• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "fault_handler.h"
18 
19 #include <sys/ucontext.h>
20 
21 #include "arch/instruction_set.h"
22 #include "art_method.h"
23 #include "base/enums.h"
24 #include "base/hex_dump.h"
25 #include "base/logging.h"  // For VLOG.
26 #include "base/macros.h"
27 #include "base/safe_copy.h"
28 #include "oat_quick_method_header.h"
29 #include "runtime_globals.h"
30 #include "thread-current-inl.h"
31 
32 #if defined(__APPLE__)
33 #define ucontext __darwin_ucontext
34 
35 #if defined(__x86_64__)
36 // 64 bit mac build.
37 #define CTX_ESP uc_mcontext->__ss.__rsp
38 #define CTX_EIP uc_mcontext->__ss.__rip
39 #define CTX_EAX uc_mcontext->__ss.__rax
40 #define CTX_METHOD uc_mcontext->__ss.__rdi
41 #define CTX_RDI uc_mcontext->__ss.__rdi
42 #define CTX_JMP_BUF uc_mcontext->__ss.__rdi
43 #else
44 // 32 bit mac build.
45 #define CTX_ESP uc_mcontext->__ss.__esp
46 #define CTX_EIP uc_mcontext->__ss.__eip
47 #define CTX_EAX uc_mcontext->__ss.__eax
48 #define CTX_METHOD uc_mcontext->__ss.__eax
49 #define CTX_JMP_BUF uc_mcontext->__ss.__eax
50 #endif
51 
52 #elif defined(__x86_64__)
53 // 64 bit linux build.
54 #define CTX_ESP uc_mcontext.gregs[REG_RSP]
55 #define CTX_EIP uc_mcontext.gregs[REG_RIP]
56 #define CTX_EAX uc_mcontext.gregs[REG_RAX]
57 #define CTX_METHOD uc_mcontext.gregs[REG_RDI]
58 #define CTX_RDI uc_mcontext.gregs[REG_RDI]
59 #define CTX_JMP_BUF uc_mcontext.gregs[REG_RDI]
60 #else
61 // 32 bit linux build.
62 #define CTX_ESP uc_mcontext.gregs[REG_ESP]
63 #define CTX_EIP uc_mcontext.gregs[REG_EIP]
64 #define CTX_EAX uc_mcontext.gregs[REG_EAX]
65 #define CTX_METHOD uc_mcontext.gregs[REG_EAX]
66 #define CTX_JMP_BUF uc_mcontext.gregs[REG_EAX]
67 #endif
68 
69 //
70 // X86 (and X86_64) specific fault handler functions.
71 //
72 
73 namespace art {
74 
75 extern "C" void art_quick_throw_null_pointer_exception_from_signal();
76 extern "C" void art_quick_throw_stack_overflow();
77 extern "C" void art_quick_test_suspend();
78 
79 // Get the size of an instruction in bytes.
80 // Return 0 if the instruction is not handled.
GetInstructionSize(const uint8_t * pc,size_t bytes)81 static uint32_t GetInstructionSize(const uint8_t* pc, size_t bytes) {
82 #define FETCH_OR_SKIP_BYTE(assignment)  \
83   do {                                  \
84     if (bytes == 0u) {                  \
85       return 0u;                        \
86     }                                   \
87     (assignment);                       \
88     ++pc;                               \
89     --bytes;                            \
90   } while (0)
91 #define FETCH_BYTE(var) FETCH_OR_SKIP_BYTE((var) = *pc)
92 #define SKIP_BYTE() FETCH_OR_SKIP_BYTE((void)0)
93 
94 #if defined(__x86_64)
95   const bool x86_64 = true;
96 #else
97   const bool x86_64 = false;
98 #endif
99 
100   const uint8_t* startpc = pc;
101 
102   uint8_t opcode;
103   FETCH_BYTE(opcode);
104   uint8_t modrm;
105   bool has_modrm = false;
106   bool two_byte = false;
107   uint32_t displacement_size = 0;
108   uint32_t immediate_size = 0;
109   bool operand_size_prefix = false;
110 
111   // Prefixes.
112   while (true) {
113     bool prefix_present = false;
114     switch (opcode) {
115       // Group 3
116       case 0x66:
117         operand_size_prefix = true;
118         FALLTHROUGH_INTENDED;
119 
120       // Group 1
121       case 0xf0:
122       case 0xf2:
123       case 0xf3:
124 
125       // Group 2
126       case 0x2e:
127       case 0x36:
128       case 0x3e:
129       case 0x26:
130       case 0x64:
131       case 0x65:
132 
133       // Group 4
134       case 0x67:
135         FETCH_BYTE(opcode);
136         prefix_present = true;
137         break;
138     }
139     if (!prefix_present) {
140       break;
141     }
142   }
143 
144   if (x86_64 && opcode >= 0x40 && opcode <= 0x4f) {
145     FETCH_BYTE(opcode);
146   }
147 
148   if (opcode == 0x0f) {
149     // Two byte opcode
150     two_byte = true;
151     FETCH_BYTE(opcode);
152   }
153 
154   bool unhandled_instruction = false;
155 
156   if (two_byte) {
157     switch (opcode) {
158       case 0x10:        // vmovsd/ss
159       case 0x11:        // vmovsd/ss
160       case 0xb6:        // movzx
161       case 0xb7:
162       case 0xbe:        // movsx
163       case 0xbf:
164         FETCH_BYTE(modrm);
165         has_modrm = true;
166         break;
167       default:
168         unhandled_instruction = true;
169         break;
170     }
171   } else {
172     switch (opcode) {
173       case 0x88:        // mov byte
174       case 0x89:        // mov
175       case 0x8b:
176       case 0x38:        // cmp with memory.
177       case 0x39:
178       case 0x3a:
179       case 0x3b:
180       case 0x3c:
181       case 0x3d:
182       case 0x85:        // test.
183         FETCH_BYTE(modrm);
184         has_modrm = true;
185         break;
186 
187       case 0x80:        // group 1, byte immediate.
188       case 0x83:
189       case 0xc6:
190         FETCH_BYTE(modrm);
191         has_modrm = true;
192         immediate_size = 1;
193         break;
194 
195       case 0x81:        // group 1, word immediate.
196       case 0xc7:        // mov
197         FETCH_BYTE(modrm);
198         has_modrm = true;
199         immediate_size = operand_size_prefix ? 2 : 4;
200         break;
201 
202       case 0xf6:
203       case 0xf7:
204         FETCH_BYTE(modrm);
205         has_modrm = true;
206         switch ((modrm >> 3) & 7) {  // Extract "reg/opcode" from "modr/m".
207           case 0:  // test
208             immediate_size = (opcode == 0xf6) ? 1 : (operand_size_prefix ? 2 : 4);
209             break;
210           case 2:  // not
211           case 3:  // neg
212           case 4:  // mul
213           case 5:  // imul
214           case 6:  // div
215           case 7:  // idiv
216             break;
217           default:
218             unhandled_instruction = true;
219             break;
220         }
221         break;
222 
223       default:
224         unhandled_instruction = true;
225         break;
226     }
227   }
228 
229   if (unhandled_instruction) {
230     VLOG(signals) << "Unhandled x86 instruction with opcode " << static_cast<int>(opcode);
231     return 0;
232   }
233 
234   if (has_modrm) {
235     uint8_t mod = (modrm >> 6) & 3U /* 0b11 */;
236 
237     // Check for SIB.
238     if (mod != 3U /* 0b11 */ && (modrm & 7U /* 0b111 */) == 4) {
239       SKIP_BYTE();  // SIB
240     }
241 
242     switch (mod) {
243       case 0U /* 0b00 */: break;
244       case 1U /* 0b01 */: displacement_size = 1; break;
245       case 2U /* 0b10 */: displacement_size = 4; break;
246       case 3U /* 0b11 */:
247         break;
248     }
249   }
250 
251   // Skip displacement and immediate.
252   pc += displacement_size + immediate_size;
253 
254   VLOG(signals) << "x86 instruction length calculated as " << (pc - startpc);
255   return pc - startpc;
256 
257 #undef SKIP_BYTE
258 #undef FETCH_BYTE
259 #undef FETCH_OR_SKIP_BYTE
260 }
261 
GetFaultPc(siginfo_t * siginfo ATTRIBUTE_UNUSED,void * context)262 uintptr_t FaultManager::GetFaultPc(siginfo_t* siginfo ATTRIBUTE_UNUSED, void* context) {
263   ucontext_t* uc = reinterpret_cast<ucontext_t*>(context);
264   if (uc->CTX_ESP == 0) {
265     VLOG(signals) << "Missing SP";
266     return 0u;
267   }
268   return uc->CTX_EIP;
269 }
270 
GetFaultSp(void * context)271 uintptr_t FaultManager::GetFaultSp(void* context) {
272   ucontext_t* uc = reinterpret_cast<ucontext_t*>(context);
273   return uc->CTX_ESP;
274 }
275 
Action(int,siginfo_t * sig,void * context)276 bool NullPointerHandler::Action(int, siginfo_t* sig, void* context) {
277   uintptr_t fault_address = reinterpret_cast<uintptr_t>(sig->si_addr);
278   if (!IsValidFaultAddress(fault_address)) {
279     return false;
280   }
281 
282   ucontext_t* uc = reinterpret_cast<ucontext_t*>(context);
283   ArtMethod** sp = reinterpret_cast<ArtMethod**>(uc->CTX_ESP);
284   ArtMethod* method = *sp;
285   if (!IsValidMethod(method)) {
286     return false;
287   }
288 
289   // For null checks in compiled code we insert a stack map that is immediately
290   // after the load/store instruction that might cause the fault and we need to
291   // pass the return PC to the handler. For null checks in Nterp, we similarly
292   // need the return PC to recognize that this was a null check in Nterp, so
293   // that the handler can get the needed data from the Nterp frame.
294 
295   // Note: Allowing nested faults if `IsValidMethod()` returned a false positive.
296   // Note: The `ArtMethod::GetOatQuickMethodHeader()` can acquire locks, which is
297   // essentially unsafe in a signal handler, but we allow that here just like in
298   // `NullPointerHandler::IsValidReturnPc()`. For more details see comments there.
299   uintptr_t pc = uc->CTX_EIP;
300   const OatQuickMethodHeader* method_header = method->GetOatQuickMethodHeader(pc);
301   if (method_header == nullptr) {
302     VLOG(signals) << "No method header.";
303     return false;
304   }
305   const uint8_t* pc_ptr = reinterpret_cast<const uint8_t*>(pc);
306   size_t offset = pc_ptr - method_header->GetCode();
307   size_t code_size = method_header->GetCodeSize();
308   CHECK_LT(offset, code_size);
309   size_t max_instr_size = code_size - offset;
310   uint32_t instr_size = GetInstructionSize(pc_ptr, max_instr_size);
311   if (instr_size == 0u) {
312     // Unknown instruction (can't really happen) or not enough bytes until end of method code.
313     return false;
314   }
315 
316   uintptr_t return_pc = reinterpret_cast<uintptr_t>(pc + instr_size);
317   if (!IsValidReturnPc(sp, return_pc)) {
318     return false;
319   }
320 
321   // Push the return PC and fault address onto the stack.
322   uintptr_t* next_sp = reinterpret_cast<uintptr_t*>(sp) - 2;
323   next_sp[1] = return_pc;
324   next_sp[0] = fault_address;
325   uc->CTX_ESP = reinterpret_cast<uintptr_t>(next_sp);
326 
327   // Arrange for the signal handler to return to the NPE entrypoint.
328   uc->CTX_EIP = reinterpret_cast<uintptr_t>(
329       art_quick_throw_null_pointer_exception_from_signal);
330   VLOG(signals) << "Generating null pointer exception";
331   return true;
332 }
333 
334 // A suspend check is done using the following instruction sequence:
335 // (x86)
336 // 0xf720f1df:         648B058C000000      mov     eax, fs:[0x8c]  ; suspend_trigger
337 // .. some intervening instructions.
338 // 0xf720f1e6:                   8500      test    eax, [eax]
339 // (x86_64)
340 // 0x7f579de45d9e: 65488B0425A8000000      movq    rax, gs:[0xa8]  ; suspend_trigger
341 // .. some intervening instructions.
342 // 0x7f579de45da7:               8500      test    eax, [eax]
343 
344 // The offset from fs is Thread::ThreadSuspendTriggerOffset().
345 // To check for a suspend check, we examine the instructions that caused
346 // the fault.
Action(int,siginfo_t *,void * context)347 bool SuspensionHandler::Action(int, siginfo_t*, void* context) {
348   // These are the instructions to check for.  The first one is the mov eax, fs:[xxx]
349   // where xxx is the offset of the suspend trigger.
350   uint32_t trigger = Thread::ThreadSuspendTriggerOffset<kRuntimePointerSize>().Int32Value();
351 
352   VLOG(signals) << "Checking for suspension point";
353 #if defined(__x86_64__)
354   uint8_t checkinst1[] = {0x65, 0x48, 0x8b, 0x04, 0x25, static_cast<uint8_t>(trigger & 0xff),
355       static_cast<uint8_t>((trigger >> 8) & 0xff), 0, 0};
356 #else
357   uint8_t checkinst1[] = {0x64, 0x8b, 0x05, static_cast<uint8_t>(trigger & 0xff),
358       static_cast<uint8_t>((trigger >> 8) & 0xff), 0, 0};
359 #endif
360   uint8_t checkinst2[] = {0x85, 0x00};
361 
362   ucontext_t* uc = reinterpret_cast<ucontext_t*>(context);
363   uint8_t* pc = reinterpret_cast<uint8_t*>(uc->CTX_EIP);
364   uint8_t* sp = reinterpret_cast<uint8_t*>(uc->CTX_ESP);
365 
366   if (pc[0] != checkinst2[0] || pc[1] != checkinst2[1]) {
367     // Second instruction is not correct (test eax,[eax]).
368     VLOG(signals) << "Not a suspension point";
369     return false;
370   }
371 
372   // The first instruction can a little bit up the stream due to load hoisting
373   // in the compiler.
374   uint8_t* limit = pc - 100;   // Compiler will hoist to a max of 20 instructions.
375   uint8_t* ptr = pc - sizeof(checkinst1);
376   bool found = false;
377   while (ptr > limit) {
378     if (memcmp(ptr, checkinst1, sizeof(checkinst1)) == 0) {
379       found = true;
380       break;
381     }
382     ptr -= 1;
383   }
384 
385   if (found) {
386     VLOG(signals) << "suspend check match";
387 
388     // We need to arrange for the signal handler to return to the null pointer
389     // exception generator.  The return address must be the address of the
390     // next instruction (this instruction + 2).  The return address
391     // is on the stack at the top address of the current frame.
392 
393     // Push the return address onto the stack.
394     uintptr_t retaddr = reinterpret_cast<uintptr_t>(pc + 2);
395     uintptr_t* next_sp = reinterpret_cast<uintptr_t*>(sp - sizeof(uintptr_t));
396     *next_sp = retaddr;
397     uc->CTX_ESP = reinterpret_cast<uintptr_t>(next_sp);
398 
399     uc->CTX_EIP = reinterpret_cast<uintptr_t>(art_quick_test_suspend);
400 
401     // Now remove the suspend trigger that caused this fault.
402     Thread::Current()->RemoveSuspendTrigger();
403     VLOG(signals) << "removed suspend trigger invoking test suspend";
404     return true;
405   }
406   VLOG(signals) << "Not a suspend check match, first instruction mismatch";
407   return false;
408 }
409 
410 // The stack overflow check is done using the following instruction:
411 // test eax, [esp+ -xxx]
412 // where 'xxx' is the size of the overflow area.
413 //
414 // This is done before any frame is established in the method.  The return
415 // address for the previous method is on the stack at ESP.
416 
Action(int,siginfo_t * info,void * context)417 bool StackOverflowHandler::Action(int, siginfo_t* info, void* context) {
418   ucontext_t* uc = reinterpret_cast<ucontext_t*>(context);
419   uintptr_t sp = static_cast<uintptr_t>(uc->CTX_ESP);
420 
421   uintptr_t fault_addr = reinterpret_cast<uintptr_t>(info->si_addr);
422   VLOG(signals) << "fault_addr: " << std::hex << fault_addr;
423   VLOG(signals) << "checking for stack overflow, sp: " << std::hex << sp <<
424     ", fault_addr: " << fault_addr;
425 
426 #if defined(__x86_64__)
427   uintptr_t overflow_addr = sp - GetStackOverflowReservedBytes(InstructionSet::kX86_64);
428 #else
429   uintptr_t overflow_addr = sp - GetStackOverflowReservedBytes(InstructionSet::kX86);
430 #endif
431 
432   // Check that the fault address is the value expected for a stack overflow.
433   if (fault_addr != overflow_addr) {
434     VLOG(signals) << "Not a stack overflow";
435     return false;
436   }
437 
438   VLOG(signals) << "Stack overflow found";
439 
440   // Since the compiler puts the implicit overflow
441   // check before the callee save instructions, the SP is already pointing to
442   // the previous frame.
443 
444   // Now arrange for the signal handler to return to art_quick_throw_stack_overflow.
445   uc->CTX_EIP = reinterpret_cast<uintptr_t>(art_quick_throw_stack_overflow);
446 
447   return true;
448 }
449 }       // namespace art
450