from DescriptorHash() method).
2488   // <sort_key> -- decimal uint32 (defines order of the object inside the dirty bin).
2489   const std::string prefix = "dirty_obj:";
2490   for (const std::string& entry_str : dirty_image_objects) {
2491     // Skip the lines of old dirty-image-object format.
2492     if (std::strncmp(entry_str.data(), prefix.data(), prefix.size()) != 0) {
2493       continue;
2494     }
2495 
2496     const std::vector<std::string> tokens = android::base::Split(entry_str, " ");
2497     if (tokens.size() != 5) {
2498       LOG(WARNING) << "Invalid dirty image objects format: \"" << entry_str << "\"";
2499       return {};
2500     }
2501 
2502     uint32_t offset = 0;
2503     std::from_chars_result res =
2504         std::from_chars(tokens[1].data(), tokens[1].data() + tokens[1].size(), offset);
2505     if (res.ec != std::errc()) {
2506       LOG(WARNING) << "Couldn't parse dirty object offset: \"" << entry_str << "\"";
2507       return {};
2508     }
2509 
2510     DirtyEntry entry;
2511     entry.is_class = (tokens[2] == "class");
2512     res = std::from_chars(
2513         tokens[3].data(), tokens[3].data() + tokens[3].size(), entry.descriptor_hash);
2514     if (res.ec != std::errc()) {
2515       LOG(WARNING) << "Couldn't parse dirty object descriptor hash: \"" << entry_str << "\"";
2516       return {};
2517     }
2518     res = std::from_chars(tokens[4].data(), tokens[4].data() + tokens[4].size(), entry.sort_key);
2519     if (res.ec != std::errc()) {
2520       LOG(WARNING) << "Couldn't parse dirty object marker: \"" << entry_str << "\"";
2521       return {};
2522     }
2523 
2524     dirty_entries.insert(std::make_pair(offset, entry));
2525   }
2526 
2527   return dirty_entries;
2528 }
2529 
2530 std::pair<size_t, dchecked_vector<ImageSection>>
CreateImageSections() const2531 ImageWriter::ImageInfo::CreateImageSections() const {
2532   dchecked_vector<ImageSection> sections(ImageHeader::kSectionCount);
2533 
2534   // Do not round up any sections here that are represented by the bins since it
2535   // will break offsets.
2536 
2537   /*
2538    * Objects section
2539    */
2540   sections[ImageHeader::kSectionObjects] =
2541       ImageSection(0u, image_end_);
2542 
2543   /*
2544    * Field section
2545    */
2546   sections[ImageHeader::kSectionArtFields] =
2547       ImageSection(GetBinSlotOffset(Bin::kArtField), GetBinSlotSize(Bin::kArtField));
2548 
2549   /*
2550    * Method section
2551    */
2552   sections[ImageHeader::kSectionArtMethods] =
2553       ImageSection(GetBinSlotOffset(Bin::kArtMethodClean),
2554                    GetBinSlotSize(Bin::kArtMethodClean) +
2555                    GetBinSlotSize(Bin::kArtMethodDirty));
2556 
2557   /*
2558    * IMT section
2559    */
2560   sections[ImageHeader::kSectionImTables] =
2561       ImageSection(GetBinSlotOffset(Bin::kImTable), GetBinSlotSize(Bin::kImTable));
2562 
2563   /*
2564    * Conflict Tables section
2565    */
2566   sections[ImageHeader::kSectionIMTConflictTables] =
2567       ImageSection(GetBinSlotOffset(Bin::kIMTConflictTable), GetBinSlotSize(Bin::kIMTConflictTable));
2568 
2569   /*
2570    * Runtime Methods section
2571    */
2572   sections[ImageHeader::kSectionRuntimeMethods] =
2573       ImageSection(GetBinSlotOffset(Bin::kRuntimeMethod), GetBinSlotSize(Bin::kRuntimeMethod));
2574 
2575   /*
2576    * Interned Strings section
2577    */
2578 
2579   // Round up to the alignment the string table expects. See HashSet::WriteToMemory.
2580   size_t cur_pos = RoundUp(sections[ImageHeader::kSectionRuntimeMethods].End(), sizeof(uint64_t));
2581 
2582   const ImageSection& interned_strings_section =
2583       sections[ImageHeader::kSectionInternedStrings] =
2584           ImageSection(cur_pos, intern_table_bytes_);
2585 
2586   /*
2587    * Class Table section
2588    */
2589 
2590   // Obtain the new position and round it up to the appropriate alignment.
2591   cur_pos = RoundUp(interned_strings_section.End(), sizeof(uint64_t));
2592 
2593   const ImageSection& class_table_section =
2594       sections[ImageHeader::kSectionClassTable] =
2595           ImageSection(cur_pos, class_table_bytes_);
2596 
2597   /*
2598    * String Field Offsets section
2599    */
2600 
2601   // Round up to the alignment of the offsets we are going to store.
2602   cur_pos = RoundUp(class_table_section.End(), sizeof(uint32_t));
2603 
2604   // The size of string_reference_offsets_ can't be used here because it hasn't
2605   // been filled with AppImageReferenceOffsetInfo objects yet.  The
2606   // num_string_references_ value is calculated separately, before we can
2607   // compute the actual offsets.
2608   const ImageSection& string_reference_offsets =
2609       sections[ImageHeader::kSectionStringReferenceOffsets] =
2610           ImageSection(cur_pos, sizeof(string_reference_offsets_[0]) * num_string_references_);
2611 
2612   /*
2613    * DexCache arrays section
2614    */
2615 
2616   // Round up to the alignment dex caches arrays expects.
2617   cur_pos = RoundUp(sections[ImageHeader::kSectionStringReferenceOffsets].End(), sizeof(uint32_t));
2618   // We don't generate dex cache arrays in an image generated by dex2oat.
2619   sections[ImageHeader::kSectionDexCacheArrays] = ImageSection(cur_pos, 0u);
2620 
2621   /*
2622    * Metadata section.
2623    */
2624 
2625   // Round up to the alignment of the offsets we are going to store.
2626   cur_pos = RoundUp(string_reference_offsets.End(), sizeof(uint32_t));
2627 
2628   const ImageSection& metadata_section =
2629       sections[ImageHeader::kSectionMetadata] =
2630           ImageSection(cur_pos, GetBinSlotSize(Bin::kMetadata));
2631 
2632   // Return the number of bytes described by these sections, and the sections
2633   // themselves.
2634   return make_pair(metadata_section.End(), std::move(sections));
2635 }
2636 
CreateHeader(size_t oat_index,size_t component_count)2637 void ImageWriter::CreateHeader(size_t oat_index, size_t component_count) {
2638   ImageInfo& image_info = GetImageInfo(oat_index);
2639   const uint8_t* oat_file_begin = image_info.oat_file_begin_;
2640   const uint8_t* oat_file_end = oat_file_begin + image_info.oat_loaded_size_;
2641   const uint8_t* oat_data_end = image_info.oat_data_begin_ + image_info.oat_size_;
2642 
2643   uint32_t image_reservation_size = image_info.image_size_;
2644   DCHECK_ALIGNED(image_reservation_size, kPageSize);
2645   uint32_t current_component_count = 1u;
2646   if (compiler_options_.IsAppImage()) {
2647     DCHECK_EQ(oat_index, 0u);
2648     DCHECK_EQ(component_count, current_component_count);
2649   } else {
2650     DCHECK(image_infos_.size() == 1u || image_infos_.size() == component_count)
2651         << image_infos_.size() << " " << component_count;
2652     if (oat_index == 0u) {
2653       const ImageInfo& last_info = image_infos_.back();
2654       const uint8_t* end = last_info.oat_file_begin_ + last_info.oat_loaded_size_;
2655       DCHECK_ALIGNED(image_info.image_begin_, kPageSize);
2656       image_reservation_size =
2657           dchecked_integral_cast<uint32_t>(RoundUp(end - image_info.image_begin_, kPageSize));
2658       current_component_count = component_count;
2659     } else {
2660       image_reservation_size = 0u;
2661       current_component_count = 0u;
2662     }
2663   }
2664 
2665   // Compute boot image checksums for the primary component, leave as 0 otherwise.
2666   uint32_t boot_image_components = 0u;
2667   uint32_t boot_image_checksums = 0u;
2668   if (oat_index == 0u) {
2669     const std::vector<gc::space::ImageSpace*>& image_spaces =
2670         Runtime::Current()->GetHeap()->GetBootImageSpaces();
2671     DCHECK_EQ(image_spaces.empty(), compiler_options_.IsBootImage());
2672     for (size_t i = 0u, size = image_spaces.size(); i != size; ) {
2673       const ImageHeader& header = image_spaces[i]->GetImageHeader();
2674       boot_image_components += header.GetComponentCount();
2675       boot_image_checksums ^= header.GetImageChecksum();
2676       DCHECK_LE(header.GetImageSpaceCount(), size - i);
2677       i += header.GetImageSpaceCount();
2678     }
2679   }
2680 
2681   // Create the image sections.
2682   auto section_info_pair = image_info.CreateImageSections();
2683   const size_t image_end = section_info_pair.first;
2684   dchecked_vector<ImageSection>& sections = section_info_pair.second;
2685 
2686   // Finally bitmap section.
2687   const size_t bitmap_bytes = image_info.image_bitmap_.Size();
2688   auto* bitmap_section = &sections[ImageHeader::kSectionImageBitmap];
2689   *bitmap_section = ImageSection(RoundUp(image_end, kPageSize), RoundUp(bitmap_bytes, kPageSize));
2690   if (VLOG_IS_ON(compiler)) {
2691     LOG(INFO) << "Creating header for " << oat_filenames_[oat_index];
2692     size_t idx = 0;
2693     for (const ImageSection& section : sections) {
2694       LOG(INFO) << static_cast<ImageHeader::ImageSections>(idx) << " " << section;
2695       ++idx;
2696     }
2697     LOG(INFO) << "Methods: clean=" << clean_methods_ << " dirty=" << dirty_methods_;
2698     LOG(INFO) << "Image roots address=" << std::hex << image_info.image_roots_address_ << std::dec;
2699     LOG(INFO) << "Image begin=" << std::hex << reinterpret_cast<uintptr_t>(global_image_begin_)
2700               << " Image offset=" << image_info.image_offset_ << std::dec;
2701     LOG(INFO) << "Oat file begin=" << std::hex << reinterpret_cast<uintptr_t>(oat_file_begin)
2702               << " Oat data begin=" << reinterpret_cast<uintptr_t>(image_info.oat_data_begin_)
2703               << " Oat data end=" << reinterpret_cast<uintptr_t>(oat_data_end)
2704               << " Oat file end=" << reinterpret_cast<uintptr_t>(oat_file_end);
2705   }
2706 
2707   // Create the header, leave 0 for data size since we will fill this in as we are writing the
2708   // image.
2709   new (image_info.image_.Begin()) ImageHeader(
2710       image_reservation_size,
2711       current_component_count,
2712       PointerToLowMemUInt32(image_info.image_begin_),
2713       image_end,
2714       sections.data(),
2715       image_info.image_roots_address_,
2716       image_info.oat_checksum_,
2717       PointerToLowMemUInt32(oat_file_begin),
2718       PointerToLowMemUInt32(image_info.oat_data_begin_),
2719       PointerToLowMemUInt32(oat_data_end),
2720       PointerToLowMemUInt32(oat_file_end),
2721       boot_image_begin_,
2722       boot_image_size_,
2723       boot_image_components,
2724       boot_image_checksums,
2725       static_cast<uint32_t>(target_ptr_size_));
2726 }
2727 
GetImageMethodAddress(ArtMethod * method)2728 ArtMethod* ImageWriter::GetImageMethodAddress(ArtMethod* method) {
2729   NativeObjectRelocation relocation = GetNativeRelocation(method);
2730   const ImageInfo& image_info = GetImageInfo(relocation.oat_index);
2731   CHECK_GE(relocation.offset, image_info.image_end_) << "ArtMethods should be after Objects";
2732   return reinterpret_cast<ArtMethod*>(image_info.image_begin_ + relocation.offset);
2733 }
2734 
GetIntrinsicReferenceAddress(uint32_t intrinsic_data)2735 const void* ImageWriter::GetIntrinsicReferenceAddress(uint32_t intrinsic_data) {
2736   DCHECK(compiler_options_.IsBootImage());
2737   switch (IntrinsicObjects::DecodePatchType(intrinsic_data)) {
2738     case IntrinsicObjects::PatchType::kIntegerValueOfArray: {
2739       const uint8_t* base_address =
2740           reinterpret_cast<const uint8_t*>(GetImageAddress(boot_image_live_objects_));
2741       MemberOffset data_offset =
2742           IntrinsicObjects::GetIntegerValueOfArrayDataOffset(boot_image_live_objects_);
2743       return base_address + data_offset.Uint32Value();
2744     }
2745     case IntrinsicObjects::PatchType::kIntegerValueOfObject: {
2746       uint32_t index = IntrinsicObjects::DecodePatchIndex(intrinsic_data);
2747       ObjPtr<mirror::Object> value =
2748           IntrinsicObjects::GetIntegerValueOfObject(boot_image_live_objects_, index);
2749       return GetImageAddress(value.Ptr());
2750     }
2751   }
2752   LOG(FATAL) << "UNREACHABLE";
2753   UNREACHABLE();
2754 }
2755 
2756 
2757 class ImageWriter::FixupRootVisitor : public RootVisitor {
2758  public:
FixupRootVisitor(ImageWriter * image_writer)2759   explicit FixupRootVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {
2760   }
2761 
VisitRoots(mirror::Object *** roots ATTRIBUTE_UNUSED,size_t count ATTRIBUTE_UNUSED,const RootInfo & info ATTRIBUTE_UNUSED)2762   void VisitRoots(mirror::Object*** roots ATTRIBUTE_UNUSED,
2763                   size_t count ATTRIBUTE_UNUSED,
2764                   const RootInfo& info ATTRIBUTE_UNUSED)
2765       override REQUIRES_SHARED(Locks::mutator_lock_) {
2766     LOG(FATAL) << "Unsupported";
2767   }
2768 
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)2769   void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
2770                   size_t count,
2771                   const RootInfo& info ATTRIBUTE_UNUSED)
2772       override REQUIRES_SHARED(Locks::mutator_lock_) {
2773     for (size_t i = 0; i < count; ++i) {
2774       // Copy the reference. Since we do not have the address for recording the relocation,
2775       // it needs to be recorded explicitly by the user of FixupRootVisitor.
2776       ObjPtr<mirror::Object> old_ptr = roots[i]->AsMirrorPtr();
2777       roots[i]->Assign(image_writer_->GetImageAddress(old_ptr.Ptr()));
2778     }
2779   }
2780 
2781  private:
2782   ImageWriter* const image_writer_;
2783 };
2784 
CopyAndFixupImTable(ImTable * orig,ImTable * copy)2785 void ImageWriter::CopyAndFixupImTable(ImTable* orig, ImTable* copy) {
2786   for (size_t i = 0; i < ImTable::kSize; ++i) {
2787     ArtMethod* method = orig->Get(i, target_ptr_size_);
2788     void** address = reinterpret_cast<void**>(copy->AddressOfElement(i, target_ptr_size_));
2789     CopyAndFixupPointer(address, method);
2790     DCHECK_EQ(copy->Get(i, target_ptr_size_), NativeLocationInImage(method));
2791   }
2792 }
2793 
CopyAndFixupImtConflictTable(ImtConflictTable * orig,ImtConflictTable * copy)2794 void ImageWriter::CopyAndFixupImtConflictTable(ImtConflictTable* orig, ImtConflictTable* copy) {
2795   const size_t count = orig->NumEntries(target_ptr_size_);
2796   for (size_t i = 0; i < count; ++i) {
2797     ArtMethod* interface_method = orig->GetInterfaceMethod(i, target_ptr_size_);
2798     ArtMethod* implementation_method = orig->GetImplementationMethod(i, target_ptr_size_);
2799     CopyAndFixupPointer(copy->AddressOfInterfaceMethod(i, target_ptr_size_), interface_method);
2800     CopyAndFixupPointer(
2801         copy->AddressOfImplementationMethod(i, target_ptr_size_), implementation_method);
2802     DCHECK_EQ(copy->GetInterfaceMethod(i, target_ptr_size_),
2803               NativeLocationInImage(interface_method));
2804     DCHECK_EQ(copy->GetImplementationMethod(i, target_ptr_size_),
2805               NativeLocationInImage(implementation_method));
2806   }
2807 }
2808 
CopyAndFixupNativeData(size_t oat_index)2809 void ImageWriter::CopyAndFixupNativeData(size_t oat_index) {
2810   const ImageInfo& image_info = GetImageInfo(oat_index);
2811   // Copy ArtFields and methods to their locations and update the array for convenience.
2812   for (auto& pair : native_object_relocations_) {
2813     NativeObjectRelocation& relocation = pair.second;
2814     // Only work with fields and methods that are in the current oat file.
2815     if (relocation.oat_index != oat_index) {
2816       continue;
2817     }
2818     auto* dest = image_info.image_.Begin() + relocation.offset;
2819     DCHECK_GE(dest, image_info.image_.Begin() + image_info.image_end_);
2820     DCHECK(!IsInBootImage(pair.first));
2821     switch (relocation.type) {
2822       case NativeObjectRelocationType::kRuntimeMethod:
2823       case NativeObjectRelocationType::kArtMethodClean:
2824       case NativeObjectRelocationType::kArtMethodDirty: {
2825         CopyAndFixupMethod(reinterpret_cast<ArtMethod*>(pair.first),
2826                            reinterpret_cast<ArtMethod*>(dest),
2827                            oat_index);
2828         break;
2829       }
2830       case NativeObjectRelocationType::kArtFieldArray: {
2831         // Copy and fix up the entire field array.
2832         auto* src_array = reinterpret_cast<LengthPrefixedArray<ArtField>*>(pair.first);
2833         auto* dest_array = reinterpret_cast<LengthPrefixedArray<ArtField>*>(dest);
2834         size_t size = src_array->size();
2835         memcpy(dest_array, src_array, LengthPrefixedArray<ArtField>::ComputeSize(size));
2836         for (size_t i = 0; i != size; ++i) {
2837           CopyAndFixupReference(
2838               dest_array->At(i).GetDeclaringClassAddressWithoutBarrier(),
2839               src_array->At(i).GetDeclaringClass<kWithoutReadBarrier>());
2840         }
2841         break;
2842       }
2843       case NativeObjectRelocationType::kArtMethodArrayClean:
2844       case NativeObjectRelocationType::kArtMethodArrayDirty: {
2845         // For method arrays, copy just the header since the elements will
2846         // get copied by their corresponding relocations.
2847         size_t size = ArtMethod::Size(target_ptr_size_);
2848         size_t alignment = ArtMethod::Alignment(target_ptr_size_);
2849         memcpy(dest, pair.first, LengthPrefixedArray<ArtMethod>::ComputeSize(0, size, alignment));
2850         // Clear padding to avoid non-deterministic data in the image.
2851         // Historical note: We also did that to placate Valgrind.
2852         reinterpret_cast<LengthPrefixedArray<ArtMethod>*>(dest)->ClearPadding(size, alignment);
2853         break;
2854       }
2855       case NativeObjectRelocationType::kIMTable: {
2856         ImTable* orig_imt = reinterpret_cast<ImTable*>(pair.first);
2857         ImTable* dest_imt = reinterpret_cast<ImTable*>(dest);
2858         CopyAndFixupImTable(orig_imt, dest_imt);
2859         break;
2860       }
2861       case NativeObjectRelocationType::kIMTConflictTable: {
2862         auto* orig_table = reinterpret_cast<ImtConflictTable*>(pair.first);
2863         CopyAndFixupImtConflictTable(
2864             orig_table,
2865             new(dest)ImtConflictTable(orig_table->NumEntries(target_ptr_size_), target_ptr_size_));
2866         break;
2867       }
2868       case NativeObjectRelocationType::kGcRootPointer: {
2869         auto* orig_pointer = reinterpret_cast<GcRoot<mirror::Object>*>(pair.first);
2870         auto* dest_pointer = reinterpret_cast<GcRoot<mirror::Object>*>(dest);
2871         CopyAndFixupReference(dest_pointer->AddressWithoutBarrier(), orig_pointer->Read());
2872         break;
2873       }
2874     }
2875   }
2876   // Fixup the image method roots.
2877   auto* image_header = reinterpret_cast<ImageHeader*>(image_info.image_.Begin());
2878   for (size_t i = 0; i < ImageHeader::kImageMethodsCount; ++i) {
2879     ArtMethod* method = image_methods_[i];
2880     CHECK(method != nullptr);
2881     CopyAndFixupPointer(
2882         reinterpret_cast<void**>(&image_header->image_methods_[i]), method, PointerSize::k32);
2883   }
2884   FixupRootVisitor root_visitor(this);
2885 
2886   // Write the intern table into the image.
2887   if (image_info.intern_table_bytes_ > 0) {
2888     const ImageSection& intern_table_section = image_header->GetInternedStringsSection();
2889     DCHECK(image_info.intern_table_.has_value());
2890     const InternTable::UnorderedSet& intern_table = *image_info.intern_table_;
2891     uint8_t* const intern_table_memory_ptr =
2892         image_info.image_.Begin() + intern_table_section.Offset();
2893     const size_t intern_table_bytes = intern_table.WriteToMemory(intern_table_memory_ptr);
2894     CHECK_EQ(intern_table_bytes, image_info.intern_table_bytes_);
2895     // Fixup the pointers in the newly written intern table to contain image addresses.
2896     InternTable temp_intern_table;
2897     // Note that we require that ReadFromMemory does not make an internal copy of the elements so
2898     // that the VisitRoots() will update the memory directly rather than the copies.
2899     // This also relies on visit roots not doing any verification which could fail after we update
2900     // the roots to be the image addresses.
2901     temp_intern_table.AddTableFromMemory(intern_table_memory_ptr,
2902                                          VoidFunctor(),
2903                                          /*is_boot_image=*/ false);
2904     CHECK_EQ(temp_intern_table.Size(), intern_table.size());
2905     temp_intern_table.VisitRoots(&root_visitor, kVisitRootFlagAllRoots);
2906 
2907     if (kIsDebugBuild) {
2908       MutexLock lock(Thread::Current(), *Locks::intern_table_lock_);
2909       CHECK(!temp_intern_table.strong_interns_.tables_.empty());
2910       // The UnorderedSet was inserted at the beginning.
2911       CHECK_EQ(temp_intern_table.strong_interns_.tables_[0].Size(), intern_table.size());
2912     }
2913   }
2914 
2915   // Write the class table(s) into the image. class_table_bytes_ may be 0 if there are multiple
2916   // class loaders. Writing multiple class tables into the image is currently unsupported.
2917   if (image_info.class_table_bytes_ > 0u) {
2918     const ImageSection& class_table_section = image_header->GetClassTableSection();
2919     uint8_t* const class_table_memory_ptr =
2920         image_info.image_.Begin() + class_table_section.Offset();
2921 
2922     DCHECK(image_info.class_table_.has_value());
2923     const ClassTable::ClassSet& table = *image_info.class_table_;
2924     CHECK_EQ(table.size(), image_info.class_table_size_);
2925     const size_t class_table_bytes = table.WriteToMemory(class_table_memory_ptr);
2926     CHECK_EQ(class_table_bytes, image_info.class_table_bytes_);
2927 
2928     // Fixup the pointers in the newly written class table to contain image addresses. See
2929     // above comment for intern tables.
2930     ClassTable temp_class_table;
2931     temp_class_table.ReadFromMemory(class_table_memory_ptr);
2932     CHECK_EQ(temp_class_table.NumReferencedZygoteClasses(), table.size());
2933     UnbufferedRootVisitor visitor(&root_visitor, RootInfo(kRootUnknown));
2934     temp_class_table.VisitRoots(visitor);
2935 
2936     if (kIsDebugBuild) {
2937       ReaderMutexLock lock(Thread::Current(), temp_class_table.lock_);
2938       CHECK(!temp_class_table.classes_.empty());
2939       // The ClassSet was inserted at the beginning.
2940       CHECK_EQ(temp_class_table.classes_[0].size(), table.size());
2941     }
2942   }
2943 }
2944 
CopyAndFixupMethodPointerArray(mirror::PointerArray * arr)2945 void ImageWriter::CopyAndFixupMethodPointerArray(mirror::PointerArray* arr) {
2946   // Pointer arrays are processed early and each is visited just once.
2947   // Therefore we know that this array has not been copied yet.
2948   mirror::Object* dst = CopyObject</*kCheckIfDone=*/ false>(arr);
2949   DCHECK(dst != nullptr);
2950   DCHECK(arr->IsIntArray() || arr->IsLongArray())
2951       << arr->GetClass<kVerifyNone, kWithoutReadBarrier>()->PrettyClass() << " " << arr;
2952   // Fixup int and long pointers for the ArtMethod or ArtField arrays.
2953   const size_t num_elements = arr->GetLength();
2954   CopyAndFixupReference(dst->GetFieldObjectReferenceAddr<kVerifyNone>(Class::ClassOffset()),
2955                         arr->GetClass<kVerifyNone, kWithoutReadBarrier>());
2956   auto* dest_array = down_cast<mirror::PointerArray*>(dst);
2957   for (size_t i = 0, count = num_elements; i < count; ++i) {
2958     void* elem = arr->GetElementPtrSize<void*>(i, target_ptr_size_);
2959     if (kIsDebugBuild && elem != nullptr && !IsInBootImage(elem)) {
2960       auto it = native_object_relocations_.find(elem);
2961       if (UNLIKELY(it == native_object_relocations_.end())) {
2962         auto* method = reinterpret_cast<ArtMethod*>(elem);
2963         LOG(FATAL) << "No relocation entry for ArtMethod " << method->PrettyMethod() << " @ "
2964                    << method << " idx=" << i << "/" << num_elements << " with declaring class "
2965                    << Class::PrettyClass(method->GetDeclaringClass<kWithoutReadBarrier>());
2966         UNREACHABLE();
2967       }
2968     }
2969     CopyAndFixupPointer(dest_array->ElementAddress(i, target_ptr_size_), elem);
2970   }
2971 }
2972 
CopyAndFixupObject(Object * obj)2973 void ImageWriter::CopyAndFixupObject(Object* obj) {
2974   if (!IsImageBinSlotAssigned(obj)) {
2975     return;
2976   }
2977   // Some objects (such as method pointer arrays) may have been processed before.
2978   mirror::Object* dst = CopyObject</*kCheckIfDone=*/ true>(obj);
2979   if (dst != nullptr) {
2980     FixupObject(obj, dst);
2981   }
2982 }
2983 
2984 template <bool kCheckIfDone>
CopyObject(Object * obj)2985 inline Object* ImageWriter::CopyObject(Object* obj) {
2986   size_t oat_index = GetOatIndex(obj);
2987   size_t offset = GetImageOffset(obj, oat_index);
2988   ImageInfo& image_info = GetImageInfo(oat_index);
2989   auto* dst = reinterpret_cast<Object*>(image_info.image_.Begin() + offset);
2990   DCHECK_LT(offset, image_info.image_end_);
2991   const auto* src = reinterpret_cast<const uint8_t*>(obj);
2992 
2993   bool done = image_info.image_bitmap_.Set(dst);  // Mark the obj as live.
2994   // Check if the object was already copied, unless the caller indicated that it was not.
2995   if (kCheckIfDone && done) {
2996     return nullptr;
2997   }
2998   DCHECK(!done);
2999 
3000   const size_t n = obj->SizeOf();
3001 
3002   if (kIsDebugBuild && region_size_ != 0u) {
3003     const size_t offset_after_header = offset - sizeof(ImageHeader);
3004     const size_t next_region = RoundUp(offset_after_header, region_size_);
3005     if (offset_after_header != next_region) {
3006       // If the object is not on a region bondary, it must not be cross region.
3007       CHECK_LT(offset_after_header, next_region)
3008           << "offset_after_header=" << offset_after_header << " size=" << n;
3009       CHECK_LE(offset_after_header + n, next_region)
3010           << "offset_after_header=" << offset_after_header << " size=" << n;
3011     }
3012   }
3013   DCHECK_LE(offset + n, image_info.image_.Size());
3014   memcpy(dst, src, n);
3015 
3016   // Write in a hash code of objects which have inflated monitors or a hash code in their monitor
3017   // word.
3018   const auto it = saved_hashcode_map_.find(obj);
3019   dst->SetLockWord(it != saved_hashcode_map_.end() ?
3020       LockWord::FromHashCode(it->second, 0u) : LockWord::Default(), false);
3021   if (kUseBakerReadBarrier && gc::collector::ConcurrentCopying::kGrayDirtyImmuneObjects) {
3022     // Treat all of the objects in the image as marked to avoid unnecessary dirty pages. This is
3023     // safe since we mark all of the objects that may reference non immune objects as gray.
3024     CHECK(dst->AtomicSetMarkBit(0, 1));
3025   }
3026   return dst;
3027 }
3028 
3029 // Rewrite all the references in the copied object to point to their image address equivalent
3030 class ImageWriter::FixupVisitor {
3031  public:
FixupVisitor(ImageWriter * image_writer,Object * copy)3032   FixupVisitor(ImageWriter* image_writer, Object* copy)
3033       : image_writer_(image_writer), copy_(copy) {
3034   }
3035 
3036   // We do not visit native roots. These are handled with other logic.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const3037   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
3038       const {
3039     LOG(FATAL) << "UNREACHABLE";
3040   }
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const3041   void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {
3042     LOG(FATAL) << "UNREACHABLE";
3043   }
3044 
operator ()(ObjPtr<Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const3045   void operator()(ObjPtr<Object> obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
3046       REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
3047     ObjPtr<Object> ref = obj->GetFieldObject<Object, kVerifyNone, kWithoutReadBarrier>(offset);
3048     // Copy the reference and record the fixup if necessary.
3049     image_writer_->CopyAndFixupReference(
3050         copy_->GetFieldObjectReferenceAddr<kVerifyNone>(offset), ref);
3051   }
3052 
3053   // java.lang.ref.Reference visitor.
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const3054   void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
3055                   ObjPtr<mirror::Reference> ref) const
3056       REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
3057     operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
3058   }
3059 
3060  protected:
3061   ImageWriter* const image_writer_;
3062   mirror::Object* const copy_;
3063 };
3064 
CopyAndFixupObjects()3065 void ImageWriter::CopyAndFixupObjects() {
3066   // Copy and fix up pointer arrays first as they require special treatment.
3067   auto method_pointer_array_visitor =
3068       [&](ObjPtr<mirror::PointerArray> pointer_array) REQUIRES_SHARED(Locks::mutator_lock_) {
3069         CopyAndFixupMethodPointerArray(pointer_array.Ptr());
3070       };
3071   for (ImageInfo& image_info : image_infos_) {
3072     if (image_info.class_table_size_ != 0u) {
3073       DCHECK(image_info.class_table_.has_value());
3074       for (const ClassTable::TableSlot& slot : *image_info.class_table_) {
3075         ObjPtr<mirror::Class> klass = slot.Read<kWithoutReadBarrier>();
3076         DCHECK(klass != nullptr);
3077         // Do not process boot image classes present in app image class table.
3078         DCHECK(!IsInBootImage(klass.Ptr()) || compiler_options_.IsAppImage());
3079         if (!IsInBootImage(klass.Ptr())) {
3080           // Do not fix up method pointer arrays inherited from superclass. If they are part
3081           // of the current image, they were or shall be copied when visiting the superclass.
3082           VisitNewMethodPointerArrays(klass, method_pointer_array_visitor);
3083         }
3084       }
3085     }
3086   }
3087 
3088   auto visitor = [&](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
3089     DCHECK(obj != nullptr);
3090     CopyAndFixupObject(obj);
3091   };
3092   Runtime::Current()->GetHeap()->VisitObjects(visitor);
3093 
3094   // Fill the padding objects since they are required for in order traversal of the image space.
3095   for (ImageInfo& image_info : image_infos_) {
3096     for (const size_t start_offset : image_info.padding_offsets_) {
3097       const size_t offset_after_header = start_offset - sizeof(ImageHeader);
3098       size_t remaining_space =
3099           RoundUp(offset_after_header + 1u, region_size_) - offset_after_header;
3100       DCHECK_NE(remaining_space, 0u);
3101       DCHECK_LT(remaining_space, region_size_);
3102       Object* dst = reinterpret_cast<Object*>(image_info.image_.Begin() + start_offset);
3103       ObjPtr<Class> object_class = GetClassRoot<mirror::Object, kWithoutReadBarrier>();
3104       DCHECK_ALIGNED_PARAM(remaining_space, object_class->GetObjectSize());
3105       Object* end = dst + remaining_space / object_class->GetObjectSize();
3106       Class* image_object_class = GetImageAddress(object_class.Ptr());
3107       while (dst != end) {
3108         dst->SetClass<kVerifyNone>(image_object_class);
3109         dst->SetLockWord<kVerifyNone>(LockWord::Default(), /*as_volatile=*/ false);
3110         image_info.image_bitmap_.Set(dst);  // Mark the obj as live.
3111         ++dst;
3112       }
3113     }
3114   }
3115 
3116   // We no longer need the hashcode map, values have already been copied to target objects.
3117   saved_hashcode_map_.clear();
3118 }
3119 
3120 class ImageWriter::FixupClassVisitor final : public FixupVisitor {
3121  public:
FixupClassVisitor(ImageWriter * image_writer,Object * copy)3122   FixupClassVisitor(ImageWriter* image_writer, Object* copy)
3123       : FixupVisitor(image_writer, copy) {}
3124 
operator ()(ObjPtr<Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const3125   void operator()(ObjPtr<Object> obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
3126       REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
3127     DCHECK(obj->IsClass());
3128     FixupVisitor::operator()(obj, offset, /*is_static*/false);
3129   }
3130 
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const3131   void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
3132                   ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const
3133       REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
3134     LOG(FATAL) << "Reference not expected here.";
3135   }
3136 };
3137 
GetNativeRelocation(void * obj)3138 ImageWriter::NativeObjectRelocation ImageWriter::GetNativeRelocation(void* obj) {
3139   DCHECK(obj != nullptr);
3140   DCHECK(!IsInBootImage(obj));
3141   auto it = native_object_relocations_.find(obj);
3142   CHECK(it != native_object_relocations_.end()) << obj << " spaces "
3143       << Runtime::Current()->GetHeap()->DumpSpaces();
3144   return it->second;
3145 }
3146 
3147 template <typename T>
PrettyPrint(T * ptr)3148 std::string PrettyPrint(T* ptr) REQUIRES_SHARED(Locks::mutator_lock_) {
3149   std::ostringstream oss;
3150   oss << ptr;
3151   return oss.str();
3152 }
3153 
3154 template <>
PrettyPrint(ArtMethod * method)3155 std::string PrettyPrint(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) {
3156   return ArtMethod::PrettyMethod(method);
3157 }
3158 
3159 template <typename T>
NativeLocationInImage(T * obj)3160 T* ImageWriter::NativeLocationInImage(T* obj) {
3161   if (obj == nullptr || IsInBootImage(obj)) {
3162     return obj;
3163   } else {
3164     NativeObjectRelocation relocation = GetNativeRelocation(obj);
3165     const ImageInfo& image_info = GetImageInfo(relocation.oat_index);
3166     return reinterpret_cast<T*>(image_info.image_begin_ + relocation.offset);
3167   }
3168 }
3169 
NativeLocationInImage(ArtField * src_field)3170 ArtField* ImageWriter::NativeLocationInImage(ArtField* src_field) {
3171   // Fields are not individually stored in the native relocation map. Use the field array.
3172   ObjPtr<mirror::Class> declaring_class = src_field->GetDeclaringClass<kWithoutReadBarrier>();
3173   LengthPrefixedArray<ArtField>* src_fields =
3174       src_field->IsStatic() ? declaring_class->GetSFieldsPtr() : declaring_class->GetIFieldsPtr();
3175   DCHECK(src_fields != nullptr);
3176   LengthPrefixedArray<ArtField>* dst_fields = NativeLocationInImage(src_fields);
3177   DCHECK(dst_fields != nullptr);
3178   size_t field_offset =
3179       reinterpret_cast<uint8_t*>(src_field) - reinterpret_cast<uint8_t*>(src_fields);
3180   return reinterpret_cast<ArtField*>(reinterpret_cast<uint8_t*>(dst_fields) + field_offset);
3181 }
3182 
3183 class ImageWriter::NativeLocationVisitor {
3184  public:
NativeLocationVisitor(ImageWriter * image_writer)3185   explicit NativeLocationVisitor(ImageWriter* image_writer)
3186       : image_writer_(image_writer) {}
3187 
3188   template <typename T>
operator ()(T * ptr,void ** dest_addr) const3189   T* operator()(T* ptr, void** dest_addr) const REQUIRES_SHARED(Locks::mutator_lock_) {
3190     if (ptr != nullptr) {
3191       image_writer_->CopyAndFixupPointer(dest_addr, ptr);
3192     }
3193     // TODO: The caller shall overwrite the value stored by CopyAndFixupPointer()
3194     // with the value we return here. We should try to avoid the duplicate work.
3195     return image_writer_->NativeLocationInImage(ptr);
3196   }
3197 
3198  private:
3199   ImageWriter* const image_writer_;
3200 };
3201 
FixupClass(mirror::Class * orig,mirror::Class * copy)3202 void ImageWriter::FixupClass(mirror::Class* orig, mirror::Class* copy) {
3203   orig->FixupNativePointers(copy, target_ptr_size_, NativeLocationVisitor(this));
3204   FixupClassVisitor visitor(this, copy);
3205   ObjPtr<mirror::Object>(orig)->VisitReferences<
3206       /*kVisitNativeRoots=*/ false, kVerifyNone, kWithoutReadBarrier>(visitor, visitor);
3207 
3208   if (kBitstringSubtypeCheckEnabled && !compiler_options_.IsBootImage()) {
3209     // When we call SubtypeCheck::EnsureInitialize, it Assigns new bitstring
3210     // values to the parent of that class.
3211     //
3212     // Every time this happens, the parent class has to mutate to increment
3213     // the "Next" value.
3214     //
3215     // If any of these parents are in the boot image, the changes [in the parents]
3216     // would be lost when the app image is reloaded.
3217     //
3218     // To prevent newly loaded classes (not in the app image) from being reassigned
3219     // the same bitstring value as an existing app image class, uninitialize
3220     // all the classes in the app image.
3221     //
3222     // On startup, the class linker will then re-initialize all the app
3223     // image bitstrings. See also ClassLinker::AddImageSpace.
3224     //
3225     // FIXME: Deal with boot image extensions.
3226     MutexLock subtype_check_lock(Thread::Current(), *Locks::subtype_check_lock_);
3227     // Lock every time to prevent a dcheck failure when we suspend with the lock held.
3228     SubtypeCheck<mirror::Class*>::ForceUninitialize(copy);
3229   }
3230 
3231   // Remove the clinitThreadId. This is required for image determinism.
3232   copy->SetClinitThreadId(static_cast<pid_t>(0));
3233   // We never emit kRetryVerificationAtRuntime, instead we mark the class as
3234   // resolved and the class will therefore be re-verified at runtime.
3235   if (orig->ShouldVerifyAtRuntime()) {
3236     copy->SetStatusInternal(ClassStatus::kResolved);
3237   }
3238 }
3239 
FixupObject(Object * orig,Object * copy)3240 void ImageWriter::FixupObject(Object* orig, Object* copy) {
3241   DCHECK(orig != nullptr);
3242   DCHECK(copy != nullptr);
3243   if (kUseBakerReadBarrier) {
3244     orig->AssertReadBarrierState();
3245   }
3246   ObjPtr<mirror::Class> klass = orig->GetClass<kVerifyNone, kWithoutReadBarrier>();
3247   if (klass->IsClassClass()) {
3248     FixupClass(orig->AsClass<kVerifyNone>().Ptr(), down_cast<mirror::Class*>(copy));
3249   } else {
3250     ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots =
3251         Runtime::Current()->GetClassLinker()->GetClassRoots<kWithoutReadBarrier>();
3252     if (klass == GetClassRoot<mirror::String, kWithoutReadBarrier>(class_roots)) {
3253       // Make sure all image strings have the hash code calculated, even if they are not interned.
3254       down_cast<mirror::String*>(copy)->GetHashCode();
3255     } else if (klass == GetClassRoot<mirror::Method, kWithoutReadBarrier>(class_roots) ||
3256         klass == GetClassRoot<mirror::Constructor, kWithoutReadBarrier>(class_roots)) {
3257       // Need to update the ArtMethod.
3258       auto* dest = down_cast<mirror::Executable*>(copy);
3259       auto* src = down_cast<mirror::Executable*>(orig);
3260       ArtMethod* src_method = src->GetArtMethod();
3261       CopyAndFixupPointer(dest, mirror::Executable::ArtMethodOffset(), src_method);
3262     } else if (klass == GetClassRoot<mirror::FieldVarHandle, kWithoutReadBarrier>(class_roots) ||
3263          klass == GetClassRoot<mirror::StaticFieldVarHandle, kWithoutReadBarrier>(class_roots)) {
3264       // Need to update the ArtField.
3265       auto* dest = down_cast<mirror::FieldVarHandle*>(copy);
3266       auto* src = down_cast<mirror::FieldVarHandle*>(orig);
3267       ArtField* src_field = src->GetArtField();
3268       CopyAndFixupPointer(dest, mirror::FieldVarHandle::ArtFieldOffset(), src_field);
3269     } else if (klass == GetClassRoot<mirror::DexCache, kWithoutReadBarrier>(class_roots)) {
3270       down_cast<mirror::DexCache*>(copy)->SetDexFile(nullptr);
3271       down_cast<mirror::DexCache*>(copy)->ResetNativeArrays();
3272     } else if (klass->IsClassLoaderClass()) {
3273       mirror::ClassLoader* copy_loader = down_cast<mirror::ClassLoader*>(copy);
3274       // If src is a ClassLoader, set the class table to null so that it gets recreated by the
3275       // ClassLinker.
3276       copy_loader->SetClassTable(nullptr);
3277       // Also set allocator to null to be safe. The allocator is created when we create the class
3278       // table. We also never expect to unload things in the image since they are held live as
3279       // roots.
3280       copy_loader->SetAllocator(nullptr);
3281     }
3282     FixupVisitor visitor(this, copy);
3283     orig->VisitReferences</*kVisitNativeRoots=*/ false, kVerifyNone, kWithoutReadBarrier>(
3284         visitor, visitor);
3285   }
3286 }
3287 
GetOatAddress(StubType type) const3288 const uint8_t* ImageWriter::GetOatAddress(StubType type) const {
3289   DCHECK_LE(type, StubType::kLast);
3290   // If we are compiling a boot image extension or app image,
3291   // we need to use the stubs of the primary boot image.
3292   if (!compiler_options_.IsBootImage()) {
3293     // Use the current image pointers.
3294     const std::vector<gc::space::ImageSpace*>& image_spaces =
3295         Runtime::Current()->GetHeap()->GetBootImageSpaces();
3296     DCHECK(!image_spaces.empty());
3297     const OatFile* oat_file = image_spaces[0]->GetOatFile();
3298     CHECK(oat_file != nullptr);
3299     const OatHeader& header = oat_file->GetOatHeader();
3300     return header.GetOatAddress(type);
3301   }
3302   const ImageInfo& primary_image_info = GetImageInfo(0);
3303   return GetOatAddressForOffset(primary_image_info.GetStubOffset(type), primary_image_info);
3304 }
3305 
GetQuickCode(ArtMethod * method,const ImageInfo & image_info)3306 const uint8_t* ImageWriter::GetQuickCode(ArtMethod* method, const ImageInfo& image_info) {
3307   DCHECK(!method->IsResolutionMethod()) << method->PrettyMethod();
3308   DCHECK_NE(method, Runtime::Current()->GetImtConflictMethod()) << method->PrettyMethod();
3309   DCHECK(!method->IsImtUnimplementedMethod()) << method->PrettyMethod();
3310   DCHECK(method->IsInvokable()) << method->PrettyMethod();
3311   DCHECK(!IsInBootImage(method)) << method->PrettyMethod();
3312 
3313   // Use original code if it exists. Otherwise, set the code pointer to the resolution
3314   // trampoline.
3315 
3316   // Quick entrypoint:
3317   const void* quick_oat_entry_point =
3318       method->GetEntryPointFromQuickCompiledCodePtrSize(target_ptr_size_);
3319   const uint8_t* quick_code;
3320 
3321   if (UNLIKELY(IsInBootImage(method->GetDeclaringClass<kWithoutReadBarrier>().Ptr()))) {
3322     DCHECK(method->IsCopied());
3323     // If the code is not in the oat file corresponding to this image (e.g. default methods)
3324     quick_code = reinterpret_cast<const uint8_t*>(quick_oat_entry_point);
3325   } else {
3326     uint32_t quick_oat_code_offset = PointerToLowMemUInt32(quick_oat_entry_point);
3327     quick_code = GetOatAddressForOffset(quick_oat_code_offset, image_info);
3328   }
3329 
3330   bool still_needs_clinit_check = method->StillNeedsClinitCheck<kWithoutReadBarrier>();
3331 
3332   if (quick_code == nullptr) {
3333     // If we don't have code, use generic jni / interpreter.
3334     if (method->IsNative()) {
3335       // The generic JNI trampolines performs class initialization check if needed.
3336       quick_code = GetOatAddress(StubType::kQuickGenericJNITrampoline);
3337     } else if (CanMethodUseNterp(method, compiler_options_.GetInstructionSet())) {
3338       // The nterp trampoline doesn't do initialization checks, so install the
3339       // resolution stub if needed.
3340       if (still_needs_clinit_check) {
3341         quick_code = GetOatAddress(StubType::kQuickResolutionTrampoline);
3342       } else {
3343         quick_code = GetOatAddress(StubType::kNterpTrampoline);
3344       }
3345     } else {
3346       // The interpreter brige performs class initialization check if needed.
3347       quick_code = GetOatAddress(StubType::kQuickToInterpreterBridge);
3348     }
3349   } else if (still_needs_clinit_check && !compiler_options_.ShouldCompileWithClinitCheck(method)) {
3350     // If we do have code but the method needs a class initialization check before calling
3351     // that code, install the resolution stub that will perform the check.
3352     quick_code = GetOatAddress(StubType::kQuickResolutionTrampoline);
3353   }
3354   return quick_code;
3355 }
3356 
CopyAndFixupMethod(ArtMethod * orig,ArtMethod * copy,size_t oat_index)3357 void ImageWriter::CopyAndFixupMethod(ArtMethod* orig,
3358                                      ArtMethod* copy,
3359                                      size_t oat_index) {
3360   if (orig->IsAbstract()) {
3361     // Ignore the single-implementation info for abstract method.
3362     // Do this on orig instead of copy, otherwise there is a crash due to methods
3363     // are copied before classes.
3364     // TODO: handle fixup of single-implementation method for abstract method.
3365     orig->SetHasSingleImplementation(false);
3366     orig->SetSingleImplementation(
3367         nullptr, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
3368   }
3369 
3370   if (!orig->IsRuntimeMethod() &&
3371       (compiler_options_.IsBootImage() || compiler_options_.IsBootImageExtension())) {
3372     orig->SetMemorySharedMethod();
3373   }
3374 
3375   memcpy(copy, orig, ArtMethod::Size(target_ptr_size_));
3376 
3377   CopyAndFixupReference(copy->GetDeclaringClassAddressWithoutBarrier(),
3378                         orig->GetDeclaringClassUnchecked<kWithoutReadBarrier>());
3379 
3380   // OatWriter replaces the code_ with an offset value. Here we re-adjust to a pointer relative to
3381   // oat_begin_
3382 
3383   // The resolution method has a special trampoline to call.
3384   Runtime* runtime = Runtime::Current();
3385   const void* quick_code;
3386   if (orig->IsRuntimeMethod()) {
3387     ImtConflictTable* orig_table = orig->GetImtConflictTable(target_ptr_size_);
3388     if (orig_table != nullptr) {
3389       // Special IMT conflict method, normal IMT conflict method or unimplemented IMT method.
3390       quick_code = GetOatAddress(StubType::kQuickIMTConflictTrampoline);
3391       CopyAndFixupPointer(copy, ArtMethod::DataOffset(target_ptr_size_), orig_table);
3392     } else if (UNLIKELY(orig == runtime->GetResolutionMethod())) {
3393       quick_code = GetOatAddress(StubType::kQuickResolutionTrampoline);
3394       // Set JNI entrypoint for resolving @CriticalNative methods called from compiled code .
3395       const void* jni_code = GetOatAddress(StubType::kJNIDlsymLookupCriticalTrampoline);
3396       copy->SetEntryPointFromJniPtrSize(jni_code, target_ptr_size_);
3397     } else {
3398       bool found_one = false;
3399       for (size_t i = 0; i < static_cast<size_t>(CalleeSaveType::kLastCalleeSaveType); ++i) {
3400         auto idx = static_cast<CalleeSaveType>(i);
3401         if (runtime->HasCalleeSaveMethod(idx) && runtime->GetCalleeSaveMethod(idx) == orig) {
3402           found_one = true;
3403           break;
3404         }
3405       }
3406       CHECK(found_one) << "Expected to find callee save method but got " << orig->PrettyMethod();
3407       CHECK(copy->IsRuntimeMethod());
3408       CHECK(copy->GetEntryPointFromQuickCompiledCode() == nullptr);
3409       quick_code = nullptr;
3410     }
3411   } else {
3412     // We assume all methods have code. If they don't currently then we set them to the use the
3413     // resolution trampoline. Abstract methods never have code and so we need to make sure their
3414     // use results in an AbstractMethodError. We use the interpreter to achieve this.
3415     if (UNLIKELY(!orig->IsInvokable())) {
3416       quick_code = GetOatAddress(StubType::kQuickToInterpreterBridge);
3417     } else {
3418       const ImageInfo& image_info = image_infos_[oat_index];
3419       quick_code = GetQuickCode(orig, image_info);
3420 
3421       // JNI entrypoint:
3422       if (orig->IsNative()) {
3423         // The native method's pointer is set to a stub to lookup via dlsym.
3424         // Note this is not the code_ pointer, that is handled above.
3425         StubType stub_type = orig->IsCriticalNative() ? StubType::kJNIDlsymLookupCriticalTrampoline
3426                                                       : StubType::kJNIDlsymLookupTrampoline;
3427         copy->SetEntryPointFromJniPtrSize(GetOatAddress(stub_type), target_ptr_size_);
3428       } else if (!orig->HasCodeItem()) {
3429         CHECK(copy->GetDataPtrSize(target_ptr_size_) == nullptr);
3430       } else {
3431         CHECK(copy->GetDataPtrSize(target_ptr_size_) != nullptr);
3432       }
3433     }
3434   }
3435   if (quick_code != nullptr) {
3436     copy->SetEntryPointFromQuickCompiledCodePtrSize(quick_code, target_ptr_size_);
3437   }
3438 }
3439 
GetBinSizeSum(Bin up_to) const3440 size_t ImageWriter::ImageInfo::GetBinSizeSum(Bin up_to) const {
3441   DCHECK_LE(static_cast<size_t>(up_to), kNumberOfBins);
3442   return std::accumulate(&bin_slot_sizes_[0],
3443                          &bin_slot_sizes_[0] + static_cast<size_t>(up_to),
3444                          /*init*/ static_cast<size_t>(0));
3445 }
3446 
BinSlot(uint32_t lockword)3447 ImageWriter::BinSlot::BinSlot(uint32_t lockword) : lockword_(lockword) {
3448   // These values may need to get updated if more bins are added to the enum Bin
3449   static_assert(kBinBits == 3, "wrong number of bin bits");
3450   static_assert(kBinShift == 27, "wrong number of shift");
3451   static_assert(sizeof(BinSlot) == sizeof(LockWord), "BinSlot/LockWord must have equal sizes");
3452 
3453   DCHECK_LT(GetBin(), Bin::kMirrorCount);
3454   DCHECK_ALIGNED(GetOffset(), kObjectAlignment);
3455 }
3456 
BinSlot(Bin bin,uint32_t index)3457 ImageWriter::BinSlot::BinSlot(Bin bin, uint32_t index)
3458     : BinSlot(index | (static_cast<uint32_t>(bin) << kBinShift)) {
3459   DCHECK_EQ(index, GetOffset());
3460 }
3461 
GetBin() const3462 ImageWriter::Bin ImageWriter::BinSlot::GetBin() const {
3463   return static_cast<Bin>((lockword_ & kBinMask) >> kBinShift);
3464 }
3465 
GetOffset() const3466 uint32_t ImageWriter::BinSlot::GetOffset() const {
3467   return lockword_ & ~kBinMask;
3468 }
3469 
BinTypeForNativeRelocationType(NativeObjectRelocationType type)3470 ImageWriter::Bin ImageWriter::BinTypeForNativeRelocationType(NativeObjectRelocationType type) {
3471   switch (type) {
3472     case NativeObjectRelocationType::kArtFieldArray:
3473       return Bin::kArtField;
3474     case NativeObjectRelocationType::kArtMethodClean:
3475     case NativeObjectRelocationType::kArtMethodArrayClean:
3476       return Bin::kArtMethodClean;
3477     case NativeObjectRelocationType::kArtMethodDirty:
3478     case NativeObjectRelocationType::kArtMethodArrayDirty:
3479       return Bin::kArtMethodDirty;
3480     case NativeObjectRelocationType::kRuntimeMethod:
3481       return Bin::kRuntimeMethod;
3482     case NativeObjectRelocationType::kIMTable:
3483       return Bin::kImTable;
3484     case NativeObjectRelocationType::kIMTConflictTable:
3485       return Bin::kIMTConflictTable;
3486     case NativeObjectRelocationType::kGcRootPointer:
3487       return Bin::kMetadata;
3488   }
3489   UNREACHABLE();
3490 }
3491 
GetOatIndex(mirror::Object * obj) const3492 size_t ImageWriter::GetOatIndex(mirror::Object* obj) const {
3493   if (!IsMultiImage()) {
3494     DCHECK(oat_index_map_.empty());
3495     return GetDefaultOatIndex();
3496   }
3497   auto it = oat_index_map_.find(obj);
3498   DCHECK(it != oat_index_map_.end()) << obj;
3499   return it->second;
3500 }
3501 
GetOatIndexForDexFile(const DexFile * dex_file) const3502 size_t ImageWriter::GetOatIndexForDexFile(const DexFile* dex_file) const {
3503   if (!IsMultiImage()) {
3504     return GetDefaultOatIndex();
3505   }
3506   auto it = dex_file_oat_index_map_.find(dex_file);
3507   DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
3508   return it->second;
3509 }
3510 
GetOatIndexForClass(ObjPtr<mirror::Class> klass) const3511 size_t ImageWriter::GetOatIndexForClass(ObjPtr<mirror::Class> klass) const {
3512   while (klass->IsArrayClass()) {
3513     klass = klass->GetComponentType<kVerifyNone, kWithoutReadBarrier>();
3514   }
3515   if (UNLIKELY(klass->IsPrimitive())) {
3516     DCHECK((klass->GetDexCache<kVerifyNone, kWithoutReadBarrier>()) == nullptr);
3517     return GetDefaultOatIndex();
3518   } else {
3519     DCHECK((klass->GetDexCache<kVerifyNone, kWithoutReadBarrier>()) != nullptr);
3520     return GetOatIndexForDexFile(&klass->GetDexFile());
3521   }
3522 }
3523 
UpdateOatFileLayout(size_t oat_index,size_t oat_loaded_size,size_t oat_data_offset,size_t oat_data_size)3524 void ImageWriter::UpdateOatFileLayout(size_t oat_index,
3525                                       size_t oat_loaded_size,
3526                                       size_t oat_data_offset,
3527                                       size_t oat_data_size) {
3528   DCHECK_GE(oat_loaded_size, oat_data_offset);
3529   DCHECK_GE(oat_loaded_size - oat_data_offset, oat_data_size);
3530 
3531   const uint8_t* images_end = image_infos_.back().image_begin_ + image_infos_.back().image_size_;
3532   DCHECK(images_end != nullptr);  // Image space must be ready.
3533   for (const ImageInfo& info : image_infos_) {
3534     DCHECK_LE(info.image_begin_ + info.image_size_, images_end);
3535   }
3536 
3537   ImageInfo& cur_image_info = GetImageInfo(oat_index);
3538   cur_image_info.oat_file_begin_ = images_end + cur_image_info.oat_offset_;
3539   cur_image_info.oat_loaded_size_ = oat_loaded_size;
3540   cur_image_info.oat_data_begin_ = cur_image_info.oat_file_begin_ + oat_data_offset;
3541   cur_image_info.oat_size_ = oat_data_size;
3542 
3543   if (compiler_options_.IsAppImage()) {
3544     CHECK_EQ(oat_filenames_.size(), 1u) << "App image should have no next image.";
3545     return;
3546   }
3547 
3548   // Update the oat_offset of the next image info.
3549   if (oat_index + 1u != oat_filenames_.size()) {
3550     // There is a following one.
3551     ImageInfo& next_image_info = GetImageInfo(oat_index + 1u);
3552     next_image_info.oat_offset_ = cur_image_info.oat_offset_ + oat_loaded_size;
3553   }
3554 }
3555 
UpdateOatFileHeader(size_t oat_index,const OatHeader & oat_header)3556 void ImageWriter::UpdateOatFileHeader(size_t oat_index, const OatHeader& oat_header) {
3557   ImageInfo& cur_image_info = GetImageInfo(oat_index);
3558   cur_image_info.oat_checksum_ = oat_header.GetChecksum();
3559 
3560   if (oat_index == GetDefaultOatIndex()) {
3561     // Primary oat file, read the trampolines.
3562     cur_image_info.SetStubOffset(StubType::kJNIDlsymLookupTrampoline,
3563                                  oat_header.GetJniDlsymLookupTrampolineOffset());
3564     cur_image_info.SetStubOffset(StubType::kJNIDlsymLookupCriticalTrampoline,
3565                                  oat_header.GetJniDlsymLookupCriticalTrampolineOffset());
3566     cur_image_info.SetStubOffset(StubType::kQuickGenericJNITrampoline,
3567                                  oat_header.GetQuickGenericJniTrampolineOffset());
3568     cur_image_info.SetStubOffset(StubType::kQuickIMTConflictTrampoline,
3569                                  oat_header.GetQuickImtConflictTrampolineOffset());
3570     cur_image_info.SetStubOffset(StubType::kQuickResolutionTrampoline,
3571                                  oat_header.GetQuickResolutionTrampolineOffset());
3572     cur_image_info.SetStubOffset(StubType::kQuickToInterpreterBridge,
3573                                  oat_header.GetQuickToInterpreterBridgeOffset());
3574     cur_image_info.SetStubOffset(StubType::kNterpTrampoline,
3575                                  oat_header.GetNterpTrampolineOffset());
3576   }
3577 }
3578 
ImageWriter(const CompilerOptions & compiler_options,uintptr_t image_begin,ImageHeader::StorageMode image_storage_mode,const std::vector<std::string> & oat_filenames,const HashMap<const DexFile *,size_t> & dex_file_oat_index_map,jobject class_loader,const HashSet<std::string> * dirty_image_objects)3579 ImageWriter::ImageWriter(
3580     const CompilerOptions& compiler_options,
3581     uintptr_t image_begin,
3582     ImageHeader::StorageMode image_storage_mode,
3583     const std::vector<std::string>& oat_filenames,
3584     const HashMap<const DexFile*, size_t>& dex_file_oat_index_map,
3585     jobject class_loader,
3586     const HashSet<std::string>* dirty_image_objects)
3587     : compiler_options_(compiler_options),
3588       boot_image_begin_(Runtime::Current()->GetHeap()->GetBootImagesStartAddress()),
3589       boot_image_size_(Runtime::Current()->GetHeap()->GetBootImagesSize()),
3590       global_image_begin_(reinterpret_cast<uint8_t*>(image_begin)),
3591       image_objects_offset_begin_(0),
3592       target_ptr_size_(InstructionSetPointerSize(compiler_options.GetInstructionSet())),
3593       image_infos_(oat_filenames.size()),
3594       dirty_methods_(0u),
3595       clean_methods_(0u),
3596       app_class_loader_(class_loader),
3597       boot_image_live_objects_(nullptr),
3598       image_roots_(),
3599       image_storage_mode_(image_storage_mode),
3600       oat_filenames_(oat_filenames),
3601       dex_file_oat_index_map_(dex_file_oat_index_map),
3602       dirty_image_objects_(dirty_image_objects) {
3603   DCHECK(compiler_options.IsBootImage() ||
3604          compiler_options.IsBootImageExtension() ||
3605          compiler_options.IsAppImage());
3606   DCHECK_EQ(compiler_options.IsBootImage(), boot_image_begin_ == 0u);
3607   DCHECK_EQ(compiler_options.IsBootImage(), boot_image_size_ == 0u);
3608   CHECK_NE(image_begin, 0U);
3609   std::fill_n(image_methods_, arraysize(image_methods_), nullptr);
3610   CHECK_EQ(compiler_options.IsBootImage(),
3611            Runtime::Current()->GetHeap()->GetBootImageSpaces().empty())
3612       << "Compiling a boot image should occur iff there are no boot image spaces loaded";
3613   if (compiler_options_.IsAppImage()) {
3614     // Make sure objects are not crossing region boundaries for app images.
3615     region_size_ = gc::space::RegionSpace::kRegionSize;
3616   }
3617 }
3618 
~ImageWriter()3619 ImageWriter::~ImageWriter() {
3620   if (!image_roots_.empty()) {
3621     Thread* self = Thread::Current();
3622     JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
3623     for (jobject image_roots : image_roots_) {
3624       vm->DeleteGlobalRef(self, image_roots);
3625     }
3626   }
3627 }
3628 
ImageInfo()3629 ImageWriter::ImageInfo::ImageInfo()
3630     : intern_table_(),
3631       class_table_() {}
3632 
3633 template <typename DestType>
CopyAndFixupReference(DestType * dest,ObjPtr<mirror::Object> src)3634 void ImageWriter::CopyAndFixupReference(DestType* dest, ObjPtr<mirror::Object> src) {
3635   static_assert(std::is_same<DestType, mirror::CompressedReference<mirror::Object>>::value ||
3636                     std::is_same<DestType, mirror::HeapReference<mirror::Object>>::value,
3637                 "DestType must be a Compressed-/HeapReference<Object>.");
3638   dest->Assign(GetImageAddress(src.Ptr()));
3639 }
3640 
3641 template <typename ValueType>
CopyAndFixupPointer(void ** target,ValueType src_value,PointerSize pointer_size)3642 void ImageWriter::CopyAndFixupPointer(
3643     void** target, ValueType src_value, PointerSize pointer_size) {
3644   DCHECK(src_value != nullptr);
3645   void* new_value = NativeLocationInImage(src_value);
3646   DCHECK(new_value != nullptr);
3647   if (pointer_size == PointerSize::k32) {
3648     *reinterpret_cast<uint32_t*>(target) = reinterpret_cast32<uint32_t>(new_value);
3649   } else {
3650     *reinterpret_cast<uint64_t*>(target) = reinterpret_cast64<uint64_t>(new_value);
3651   }
3652 }
3653 
3654 template <typename ValueType>
CopyAndFixupPointer(void ** target,ValueType src_value)3655 void ImageWriter::CopyAndFixupPointer(void** target, ValueType src_value)
3656     REQUIRES_SHARED(Locks::mutator_lock_) {
3657   CopyAndFixupPointer(target, src_value, target_ptr_size_);
3658 }
3659 
3660 template <typename ValueType>
CopyAndFixupPointer(void * object,MemberOffset offset,ValueType src_value,PointerSize pointer_size)3661 void ImageWriter::CopyAndFixupPointer(
3662     void* object, MemberOffset offset, ValueType src_value, PointerSize pointer_size) {
3663   void** target =
3664       reinterpret_cast<void**>(reinterpret_cast<uint8_t*>(object) + offset.Uint32Value());
3665   return CopyAndFixupPointer(target, src_value, pointer_size);
3666 }
3667 
3668 template <typename ValueType>
CopyAndFixupPointer(void * object,MemberOffset offset,ValueType src_value)3669 void ImageWriter::CopyAndFixupPointer(void* object, MemberOffset offset, ValueType src_value) {
3670   return CopyAndFixupPointer(object, offset, src_value, target_ptr_size_);
3671 }
3672 
3673 }  // namespace linker
3674 }  // namespace art
3675