• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "monitor-inl.h"
18 
19 #include <vector>
20 
21 #include "android-base/stringprintf.h"
22 
23 #include "art_method-inl.h"
24 #include "base/logging.h"  // For VLOG.
25 #include "base/mutex.h"
26 #include "base/quasi_atomic.h"
27 #include "base/stl_util.h"
28 #include "base/systrace.h"
29 #include "base/time_utils.h"
30 #include "class_linker.h"
31 #include "dex/dex_file-inl.h"
32 #include "dex/dex_file_types.h"
33 #include "dex/dex_instruction-inl.h"
34 #include "entrypoints/entrypoint_utils-inl.h"
35 #include "lock_word-inl.h"
36 #include "mirror/class-inl.h"
37 #include "mirror/object-inl.h"
38 #include "object_callbacks.h"
39 #include "scoped_thread_state_change-inl.h"
40 #include "stack.h"
41 #include "thread.h"
42 #include "thread_list.h"
43 #include "verifier/method_verifier.h"
44 #include "well_known_classes.h"
45 #include <android-base/properties.h>
46 
47 static_assert(ART_USE_FUTEXES);
48 
49 namespace art {
50 
51 using android::base::StringPrintf;
52 
53 static constexpr uint64_t kDebugThresholdFudgeFactor = kIsDebugBuild ? 10 : 1;
54 static constexpr uint64_t kLongWaitMs = 100 * kDebugThresholdFudgeFactor;
55 
56 /*
57  * Every Object has a monitor associated with it, but not every Object is actually locked.  Even
58  * the ones that are locked do not need a full-fledged monitor until a) there is actual contention
59  * or b) wait() is called on the Object, or (c) we need to lock an object that also has an
60  * identity hashcode.
61  *
62  * For Android, we have implemented a scheme similar to the one described in Bacon et al.'s
63  * "Thin locks: featherweight synchronization for Java" (ACM 1998).  Things are even easier for us,
64  * though, because we have a full 32 bits to work with.
65  *
66  * The two states of an Object's lock are referred to as "thin" and "fat".  A lock may transition
67  * from the "thin" state to the "fat" state and this transition is referred to as inflation. We
68  * deflate locks from time to time as part of heap trimming.
69  *
70  * The lock value itself is stored in mirror::Object::monitor_ and the representation is described
71  * in the LockWord value type.
72  *
73  * Monitors provide:
74  *  - mutually exclusive access to resources
75  *  - a way for multiple threads to wait for notification
76  *
77  * In effect, they fill the role of both mutexes and condition variables.
78  *
79  * Only one thread can own the monitor at any time.  There may be several threads waiting on it
80  * (the wait call unlocks it).  One or more waiting threads may be getting interrupted or notified
81  * at any given time.
82  */
83 
84 uint32_t Monitor::lock_profiling_threshold_ = 0;
85 uint32_t Monitor::stack_dump_lock_profiling_threshold_ = 0;
86 
Init(uint32_t lock_profiling_threshold,uint32_t stack_dump_lock_profiling_threshold)87 void Monitor::Init(uint32_t lock_profiling_threshold,
88                    uint32_t stack_dump_lock_profiling_threshold) {
89   // It isn't great to always include the debug build fudge factor for command-
90   // line driven arguments, but it's easier to adjust here than in the build.
91   lock_profiling_threshold_ =
92       lock_profiling_threshold * kDebugThresholdFudgeFactor;
93   stack_dump_lock_profiling_threshold_ =
94       stack_dump_lock_profiling_threshold * kDebugThresholdFudgeFactor;
95 }
96 
Monitor(Thread * self,Thread * owner,ObjPtr<mirror::Object> obj,int32_t hash_code)97 Monitor::Monitor(Thread* self, Thread* owner, ObjPtr<mirror::Object> obj, int32_t hash_code)
98     : monitor_lock_("a monitor lock", kMonitorLock),
99       num_waiters_(0),
100       owner_(owner),
101       lock_count_(0),
102       obj_(GcRoot<mirror::Object>(obj)),
103       wait_set_(nullptr),
104       wake_set_(nullptr),
105       hash_code_(hash_code),
106       lock_owner_(nullptr),
107       lock_owner_method_(nullptr),
108       lock_owner_dex_pc_(0),
109       lock_owner_sum_(0),
110       lock_owner_request_(nullptr),
111       monitor_id_(MonitorPool::ComputeMonitorId(this, self)) {
112 #ifdef __LP64__
113   DCHECK(false) << "Should not be reached in 64b";
114   next_free_ = nullptr;
115 #endif
116   // We should only inflate a lock if the owner is ourselves or suspended. This avoids a race
117   // with the owner unlocking the thin-lock.
118   CHECK(owner == nullptr || owner == self || owner->IsSuspended());
119   // The identity hash code is set for the life time of the monitor.
120 
121   bool monitor_timeout_enabled = Runtime::Current()->IsMonitorTimeoutEnabled();
122   if (monitor_timeout_enabled) {
123     MaybeEnableTimeout();
124   }
125 }
126 
Monitor(Thread * self,Thread * owner,ObjPtr<mirror::Object> obj,int32_t hash_code,MonitorId id)127 Monitor::Monitor(Thread* self,
128                  Thread* owner,
129                  ObjPtr<mirror::Object> obj,
130                  int32_t hash_code,
131                  MonitorId id)
132     : monitor_lock_("a monitor lock", kMonitorLock),
133       num_waiters_(0),
134       owner_(owner),
135       lock_count_(0),
136       obj_(GcRoot<mirror::Object>(obj)),
137       wait_set_(nullptr),
138       wake_set_(nullptr),
139       hash_code_(hash_code),
140       lock_owner_(nullptr),
141       lock_owner_method_(nullptr),
142       lock_owner_dex_pc_(0),
143       lock_owner_sum_(0),
144       lock_owner_request_(nullptr),
145       monitor_id_(id) {
146 #ifdef __LP64__
147   next_free_ = nullptr;
148 #endif
149   // We should only inflate a lock if the owner is ourselves or suspended. This avoids a race
150   // with the owner unlocking the thin-lock.
151   CHECK(owner == nullptr || owner == self || owner->IsSuspended());
152   // The identity hash code is set for the life time of the monitor.
153 
154   bool monitor_timeout_enabled = Runtime::Current()->IsMonitorTimeoutEnabled();
155   if (monitor_timeout_enabled) {
156     MaybeEnableTimeout();
157   }
158 }
159 
GetHashCode()160 int32_t Monitor::GetHashCode() {
161   int32_t hc = hash_code_.load(std::memory_order_relaxed);
162   if (!HasHashCode()) {
163     // Use a strong CAS to prevent spurious failures since these can make the boot image
164     // non-deterministic.
165     hash_code_.CompareAndSetStrongRelaxed(0, mirror::Object::GenerateIdentityHashCode());
166     hc = hash_code_.load(std::memory_order_relaxed);
167   }
168   DCHECK(HasHashCode());
169   return hc;
170 }
171 
SetLockingMethod(Thread * owner)172 void Monitor::SetLockingMethod(Thread* owner) {
173   DCHECK(owner == Thread::Current() || owner->IsSuspended());
174   // Do not abort on dex pc errors. This can easily happen when we want to dump a stack trace on
175   // abort.
176   ArtMethod* lock_owner_method;
177   uint32_t lock_owner_dex_pc;
178   lock_owner_method = owner->GetCurrentMethod(&lock_owner_dex_pc, false);
179   if (lock_owner_method != nullptr && UNLIKELY(lock_owner_method->IsProxyMethod())) {
180     // Grab another frame. Proxy methods are not helpful for lock profiling. This should be rare
181     // enough that it's OK to walk the stack twice.
182     struct NextMethodVisitor final : public StackVisitor {
183       explicit NextMethodVisitor(Thread* thread) REQUIRES_SHARED(Locks::mutator_lock_)
184           : StackVisitor(thread,
185                          nullptr,
186                          StackVisitor::StackWalkKind::kIncludeInlinedFrames,
187                          false),
188             count_(0),
189             method_(nullptr),
190             dex_pc_(0) {}
191       bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
192         ArtMethod* m = GetMethod();
193         if (m->IsRuntimeMethod()) {
194           // Continue if this is a runtime method.
195           return true;
196         }
197         count_++;
198         if (count_ == 2u) {
199           method_ = m;
200           dex_pc_ = GetDexPc(false);
201           return false;
202         }
203         return true;
204       }
205       size_t count_;
206       ArtMethod* method_;
207       uint32_t dex_pc_;
208     };
209     NextMethodVisitor nmv(owner_.load(std::memory_order_relaxed));
210     nmv.WalkStack();
211     lock_owner_method = nmv.method_;
212     lock_owner_dex_pc = nmv.dex_pc_;
213   }
214   SetLockOwnerInfo(lock_owner_method, lock_owner_dex_pc, owner);
215   DCHECK(lock_owner_method == nullptr || !lock_owner_method->IsProxyMethod());
216 }
217 
SetLockingMethodNoProxy(Thread * owner)218 void Monitor::SetLockingMethodNoProxy(Thread *owner) {
219   DCHECK(owner == Thread::Current());
220   uint32_t lock_owner_dex_pc;
221   ArtMethod* lock_owner_method = owner->GetCurrentMethod(&lock_owner_dex_pc);
222   // We don't expect a proxy method here.
223   DCHECK(lock_owner_method == nullptr || !lock_owner_method->IsProxyMethod());
224   SetLockOwnerInfo(lock_owner_method, lock_owner_dex_pc, owner);
225 }
226 
Install(Thread * self)227 bool Monitor::Install(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
228   // This may or may not result in acquiring monitor_lock_. Its behavior is much more complicated
229   // than what clang thread safety analysis understands.
230   // Monitor is not yet public.
231   Thread* owner = owner_.load(std::memory_order_relaxed);
232   CHECK(owner == nullptr || owner == self || owner->IsSuspended());
233   // Propagate the lock state.
234   LockWord lw(GetObject()->GetLockWord(false));
235   switch (lw.GetState()) {
236     case LockWord::kThinLocked: {
237       DCHECK(owner != nullptr);
238       CHECK_EQ(owner->GetThreadId(), lw.ThinLockOwner());
239       DCHECK_EQ(monitor_lock_.GetExclusiveOwnerTid(), 0) << " my tid = " << SafeGetTid(self);
240       lock_count_ = lw.ThinLockCount();
241       monitor_lock_.ExclusiveLockUncontendedFor(owner);
242       DCHECK_EQ(monitor_lock_.GetExclusiveOwnerTid(), owner->GetTid())
243           << " my tid = " << SafeGetTid(self);
244       LockWord fat(this, lw.GCState());
245       // Publish the updated lock word, which may race with other threads.
246       bool success = GetObject()->CasLockWord(lw, fat, CASMode::kWeak, std::memory_order_release);
247       if (success) {
248         if (ATraceEnabled()) {
249           SetLockingMethod(owner);
250         }
251         return true;
252       } else {
253         monitor_lock_.ExclusiveUnlockUncontended();
254         return false;
255       }
256     }
257     case LockWord::kHashCode: {
258       CHECK_EQ(hash_code_.load(std::memory_order_relaxed), static_cast<int32_t>(lw.GetHashCode()));
259       DCHECK_EQ(monitor_lock_.GetExclusiveOwnerTid(), 0) << " my tid = " << SafeGetTid(self);
260       LockWord fat(this, lw.GCState());
261       return GetObject()->CasLockWord(lw, fat, CASMode::kWeak, std::memory_order_release);
262     }
263     case LockWord::kFatLocked: {
264       // The owner_ is suspended but another thread beat us to install a monitor.
265       return false;
266     }
267     case LockWord::kUnlocked: {
268       LOG(FATAL) << "Inflating unlocked lock word";
269       UNREACHABLE();
270     }
271     default: {
272       LOG(FATAL) << "Invalid monitor state " << lw.GetState();
273       UNREACHABLE();
274     }
275   }
276 }
277 
~Monitor()278 Monitor::~Monitor() {
279   // Deflated monitors have a null object.
280 }
281 
AppendToWaitSet(Thread * thread)282 void Monitor::AppendToWaitSet(Thread* thread) {
283   // Not checking that the owner is equal to this thread, since we've released
284   // the monitor by the time this method is called.
285   DCHECK(thread != nullptr);
286   DCHECK(thread->GetWaitNext() == nullptr) << thread->GetWaitNext();
287   if (wait_set_ == nullptr) {
288     wait_set_ = thread;
289     return;
290   }
291 
292   // push_back.
293   Thread* t = wait_set_;
294   while (t->GetWaitNext() != nullptr) {
295     t = t->GetWaitNext();
296   }
297   t->SetWaitNext(thread);
298 }
299 
RemoveFromWaitSet(Thread * thread)300 void Monitor::RemoveFromWaitSet(Thread *thread) {
301   DCHECK(owner_ == Thread::Current());
302   DCHECK(thread != nullptr);
303   auto remove = [&](Thread*& set){
304     if (set != nullptr) {
305       if (set == thread) {
306         set = thread->GetWaitNext();
307         thread->SetWaitNext(nullptr);
308         return true;
309       }
310       Thread* t = set;
311       while (t->GetWaitNext() != nullptr) {
312         if (t->GetWaitNext() == thread) {
313           t->SetWaitNext(thread->GetWaitNext());
314           thread->SetWaitNext(nullptr);
315           return true;
316         }
317         t = t->GetWaitNext();
318       }
319     }
320     return false;
321   };
322   if (remove(wait_set_)) {
323     return;
324   }
325   remove(wake_set_);
326 }
327 
SetObject(ObjPtr<mirror::Object> object)328 void Monitor::SetObject(ObjPtr<mirror::Object> object) {
329   obj_ = GcRoot<mirror::Object>(object);
330 }
331 
332 // This function is inlined and just helps to not have the VLOG and ATRACE check at all the
333 // potential tracing points.
AtraceMonitorLock(Thread * self,ObjPtr<mirror::Object> obj,bool is_wait)334 void Monitor::AtraceMonitorLock(Thread* self, ObjPtr<mirror::Object> obj, bool is_wait) {
335   if (UNLIKELY(VLOG_IS_ON(systrace_lock_logging) && ATraceEnabled())) {
336     AtraceMonitorLockImpl(self, obj, is_wait);
337   }
338 }
339 
AtraceMonitorLockImpl(Thread * self,ObjPtr<mirror::Object> obj,bool is_wait)340 void Monitor::AtraceMonitorLockImpl(Thread* self, ObjPtr<mirror::Object> obj, bool is_wait) {
341   // Wait() requires a deeper call stack to be useful. Otherwise you'll see "Waiting at
342   // Object.java". Assume that we'll wait a nontrivial amount, so it's OK to do a longer
343   // stack walk than if !is_wait.
344   const size_t wanted_frame_number = is_wait ? 1U : 0U;
345 
346   ArtMethod* method = nullptr;
347   uint32_t dex_pc = 0u;
348 
349   size_t current_frame_number = 0u;
350   StackVisitor::WalkStack(
351       // Note: Adapted from CurrentMethodVisitor in thread.cc. We must not resolve here.
352       [&](const art::StackVisitor* stack_visitor) REQUIRES_SHARED(Locks::mutator_lock_) {
353         ArtMethod* m = stack_visitor->GetMethod();
354         if (m == nullptr || m->IsRuntimeMethod()) {
355           // Runtime method, upcall, or resolution issue. Skip.
356           return true;
357         }
358 
359         // Is this the requested frame?
360         if (current_frame_number == wanted_frame_number) {
361           method = m;
362           dex_pc = stack_visitor->GetDexPc(false /* abort_on_error*/);
363           return false;
364         }
365 
366         // Look for more.
367         current_frame_number++;
368         return true;
369       },
370       self,
371       /* context= */ nullptr,
372       art::StackVisitor::StackWalkKind::kIncludeInlinedFrames);
373 
374   const char* prefix = is_wait ? "Waiting on " : "Locking ";
375 
376   const char* filename;
377   int32_t line_number;
378   TranslateLocation(method, dex_pc, &filename, &line_number);
379 
380   // It would be nice to have a stable "ID" for the object here. However, the only stable thing
381   // would be the identity hashcode. But we cannot use IdentityHashcode here: For one, there are
382   // times when it is unsafe to make that call (see stack dumping for an explanation). More
383   // importantly, we would have to give up on thin-locking when adding systrace locks, as the
384   // identity hashcode is stored in the lockword normally (so can't be used with thin-locks).
385   //
386   // Because of thin-locks we also cannot use the monitor id (as there is no monitor). Monitor ids
387   // also do not have to be stable, as the monitor may be deflated.
388   std::string tmp = StringPrintf("%s %d at %s:%d",
389       prefix,
390       (obj == nullptr ? -1 : static_cast<int32_t>(reinterpret_cast<uintptr_t>(obj.Ptr()))),
391       (filename != nullptr ? filename : "null"),
392       line_number);
393   ATraceBegin(tmp.c_str());
394 }
395 
AtraceMonitorUnlock()396 void Monitor::AtraceMonitorUnlock() {
397   if (UNLIKELY(VLOG_IS_ON(systrace_lock_logging))) {
398     ATraceEnd();
399   }
400 }
401 
PrettyContentionInfo(const std::string & owner_name,pid_t owner_tid,ArtMethod * owners_method,uint32_t owners_dex_pc,size_t num_waiters)402 std::string Monitor::PrettyContentionInfo(const std::string& owner_name,
403                                           pid_t owner_tid,
404                                           ArtMethod* owners_method,
405                                           uint32_t owners_dex_pc,
406                                           size_t num_waiters) {
407   Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
408   const char* owners_filename;
409   int32_t owners_line_number = 0;
410   if (owners_method != nullptr) {
411     TranslateLocation(owners_method, owners_dex_pc, &owners_filename, &owners_line_number);
412   }
413   std::ostringstream oss;
414   oss << "monitor contention with owner " << owner_name << " (" << owner_tid << ")";
415   if (owners_method != nullptr) {
416     oss << " at " << owners_method->PrettyMethod();
417     oss << "(" << owners_filename << ":" << owners_line_number << ")";
418   }
419   oss << " waiters=" << num_waiters;
420   return oss.str();
421 }
422 
TryLock(Thread * self,bool spin)423 bool Monitor::TryLock(Thread* self, bool spin) {
424   Thread *owner = owner_.load(std::memory_order_relaxed);
425   if (owner == self) {
426     lock_count_++;
427     CHECK_NE(lock_count_, 0u);  // Abort on overflow.
428   } else {
429     bool success = spin ? monitor_lock_.ExclusiveTryLockWithSpinning(self)
430         : monitor_lock_.ExclusiveTryLock(self);
431     if (!success) {
432       return false;
433     }
434     DCHECK(owner_.load(std::memory_order_relaxed) == nullptr);
435     owner_.store(self, std::memory_order_relaxed);
436     CHECK_EQ(lock_count_, 0u);
437     if (ATraceEnabled()) {
438       SetLockingMethodNoProxy(self);
439     }
440   }
441   DCHECK(monitor_lock_.IsExclusiveHeld(self));
442   AtraceMonitorLock(self, GetObject(), /* is_wait= */ false);
443   return true;
444 }
445 
446 template <LockReason reason>
Lock(Thread * self)447 void Monitor::Lock(Thread* self) {
448   bool called_monitors_callback = false;
449   if (TryLock(self, /*spin=*/ true)) {
450     // TODO: This preserves original behavior. Correct?
451     if (called_monitors_callback) {
452       CHECK(reason == LockReason::kForLock);
453       Runtime::Current()->GetRuntimeCallbacks()->MonitorContendedLocked(this);
454     }
455     return;
456   }
457   // Contended; not reentrant. We hold no locks, so tread carefully.
458   const bool log_contention = (lock_profiling_threshold_ != 0);
459   uint64_t wait_start_ms = log_contention ? MilliTime() : 0;
460 
461   Thread *orig_owner = nullptr;
462   ArtMethod* owners_method;
463   uint32_t owners_dex_pc;
464 
465   // Do this before releasing the mutator lock so that we don't get deflated.
466   size_t num_waiters = num_waiters_.fetch_add(1, std::memory_order_relaxed);
467 
468   bool started_trace = false;
469   if (ATraceEnabled() && owner_.load(std::memory_order_relaxed) != nullptr) {
470     // Acquiring thread_list_lock_ ensures that owner doesn't disappear while
471     // we're looking at it.
472     Locks::thread_list_lock_->ExclusiveLock(self);
473     orig_owner = owner_.load(std::memory_order_relaxed);
474     if (orig_owner != nullptr) {  // Did the owner_ give the lock up?
475       const uint32_t orig_owner_thread_id = orig_owner->GetTid();
476       GetLockOwnerInfo(&owners_method, &owners_dex_pc, orig_owner);
477       std::ostringstream oss;
478       std::string name;
479       orig_owner->GetThreadName(name);
480       oss << PrettyContentionInfo(name,
481                                   orig_owner_thread_id,
482                                   owners_method,
483                                   owners_dex_pc,
484                                   num_waiters);
485       Locks::thread_list_lock_->ExclusiveUnlock(self);
486       // Add info for contending thread.
487       uint32_t pc;
488       ArtMethod* m = self->GetCurrentMethod(&pc);
489       const char* filename;
490       int32_t line_number;
491       TranslateLocation(m, pc, &filename, &line_number);
492       oss << " blocking from "
493           << ArtMethod::PrettyMethod(m) << "(" << (filename != nullptr ? filename : "null")
494           << ":" << line_number << ")";
495       ATraceBegin(oss.str().c_str());
496       started_trace = true;
497     } else {
498       Locks::thread_list_lock_->ExclusiveUnlock(self);
499     }
500   }
501   if (log_contention) {
502     // Request the current holder to set lock_owner_info.
503     // Do this even if tracing is enabled, so we semi-consistently get the information
504     // corresponding to MonitorExit.
505     // TODO: Consider optionally obtaining a stack trace here via a checkpoint.  That would allow
506     // us to see what the other thread is doing while we're waiting.
507     orig_owner = owner_.load(std::memory_order_relaxed);
508     lock_owner_request_.store(orig_owner, std::memory_order_relaxed);
509   }
510   // Call the contended locking cb once and only once. Also only call it if we are locking for
511   // the first time, not during a Wait wakeup.
512   if (reason == LockReason::kForLock && !called_monitors_callback) {
513     called_monitors_callback = true;
514     Runtime::Current()->GetRuntimeCallbacks()->MonitorContendedLocking(this);
515   }
516   self->SetMonitorEnterObject(GetObject().Ptr());
517   {
518     // Change to blocked and give up mutator_lock_.
519     ScopedThreadSuspension tsc(self, ThreadState::kBlocked);
520 
521     // Acquire monitor_lock_ without mutator_lock_, expecting to block this time.
522     // We already tried spinning above. The shutdown procedure currently assumes we stop
523     // touching monitors shortly after we suspend, so don't spin again here.
524     monitor_lock_.ExclusiveLock(self);
525 
526     if (log_contention && orig_owner != nullptr) {
527       // Woken from contention.
528       uint64_t wait_ms = MilliTime() - wait_start_ms;
529       uint32_t sample_percent;
530       if (wait_ms >= lock_profiling_threshold_) {
531         sample_percent = 100;
532       } else {
533         sample_percent = 100 * wait_ms / lock_profiling_threshold_;
534       }
535       if (sample_percent != 0 && (static_cast<uint32_t>(rand() % 100) < sample_percent)) {
536         // Do this unconditionally for consistency. It's possible another thread
537         // snuck in in the middle, and tracing was enabled. In that case, we may get its
538         // MonitorEnter information. We can live with that.
539         GetLockOwnerInfo(&owners_method, &owners_dex_pc, orig_owner);
540 
541         // Reacquire mutator_lock_ for logging.
542         ScopedObjectAccess soa(self);
543 
544         const bool should_dump_stacks = stack_dump_lock_profiling_threshold_ > 0 &&
545             wait_ms > stack_dump_lock_profiling_threshold_;
546 
547         // Acquire thread-list lock to find thread and keep it from dying until we've got all
548         // the info we need.
549         Locks::thread_list_lock_->ExclusiveLock(self);
550 
551         // Is there still a thread at the same address as the original owner?
552         // We tolerate the fact that it may occasionally be the wrong one.
553         if (Runtime::Current()->GetThreadList()->Contains(orig_owner)) {
554           uint32_t original_owner_tid = orig_owner->GetTid();  // System thread id.
555           std::string original_owner_name;
556           orig_owner->GetThreadName(original_owner_name);
557           std::string owner_stack_dump;
558 
559           if (should_dump_stacks) {
560             // Very long contention. Dump stacks.
561             struct CollectStackTrace : public Closure {
562               void Run(art::Thread* thread) override
563                   REQUIRES_SHARED(art::Locks::mutator_lock_) {
564                 thread->DumpJavaStack(oss);
565               }
566 
567               std::ostringstream oss;
568             };
569             CollectStackTrace owner_trace;
570             // RequestSynchronousCheckpoint releases the thread_list_lock_ as a part of its
571             // execution.
572             orig_owner->RequestSynchronousCheckpoint(&owner_trace);
573             owner_stack_dump = owner_trace.oss.str();
574           } else {
575             Locks::thread_list_lock_->ExclusiveUnlock(self);
576           }
577 
578           // This is all the data we need. We dropped the thread-list lock, it's OK for the
579           // owner to go away now.
580 
581           if (should_dump_stacks) {
582             // Give the detailed traces for really long contention.
583             // This must be here (and not above) because we cannot hold the thread-list lock
584             // while running the checkpoint.
585             std::ostringstream self_trace_oss;
586             self->DumpJavaStack(self_trace_oss);
587 
588             uint32_t pc;
589             ArtMethod* m = self->GetCurrentMethod(&pc);
590 
591             LOG(WARNING) << "Long "
592                 << PrettyContentionInfo(original_owner_name,
593                                         original_owner_tid,
594                                         owners_method,
595                                         owners_dex_pc,
596                                         num_waiters)
597                 << " in " << ArtMethod::PrettyMethod(m) << " for "
598                 << PrettyDuration(MsToNs(wait_ms)) << "\n"
599                 << "Current owner stack:\n" << owner_stack_dump
600                 << "Contender stack:\n" << self_trace_oss.str();
601           } else if (wait_ms > kLongWaitMs && owners_method != nullptr) {
602             uint32_t pc;
603             ArtMethod* m = self->GetCurrentMethod(&pc);
604             // TODO: We should maybe check that original_owner is still a live thread.
605             LOG(WARNING) << "Long "
606                 << PrettyContentionInfo(original_owner_name,
607                                         original_owner_tid,
608                                         owners_method,
609                                         owners_dex_pc,
610                                         num_waiters)
611                 << " in " << ArtMethod::PrettyMethod(m) << " for "
612                 << PrettyDuration(MsToNs(wait_ms));
613           }
614           LogContentionEvent(self,
615                             wait_ms,
616                             sample_percent,
617                             owners_method,
618                             owners_dex_pc);
619         } else {
620           Locks::thread_list_lock_->ExclusiveUnlock(self);
621         }
622       }
623     }
624   }
625   // We've successfully acquired monitor_lock_, released thread_list_lock, and are runnable.
626 
627   // We avoided touching monitor fields while suspended, so set owner_ here.
628   owner_.store(self, std::memory_order_relaxed);
629   DCHECK_EQ(lock_count_, 0u);
630 
631   if (ATraceEnabled()) {
632     SetLockingMethodNoProxy(self);
633   }
634   if (started_trace) {
635     ATraceEnd();
636   }
637   self->SetMonitorEnterObject(nullptr);
638   num_waiters_.fetch_sub(1, std::memory_order_relaxed);
639   DCHECK(monitor_lock_.IsExclusiveHeld(self));
640   // We need to pair this with a single contended locking call. NB we match the RI behavior and call
641   // this even if MonitorEnter failed.
642   if (called_monitors_callback) {
643     CHECK(reason == LockReason::kForLock);
644     Runtime::Current()->GetRuntimeCallbacks()->MonitorContendedLocked(this);
645   }
646 }
647 
648 template void Monitor::Lock<LockReason::kForLock>(Thread* self);
649 template void Monitor::Lock<LockReason::kForWait>(Thread* self);
650 
651 static void ThrowIllegalMonitorStateExceptionF(const char* fmt, ...)
652                                               __attribute__((format(printf, 1, 2)));
653 
ThrowIllegalMonitorStateExceptionF(const char * fmt,...)654 static void ThrowIllegalMonitorStateExceptionF(const char* fmt, ...)
655     REQUIRES_SHARED(Locks::mutator_lock_) {
656   va_list args;
657   va_start(args, fmt);
658   Thread* self = Thread::Current();
659   self->ThrowNewExceptionV("Ljava/lang/IllegalMonitorStateException;", fmt, args);
660   if (!Runtime::Current()->IsStarted() || VLOG_IS_ON(monitor)) {
661     std::ostringstream ss;
662     self->Dump(ss);
663     LOG(Runtime::Current()->IsStarted() ? ::android::base::INFO : ::android::base::ERROR)
664         << self->GetException()->Dump() << "\n" << ss.str();
665   }
666   va_end(args);
667 }
668 
ThreadToString(Thread * thread)669 static std::string ThreadToString(Thread* thread) {
670   if (thread == nullptr) {
671     return "nullptr";
672   }
673   std::ostringstream oss;
674   // TODO: alternatively, we could just return the thread's name.
675   oss << *thread;
676   return oss.str();
677 }
678 
FailedUnlock(ObjPtr<mirror::Object> o,uint32_t expected_owner_thread_id,uint32_t found_owner_thread_id,Monitor * monitor)679 void Monitor::FailedUnlock(ObjPtr<mirror::Object> o,
680                            uint32_t expected_owner_thread_id,
681                            uint32_t found_owner_thread_id,
682                            Monitor* monitor) {
683   std::string current_owner_string;
684   std::string expected_owner_string;
685   std::string found_owner_string;
686   uint32_t current_owner_thread_id = 0u;
687   {
688     MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
689     ThreadList* const thread_list = Runtime::Current()->GetThreadList();
690     Thread* expected_owner = thread_list->FindThreadByThreadId(expected_owner_thread_id);
691     Thread* found_owner = thread_list->FindThreadByThreadId(found_owner_thread_id);
692 
693     // Re-read owner now that we hold lock.
694     Thread* current_owner = (monitor != nullptr) ? monitor->GetOwner() : nullptr;
695     if (current_owner != nullptr) {
696       current_owner_thread_id = current_owner->GetThreadId();
697     }
698     // Get short descriptions of the threads involved.
699     current_owner_string = ThreadToString(current_owner);
700     expected_owner_string = expected_owner != nullptr ? ThreadToString(expected_owner) : "unnamed";
701     found_owner_string = found_owner != nullptr ? ThreadToString(found_owner) : "unnamed";
702   }
703 
704   if (current_owner_thread_id == 0u) {
705     if (found_owner_thread_id == 0u) {
706       ThrowIllegalMonitorStateExceptionF("unlock of unowned monitor on object of type '%s'"
707                                          " on thread '%s'",
708                                          mirror::Object::PrettyTypeOf(o).c_str(),
709                                          expected_owner_string.c_str());
710     } else {
711       // Race: the original read found an owner but now there is none
712       ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'"
713                                          " (where now the monitor appears unowned) on thread '%s'",
714                                          found_owner_string.c_str(),
715                                          mirror::Object::PrettyTypeOf(o).c_str(),
716                                          expected_owner_string.c_str());
717     }
718   } else {
719     if (found_owner_thread_id == 0u) {
720       // Race: originally there was no owner, there is now
721       ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'"
722                                          " (originally believed to be unowned) on thread '%s'",
723                                          current_owner_string.c_str(),
724                                          mirror::Object::PrettyTypeOf(o).c_str(),
725                                          expected_owner_string.c_str());
726     } else {
727       if (found_owner_thread_id != current_owner_thread_id) {
728         // Race: originally found and current owner have changed
729         ThrowIllegalMonitorStateExceptionF("unlock of monitor originally owned by '%s' (now"
730                                            " owned by '%s') on object of type '%s' on thread '%s'",
731                                            found_owner_string.c_str(),
732                                            current_owner_string.c_str(),
733                                            mirror::Object::PrettyTypeOf(o).c_str(),
734                                            expected_owner_string.c_str());
735       } else {
736         ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'"
737                                            " on thread '%s",
738                                            current_owner_string.c_str(),
739                                            mirror::Object::PrettyTypeOf(o).c_str(),
740                                            expected_owner_string.c_str());
741       }
742     }
743   }
744 }
745 
Unlock(Thread * self)746 bool Monitor::Unlock(Thread* self) {
747   DCHECK(self != nullptr);
748   Thread* owner = owner_.load(std::memory_order_relaxed);
749   if (owner == self) {
750     // We own the monitor, so nobody else can be in here.
751     CheckLockOwnerRequest(self);
752     AtraceMonitorUnlock();
753     if (lock_count_ == 0) {
754       owner_.store(nullptr, std::memory_order_relaxed);
755       SignalWaiterAndReleaseMonitorLock(self);
756     } else {
757       --lock_count_;
758       DCHECK(monitor_lock_.IsExclusiveHeld(self));
759       DCHECK_EQ(owner_.load(std::memory_order_relaxed), self);
760       // Keep monitor_lock_, but pretend we released it.
761       FakeUnlockMonitorLock();
762     }
763     return true;
764   }
765   // We don't own this, so we're not allowed to unlock it.
766   // The JNI spec says that we should throw IllegalMonitorStateException in this case.
767   uint32_t owner_thread_id = 0u;
768   {
769     MutexLock mu(self, *Locks::thread_list_lock_);
770     owner = owner_.load(std::memory_order_relaxed);
771     if (owner != nullptr) {
772       owner_thread_id = owner->GetThreadId();
773     }
774   }
775   FailedUnlock(GetObject(), self->GetThreadId(), owner_thread_id, this);
776   // Pretend to release monitor_lock_, which we should not.
777   FakeUnlockMonitorLock();
778   return false;
779 }
780 
SignalWaiterAndReleaseMonitorLock(Thread * self)781 void Monitor::SignalWaiterAndReleaseMonitorLock(Thread* self) {
782   // We want to release the monitor and signal up to one thread that was waiting
783   // but has since been notified.
784   DCHECK_EQ(lock_count_, 0u);
785   DCHECK(monitor_lock_.IsExclusiveHeld(self));
786   while (wake_set_ != nullptr) {
787     // No risk of waking ourselves here; since monitor_lock_ is not released until we're ready to
788     // return, notify can't move the current thread from wait_set_ to wake_set_ until this
789     // method is done checking wake_set_.
790     Thread* thread = wake_set_;
791     wake_set_ = thread->GetWaitNext();
792     thread->SetWaitNext(nullptr);
793     DCHECK(owner_.load(std::memory_order_relaxed) == nullptr);
794 
795     // Check to see if the thread is still waiting.
796     {
797       // In the case of wait(), we'll be acquiring another thread's GetWaitMutex with
798       // self's GetWaitMutex held. This does not risk deadlock, because we only acquire this lock
799       // for threads in the wake_set_. A thread can only enter wake_set_ from Notify or NotifyAll,
800       // and those hold monitor_lock_. Thus, the threads whose wait mutexes we acquire here must
801       // have already been released from wait(), since we have not released monitor_lock_ until
802       // after we've chosen our thread to wake, so there is no risk of the following lock ordering
803       // leading to deadlock:
804       // Thread 1 waits
805       // Thread 2 waits
806       // Thread 3 moves threads 1 and 2 from wait_set_ to wake_set_
807       // Thread 1 enters this block, and attempts to acquire Thread 2's GetWaitMutex to wake it
808       // Thread 2 enters this block, and attempts to acquire Thread 1's GetWaitMutex to wake it
809       //
810       // Since monitor_lock_ is not released until the thread-to-be-woken-up's GetWaitMutex is
811       // acquired, two threads cannot attempt to acquire each other's GetWaitMutex while holding
812       // their own and cause deadlock.
813       MutexLock wait_mu(self, *thread->GetWaitMutex());
814       if (thread->GetWaitMonitor() != nullptr) {
815         // Release the lock, so that a potentially awakened thread will not
816         // immediately contend on it. The lock ordering here is:
817         // monitor_lock_, self->GetWaitMutex, thread->GetWaitMutex
818         monitor_lock_.Unlock(self);  // Releases contenders.
819         thread->GetWaitConditionVariable()->Signal(self);
820         return;
821       }
822     }
823   }
824   monitor_lock_.Unlock(self);
825   DCHECK(!monitor_lock_.IsExclusiveHeld(self));
826 }
827 
Wait(Thread * self,int64_t ms,int32_t ns,bool interruptShouldThrow,ThreadState why)828 void Monitor::Wait(Thread* self, int64_t ms, int32_t ns,
829                    bool interruptShouldThrow, ThreadState why) {
830   DCHECK(self != nullptr);
831   DCHECK(why == ThreadState::kTimedWaiting ||
832          why == ThreadState::kWaiting ||
833          why == ThreadState::kSleeping);
834 
835   // Make sure that we hold the lock.
836   if (owner_.load(std::memory_order_relaxed) != self) {
837     ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()");
838     return;
839   }
840 
841   // We need to turn a zero-length timed wait into a regular wait because
842   // Object.wait(0, 0) is defined as Object.wait(0), which is defined as Object.wait().
843   if (why == ThreadState::kTimedWaiting && (ms == 0 && ns == 0)) {
844     why = ThreadState::kWaiting;
845   }
846 
847   // Enforce the timeout range.
848   if (ms < 0 || ns < 0 || ns > 999999) {
849     self->ThrowNewExceptionF("Ljava/lang/IllegalArgumentException;",
850                              "timeout arguments out of range: ms=%" PRId64 " ns=%d", ms, ns);
851     return;
852   }
853 
854   CheckLockOwnerRequest(self);
855 
856   /*
857    * Release our hold - we need to let it go even if we're a few levels
858    * deep in a recursive lock, and we need to restore that later.
859    */
860   unsigned int prev_lock_count = lock_count_;
861   lock_count_ = 0;
862 
863   AtraceMonitorUnlock();  // For the implict Unlock() just above. This will only end the deepest
864                           // nesting, but that is enough for the visualization, and corresponds to
865                           // the single Lock() we do afterwards.
866   AtraceMonitorLock(self, GetObject(), /* is_wait= */ true);
867 
868   bool was_interrupted = false;
869   bool timed_out = false;
870   // Update monitor state now; it's not safe once we're "suspended".
871   owner_.store(nullptr, std::memory_order_relaxed);
872   num_waiters_.fetch_add(1, std::memory_order_relaxed);
873   {
874     // Update thread state. If the GC wakes up, it'll ignore us, knowing
875     // that we won't touch any references in this state, and we'll check
876     // our suspend mode before we transition out.
877     ScopedThreadSuspension sts(self, why);
878 
879     // Pseudo-atomically wait on self's wait_cond_ and release the monitor lock.
880     MutexLock mu(self, *self->GetWaitMutex());
881 
882     /*
883      * Add ourselves to the set of threads waiting on this monitor.
884      * It's important that we are only added to the wait set after
885      * acquiring our GetWaitMutex, so that calls to Notify() that occur after we
886      * have released monitor_lock_ will not move us from wait_set_ to wake_set_
887      * until we've signalled contenders on this monitor.
888      */
889     AppendToWaitSet(self);
890 
891     // Set wait_monitor_ to the monitor object we will be waiting on. When wait_monitor_ is
892     // non-null a notifying or interrupting thread must signal the thread's wait_cond_ to wake it
893     // up.
894     DCHECK(self->GetWaitMonitor() == nullptr);
895     self->SetWaitMonitor(this);
896 
897     // Release the monitor lock.
898     DCHECK(monitor_lock_.IsExclusiveHeld(self));
899     SignalWaiterAndReleaseMonitorLock(self);
900 
901     // Handle the case where the thread was interrupted before we called wait().
902     if (self->IsInterrupted()) {
903       was_interrupted = true;
904     } else {
905       // Wait for a notification or a timeout to occur.
906       if (why == ThreadState::kWaiting) {
907         self->GetWaitConditionVariable()->Wait(self);
908       } else {
909         DCHECK(why == ThreadState::kTimedWaiting || why == ThreadState::kSleeping) << why;
910         timed_out = self->GetWaitConditionVariable()->TimedWait(self, ms, ns);
911       }
912       was_interrupted = self->IsInterrupted();
913     }
914   }
915 
916   {
917     // We reset the thread's wait_monitor_ field after transitioning back to runnable so
918     // that a thread in a waiting/sleeping state has a non-null wait_monitor_ for debugging
919     // and diagnostic purposes. (If you reset this earlier, stack dumps will claim that threads
920     // are waiting on "null".)
921     MutexLock mu(self, *self->GetWaitMutex());
922     DCHECK(self->GetWaitMonitor() != nullptr);
923     self->SetWaitMonitor(nullptr);
924   }
925 
926   // Allocate the interrupted exception not holding the monitor lock since it may cause a GC.
927   // If the GC requires acquiring the monitor for enqueuing cleared references, this would
928   // cause a deadlock if the monitor is held.
929   if (was_interrupted && interruptShouldThrow) {
930     /*
931      * We were interrupted while waiting, or somebody interrupted an
932      * un-interruptible thread earlier and we're bailing out immediately.
933      *
934      * The doc sayeth: "The interrupted status of the current thread is
935      * cleared when this exception is thrown."
936      */
937     self->SetInterrupted(false);
938     self->ThrowNewException("Ljava/lang/InterruptedException;", nullptr);
939   }
940 
941   AtraceMonitorUnlock();  // End Wait().
942 
943   // We just slept, tell the runtime callbacks about this.
944   Runtime::Current()->GetRuntimeCallbacks()->MonitorWaitFinished(this, timed_out);
945 
946   // Re-acquire the monitor and lock.
947   Lock<LockReason::kForWait>(self);
948   lock_count_ = prev_lock_count;
949   DCHECK(monitor_lock_.IsExclusiveHeld(self));
950   self->GetWaitMutex()->AssertNotHeld(self);
951 
952   num_waiters_.fetch_sub(1, std::memory_order_relaxed);
953   RemoveFromWaitSet(self);
954 }
955 
Notify(Thread * self)956 void Monitor::Notify(Thread* self) {
957   DCHECK(self != nullptr);
958   // Make sure that we hold the lock.
959   if (owner_.load(std::memory_order_relaxed) != self) {
960     ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()");
961     return;
962   }
963   // Move one thread from waiters to wake set
964   Thread* to_move = wait_set_;
965   if (to_move != nullptr) {
966     wait_set_ = to_move->GetWaitNext();
967     to_move->SetWaitNext(wake_set_);
968     wake_set_ = to_move;
969   }
970 }
971 
NotifyAll(Thread * self)972 void Monitor::NotifyAll(Thread* self) {
973   DCHECK(self != nullptr);
974   // Make sure that we hold the lock.
975   if (owner_.load(std::memory_order_relaxed) != self) {
976     ThrowIllegalMonitorStateExceptionF("object not locked by thread before notifyAll()");
977     return;
978   }
979 
980   // Move all threads from waiters to wake set
981   Thread* to_move = wait_set_;
982   if (to_move != nullptr) {
983     wait_set_ = nullptr;
984     Thread* move_to = wake_set_;
985     if (move_to == nullptr) {
986       wake_set_ = to_move;
987       return;
988     }
989     while (move_to->GetWaitNext() != nullptr) {
990       move_to = move_to->GetWaitNext();
991     }
992     move_to->SetWaitNext(to_move);
993   }
994 }
995 
Deflate(Thread * self,ObjPtr<mirror::Object> obj)996 bool Monitor::Deflate(Thread* self, ObjPtr<mirror::Object> obj) {
997   DCHECK(obj != nullptr);
998   // Don't need volatile since we only deflate with mutators suspended.
999   LockWord lw(obj->GetLockWord(false));
1000   // If the lock isn't an inflated monitor, then we don't need to deflate anything.
1001   if (lw.GetState() == LockWord::kFatLocked) {
1002     Monitor* monitor = lw.FatLockMonitor();
1003     DCHECK(monitor != nullptr);
1004     // Can't deflate if we have anybody waiting on the CV or trying to acquire the monitor.
1005     if (monitor->num_waiters_.load(std::memory_order_relaxed) > 0) {
1006       return false;
1007     }
1008     if (!monitor->monitor_lock_.ExclusiveTryLock(self)) {
1009       // We cannot deflate a monitor that's currently held. It's unclear whether we should if
1010       // we could.
1011       return false;
1012     }
1013     DCHECK_EQ(monitor->lock_count_, 0u);
1014     DCHECK_EQ(monitor->owner_.load(std::memory_order_relaxed), static_cast<Thread*>(nullptr));
1015     if (monitor->HasHashCode()) {
1016       LockWord new_lw = LockWord::FromHashCode(monitor->GetHashCode(), lw.GCState());
1017       // Assume no concurrent read barrier state changes as mutators are suspended.
1018       obj->SetLockWord(new_lw, false);
1019       VLOG(monitor) << "Deflated " << obj << " to hash monitor " << monitor->GetHashCode();
1020     } else {
1021       // No lock and no hash, just put an empty lock word inside the object.
1022       LockWord new_lw = LockWord::FromDefault(lw.GCState());
1023       // Assume no concurrent read barrier state changes as mutators are suspended.
1024       obj->SetLockWord(new_lw, false);
1025       VLOG(monitor) << "Deflated" << obj << " to empty lock word";
1026     }
1027     monitor->monitor_lock_.ExclusiveUnlock(self);
1028     DCHECK(!(monitor->monitor_lock_.IsExclusiveHeld(self)));
1029     // The monitor is deflated, mark the object as null so that we know to delete it during the
1030     // next GC.
1031     monitor->obj_ = GcRoot<mirror::Object>(nullptr);
1032   }
1033   return true;
1034 }
1035 
Inflate(Thread * self,Thread * owner,ObjPtr<mirror::Object> obj,int32_t hash_code)1036 void Monitor::Inflate(Thread* self, Thread* owner, ObjPtr<mirror::Object> obj, int32_t hash_code) {
1037   DCHECK(self != nullptr);
1038   DCHECK(obj != nullptr);
1039   // Allocate and acquire a new monitor.
1040   Monitor* m = MonitorPool::CreateMonitor(self, owner, obj, hash_code);
1041   DCHECK(m != nullptr);
1042   if (m->Install(self)) {
1043     if (owner != nullptr) {
1044       VLOG(monitor) << "monitor: thread" << owner->GetThreadId()
1045           << " created monitor " << m << " for object " << obj;
1046     } else {
1047       VLOG(monitor) << "monitor: Inflate with hashcode " << hash_code
1048           << " created monitor " << m << " for object " << obj;
1049     }
1050     Runtime::Current()->GetMonitorList()->Add(m);
1051     CHECK_EQ(obj->GetLockWord(true).GetState(), LockWord::kFatLocked);
1052   } else {
1053     MonitorPool::ReleaseMonitor(self, m);
1054   }
1055 }
1056 
InflateThinLocked(Thread * self,Handle<mirror::Object> obj,LockWord lock_word,uint32_t hash_code)1057 void Monitor::InflateThinLocked(Thread* self, Handle<mirror::Object> obj, LockWord lock_word,
1058                                 uint32_t hash_code) {
1059   DCHECK_EQ(lock_word.GetState(), LockWord::kThinLocked);
1060   uint32_t owner_thread_id = lock_word.ThinLockOwner();
1061   if (owner_thread_id == self->GetThreadId()) {
1062     // We own the monitor, we can easily inflate it.
1063     Inflate(self, self, obj.Get(), hash_code);
1064   } else {
1065     ThreadList* thread_list = Runtime::Current()->GetThreadList();
1066     // Suspend the owner, inflate. First change to blocked and give up mutator_lock_.
1067     self->SetMonitorEnterObject(obj.Get());
1068     bool timed_out;
1069     Thread* owner;
1070     {
1071       ScopedThreadSuspension sts(self, ThreadState::kWaitingForLockInflation);
1072       owner = thread_list->SuspendThreadByThreadId(owner_thread_id,
1073                                                    SuspendReason::kInternal,
1074                                                    &timed_out);
1075     }
1076     if (owner != nullptr) {
1077       // We succeeded in suspending the thread, check the lock's status didn't change.
1078       lock_word = obj->GetLockWord(true);
1079       if (lock_word.GetState() == LockWord::kThinLocked &&
1080           lock_word.ThinLockOwner() == owner_thread_id) {
1081         // Go ahead and inflate the lock.
1082         Inflate(self, owner, obj.Get(), hash_code);
1083       }
1084       bool resumed = thread_list->Resume(owner, SuspendReason::kInternal);
1085       DCHECK(resumed);
1086     }
1087     self->SetMonitorEnterObject(nullptr);
1088   }
1089 }
1090 
1091 // Fool annotalysis into thinking that the lock on obj is acquired.
FakeLock(ObjPtr<mirror::Object> obj)1092 static ObjPtr<mirror::Object> FakeLock(ObjPtr<mirror::Object> obj)
1093     EXCLUSIVE_LOCK_FUNCTION(obj.Ptr()) NO_THREAD_SAFETY_ANALYSIS {
1094   return obj;
1095 }
1096 
1097 // Fool annotalysis into thinking that the lock on obj is release.
FakeUnlock(ObjPtr<mirror::Object> obj)1098 static ObjPtr<mirror::Object> FakeUnlock(ObjPtr<mirror::Object> obj)
1099     UNLOCK_FUNCTION(obj.Ptr()) NO_THREAD_SAFETY_ANALYSIS {
1100   return obj;
1101 }
1102 
MonitorEnter(Thread * self,ObjPtr<mirror::Object> obj,bool trylock)1103 ObjPtr<mirror::Object> Monitor::MonitorEnter(Thread* self,
1104                                              ObjPtr<mirror::Object> obj,
1105                                              bool trylock) {
1106   DCHECK(self != nullptr);
1107   DCHECK(obj != nullptr);
1108   self->AssertThreadSuspensionIsAllowable();
1109   obj = FakeLock(obj);
1110   uint32_t thread_id = self->GetThreadId();
1111   size_t contention_count = 0;
1112   constexpr size_t kExtraSpinIters = 100;
1113   StackHandleScope<1> hs(self);
1114   Handle<mirror::Object> h_obj(hs.NewHandle(obj));
1115   while (true) {
1116     // We initially read the lockword with ordinary Java/relaxed semantics. When stronger
1117     // semantics are needed, we address it below. Since GetLockWord bottoms out to a relaxed load,
1118     // we can fix it later, in an infrequently executed case, with a fence.
1119     LockWord lock_word = h_obj->GetLockWord(false);
1120     switch (lock_word.GetState()) {
1121       case LockWord::kUnlocked: {
1122         // No ordering required for preceding lockword read, since we retest.
1123         LockWord thin_locked(LockWord::FromThinLockId(thread_id, 0, lock_word.GCState()));
1124         if (h_obj->CasLockWord(lock_word, thin_locked, CASMode::kWeak, std::memory_order_acquire)) {
1125           AtraceMonitorLock(self, h_obj.Get(), /* is_wait= */ false);
1126           return h_obj.Get();  // Success!
1127         }
1128         continue;  // Go again.
1129       }
1130       case LockWord::kThinLocked: {
1131         uint32_t owner_thread_id = lock_word.ThinLockOwner();
1132         if (owner_thread_id == thread_id) {
1133           // No ordering required for initial lockword read.
1134           // We own the lock, increase the recursion count.
1135           uint32_t new_count = lock_word.ThinLockCount() + 1;
1136           if (LIKELY(new_count <= LockWord::kThinLockMaxCount)) {
1137             LockWord thin_locked(LockWord::FromThinLockId(thread_id,
1138                                                           new_count,
1139                                                           lock_word.GCState()));
1140             // Only this thread pays attention to the count. Thus there is no need for stronger
1141             // than relaxed memory ordering.
1142             if (!gUseReadBarrier) {
1143               h_obj->SetLockWord(thin_locked, /* as_volatile= */ false);
1144               AtraceMonitorLock(self, h_obj.Get(), /* is_wait= */ false);
1145               return h_obj.Get();  // Success!
1146             } else {
1147               // Use CAS to preserve the read barrier state.
1148               if (h_obj->CasLockWord(lock_word,
1149                                      thin_locked,
1150                                      CASMode::kWeak,
1151                                      std::memory_order_relaxed)) {
1152                 AtraceMonitorLock(self, h_obj.Get(), /* is_wait= */ false);
1153                 return h_obj.Get();  // Success!
1154               }
1155             }
1156             continue;  // Go again.
1157           } else {
1158             // We'd overflow the recursion count, so inflate the monitor.
1159             InflateThinLocked(self, h_obj, lock_word, 0);
1160           }
1161         } else {
1162           if (trylock) {
1163             return nullptr;
1164           }
1165           // Contention.
1166           contention_count++;
1167           Runtime* runtime = Runtime::Current();
1168           if (contention_count
1169               <= kExtraSpinIters + runtime->GetMaxSpinsBeforeThinLockInflation()) {
1170             // TODO: Consider switching the thread state to kWaitingForLockInflation when we are
1171             // yielding.  Use sched_yield instead of NanoSleep since NanoSleep can wait much longer
1172             // than the parameter you pass in. This can cause thread suspension to take excessively
1173             // long and make long pauses. See b/16307460.
1174             if (contention_count > kExtraSpinIters) {
1175               sched_yield();
1176             }
1177           } else {
1178             contention_count = 0;
1179             // No ordering required for initial lockword read. Install rereads it anyway.
1180             InflateThinLocked(self, h_obj, lock_word, 0);
1181           }
1182         }
1183         continue;  // Start from the beginning.
1184       }
1185       case LockWord::kFatLocked: {
1186         // We should have done an acquire read of the lockword initially, to ensure
1187         // visibility of the monitor data structure. Use an explicit fence instead.
1188         std::atomic_thread_fence(std::memory_order_acquire);
1189         Monitor* mon = lock_word.FatLockMonitor();
1190         if (trylock) {
1191           return mon->TryLock(self) ? h_obj.Get() : nullptr;
1192         } else {
1193           mon->Lock(self);
1194           DCHECK(mon->monitor_lock_.IsExclusiveHeld(self));
1195           return h_obj.Get();  // Success!
1196         }
1197       }
1198       case LockWord::kHashCode:
1199         // Inflate with the existing hashcode.
1200         // Again no ordering required for initial lockword read, since we don't rely
1201         // on the visibility of any prior computation.
1202         Inflate(self, nullptr, h_obj.Get(), lock_word.GetHashCode());
1203         continue;  // Start from the beginning.
1204       default: {
1205         LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
1206         UNREACHABLE();
1207       }
1208     }
1209   }
1210 }
1211 
MonitorExit(Thread * self,ObjPtr<mirror::Object> obj)1212 bool Monitor::MonitorExit(Thread* self, ObjPtr<mirror::Object> obj) {
1213   DCHECK(self != nullptr);
1214   DCHECK(obj != nullptr);
1215   self->AssertThreadSuspensionIsAllowable();
1216   obj = FakeUnlock(obj);
1217   StackHandleScope<1> hs(self);
1218   Handle<mirror::Object> h_obj(hs.NewHandle(obj));
1219   while (true) {
1220     LockWord lock_word = obj->GetLockWord(true);
1221     switch (lock_word.GetState()) {
1222       case LockWord::kHashCode:
1223         // Fall-through.
1224       case LockWord::kUnlocked:
1225         FailedUnlock(h_obj.Get(), self->GetThreadId(), 0u, nullptr);
1226         return false;  // Failure.
1227       case LockWord::kThinLocked: {
1228         uint32_t thread_id = self->GetThreadId();
1229         uint32_t owner_thread_id = lock_word.ThinLockOwner();
1230         if (owner_thread_id != thread_id) {
1231           FailedUnlock(h_obj.Get(), thread_id, owner_thread_id, nullptr);
1232           return false;  // Failure.
1233         } else {
1234           // We own the lock, decrease the recursion count.
1235           LockWord new_lw = LockWord::Default();
1236           if (lock_word.ThinLockCount() != 0) {
1237             uint32_t new_count = lock_word.ThinLockCount() - 1;
1238             new_lw = LockWord::FromThinLockId(thread_id, new_count, lock_word.GCState());
1239           } else {
1240             new_lw = LockWord::FromDefault(lock_word.GCState());
1241           }
1242           if (!gUseReadBarrier) {
1243             DCHECK_EQ(new_lw.ReadBarrierState(), 0U);
1244             // TODO: This really only needs memory_order_release, but we currently have
1245             // no way to specify that. In fact there seem to be no legitimate uses of SetLockWord
1246             // with a final argument of true. This slows down x86 and ARMv7, but probably not v8.
1247             h_obj->SetLockWord(new_lw, true);
1248             AtraceMonitorUnlock();
1249             // Success!
1250             return true;
1251           } else {
1252             // Use CAS to preserve the read barrier state.
1253             if (h_obj->CasLockWord(lock_word, new_lw, CASMode::kWeak, std::memory_order_release)) {
1254               AtraceMonitorUnlock();
1255               // Success!
1256               return true;
1257             }
1258           }
1259           continue;  // Go again.
1260         }
1261       }
1262       case LockWord::kFatLocked: {
1263         Monitor* mon = lock_word.FatLockMonitor();
1264         return mon->Unlock(self);
1265       }
1266       default: {
1267         LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
1268         UNREACHABLE();
1269       }
1270     }
1271   }
1272 }
1273 
Wait(Thread * self,ObjPtr<mirror::Object> obj,int64_t ms,int32_t ns,bool interruptShouldThrow,ThreadState why)1274 void Monitor::Wait(Thread* self,
1275                    ObjPtr<mirror::Object> obj,
1276                    int64_t ms,
1277                    int32_t ns,
1278                    bool interruptShouldThrow,
1279                    ThreadState why) {
1280   DCHECK(self != nullptr);
1281   DCHECK(obj != nullptr);
1282   StackHandleScope<1> hs(self);
1283   Handle<mirror::Object> h_obj(hs.NewHandle(obj));
1284 
1285   Runtime::Current()->GetRuntimeCallbacks()->ObjectWaitStart(h_obj, ms);
1286   if (UNLIKELY(self->ObserveAsyncException() || self->IsExceptionPending())) {
1287     // See b/65558434 for information on handling of exceptions here.
1288     return;
1289   }
1290 
1291   LockWord lock_word = h_obj->GetLockWord(true);
1292   while (lock_word.GetState() != LockWord::kFatLocked) {
1293     switch (lock_word.GetState()) {
1294       case LockWord::kHashCode:
1295         // Fall-through.
1296       case LockWord::kUnlocked:
1297         ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()");
1298         return;  // Failure.
1299       case LockWord::kThinLocked: {
1300         uint32_t thread_id = self->GetThreadId();
1301         uint32_t owner_thread_id = lock_word.ThinLockOwner();
1302         if (owner_thread_id != thread_id) {
1303           ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()");
1304           return;  // Failure.
1305         } else {
1306           // We own the lock, inflate to enqueue ourself on the Monitor. May fail spuriously so
1307           // re-load.
1308           Inflate(self, self, h_obj.Get(), 0);
1309           lock_word = h_obj->GetLockWord(true);
1310         }
1311         break;
1312       }
1313       case LockWord::kFatLocked:  // Unreachable given the loop condition above. Fall-through.
1314       default: {
1315         LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
1316         UNREACHABLE();
1317       }
1318     }
1319   }
1320   Monitor* mon = lock_word.FatLockMonitor();
1321   mon->Wait(self, ms, ns, interruptShouldThrow, why);
1322 }
1323 
DoNotify(Thread * self,ObjPtr<mirror::Object> obj,bool notify_all)1324 void Monitor::DoNotify(Thread* self, ObjPtr<mirror::Object> obj, bool notify_all) {
1325   DCHECK(self != nullptr);
1326   DCHECK(obj != nullptr);
1327   LockWord lock_word = obj->GetLockWord(true);
1328   switch (lock_word.GetState()) {
1329     case LockWord::kHashCode:
1330       // Fall-through.
1331     case LockWord::kUnlocked:
1332       ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()");
1333       return;  // Failure.
1334     case LockWord::kThinLocked: {
1335       uint32_t thread_id = self->GetThreadId();
1336       uint32_t owner_thread_id = lock_word.ThinLockOwner();
1337       if (owner_thread_id != thread_id) {
1338         ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()");
1339         return;  // Failure.
1340       } else {
1341         // We own the lock but there's no Monitor and therefore no waiters.
1342         return;  // Success.
1343       }
1344     }
1345     case LockWord::kFatLocked: {
1346       Monitor* mon = lock_word.FatLockMonitor();
1347       if (notify_all) {
1348         mon->NotifyAll(self);
1349       } else {
1350         mon->Notify(self);
1351       }
1352       return;  // Success.
1353     }
1354     default: {
1355       LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
1356       UNREACHABLE();
1357     }
1358   }
1359 }
1360 
GetLockOwnerThreadId(ObjPtr<mirror::Object> obj)1361 uint32_t Monitor::GetLockOwnerThreadId(ObjPtr<mirror::Object> obj) {
1362   DCHECK(obj != nullptr);
1363   LockWord lock_word = obj->GetLockWord(true);
1364   switch (lock_word.GetState()) {
1365     case LockWord::kHashCode:
1366       // Fall-through.
1367     case LockWord::kUnlocked:
1368       return ThreadList::kInvalidThreadId;
1369     case LockWord::kThinLocked:
1370       return lock_word.ThinLockOwner();
1371     case LockWord::kFatLocked: {
1372       Monitor* mon = lock_word.FatLockMonitor();
1373       return mon->GetOwnerThreadId();
1374     }
1375     default: {
1376       LOG(FATAL) << "Unreachable";
1377       UNREACHABLE();
1378     }
1379   }
1380 }
1381 
FetchState(const Thread * thread,ObjPtr<mirror::Object> * monitor_object,uint32_t * lock_owner_tid)1382 ThreadState Monitor::FetchState(const Thread* thread,
1383                                 /* out */ ObjPtr<mirror::Object>* monitor_object,
1384                                 /* out */ uint32_t* lock_owner_tid) {
1385   DCHECK(monitor_object != nullptr);
1386   DCHECK(lock_owner_tid != nullptr);
1387 
1388   *monitor_object = nullptr;
1389   *lock_owner_tid = ThreadList::kInvalidThreadId;
1390 
1391   ThreadState state = thread->GetState();
1392 
1393   switch (state) {
1394     case ThreadState::kWaiting:
1395     case ThreadState::kTimedWaiting:
1396     case ThreadState::kSleeping:
1397     {
1398       Thread* self = Thread::Current();
1399       MutexLock mu(self, *thread->GetWaitMutex());
1400       Monitor* monitor = thread->GetWaitMonitor();
1401       if (monitor != nullptr) {
1402         *monitor_object = monitor->GetObject();
1403       }
1404     }
1405     break;
1406 
1407     case ThreadState::kBlocked:
1408     case ThreadState::kWaitingForLockInflation:
1409     {
1410       ObjPtr<mirror::Object> lock_object = thread->GetMonitorEnterObject();
1411       if (lock_object != nullptr) {
1412         if (gUseReadBarrier && Thread::Current()->GetIsGcMarking()) {
1413           // We may call Thread::Dump() in the middle of the CC thread flip and this thread's stack
1414           // may have not been flipped yet and "pretty_object" may be a from-space (stale) ref, in
1415           // which case the GetLockOwnerThreadId() call below will crash. So explicitly mark/forward
1416           // it here.
1417           lock_object = ReadBarrier::Mark(lock_object.Ptr());
1418         }
1419         *monitor_object = lock_object;
1420         *lock_owner_tid = lock_object->GetLockOwnerThreadId();
1421       }
1422     }
1423     break;
1424 
1425     default:
1426       break;
1427   }
1428 
1429   return state;
1430 }
1431 
GetContendedMonitor(Thread * thread)1432 ObjPtr<mirror::Object> Monitor::GetContendedMonitor(Thread* thread) {
1433   // This is used to implement JDWP's ThreadReference.CurrentContendedMonitor, and has a bizarre
1434   // definition of contended that includes a monitor a thread is trying to enter...
1435   ObjPtr<mirror::Object> result = thread->GetMonitorEnterObject();
1436   if (result == nullptr) {
1437     // ...but also a monitor that the thread is waiting on.
1438     MutexLock mu(Thread::Current(), *thread->GetWaitMutex());
1439     Monitor* monitor = thread->GetWaitMonitor();
1440     if (monitor != nullptr) {
1441       result = monitor->GetObject();
1442     }
1443   }
1444   return result;
1445 }
1446 
VisitLocks(StackVisitor * stack_visitor,void (* callback)(ObjPtr<mirror::Object>,void *),void * callback_context,bool abort_on_failure)1447 void Monitor::VisitLocks(StackVisitor* stack_visitor,
1448                          void (*callback)(ObjPtr<mirror::Object>, void*),
1449                          void* callback_context,
1450                          bool abort_on_failure) {
1451   ArtMethod* m = stack_visitor->GetMethod();
1452   CHECK(m != nullptr);
1453 
1454   // Native methods are an easy special case.
1455   // TODO: use the JNI implementation's table of explicit MonitorEnter calls and dump those too.
1456   if (m->IsNative()) {
1457     if (m->IsSynchronized()) {
1458       DCHECK(!m->IsCriticalNative());
1459       DCHECK(!m->IsFastNative());
1460       ObjPtr<mirror::Object> lock;
1461       if (m->IsStatic()) {
1462         // Static methods synchronize on the declaring class object.
1463         lock = m->GetDeclaringClass();
1464       } else {
1465         // Instance methods synchronize on the `this` object.
1466         // The `this` reference is stored in the first out vreg in the caller's frame.
1467         uint8_t* sp = reinterpret_cast<uint8_t*>(stack_visitor->GetCurrentQuickFrame());
1468         size_t frame_size = stack_visitor->GetCurrentQuickFrameInfo().FrameSizeInBytes();
1469         lock = reinterpret_cast<StackReference<mirror::Object>*>(
1470             sp + frame_size + static_cast<size_t>(kRuntimePointerSize))->AsMirrorPtr();
1471       }
1472       callback(lock, callback_context);
1473     }
1474     return;
1475   }
1476 
1477   // Proxy methods should not be synchronized.
1478   if (m->IsProxyMethod()) {
1479     CHECK(!m->IsSynchronized());
1480     return;
1481   }
1482 
1483   // Is there any reason to believe there's any synchronization in this method?
1484   CHECK(m->GetCodeItem() != nullptr) << m->PrettyMethod();
1485   CodeItemDataAccessor accessor(m->DexInstructionData());
1486   if (accessor.TriesSize() == 0) {
1487     return;  // No "tries" implies no synchronization, so no held locks to report.
1488   }
1489 
1490   // Get the dex pc. If abort_on_failure is false, GetDexPc will not abort in the case it cannot
1491   // find the dex pc, and instead return kDexNoIndex. Then bail out, as it indicates we have an
1492   // inconsistent stack anyways.
1493   uint32_t dex_pc = stack_visitor->GetDexPc(abort_on_failure);
1494   if (!abort_on_failure && dex_pc == dex::kDexNoIndex) {
1495     LOG(ERROR) << "Could not find dex_pc for " << m->PrettyMethod();
1496     return;
1497   }
1498 
1499   // Ask the verifier for the dex pcs of all the monitor-enter instructions corresponding to
1500   // the locks held in this stack frame.
1501   std::vector<verifier::MethodVerifier::DexLockInfo> monitor_enter_dex_pcs;
1502   verifier::MethodVerifier::FindLocksAtDexPc(m,
1503                                              dex_pc,
1504                                              &monitor_enter_dex_pcs,
1505                                              Runtime::Current()->GetTargetSdkVersion());
1506   for (verifier::MethodVerifier::DexLockInfo& dex_lock_info : monitor_enter_dex_pcs) {
1507     // As a debug check, check that dex PC corresponds to a monitor-enter.
1508     if (kIsDebugBuild) {
1509       const Instruction& monitor_enter_instruction = accessor.InstructionAt(dex_lock_info.dex_pc);
1510       CHECK_EQ(monitor_enter_instruction.Opcode(), Instruction::MONITOR_ENTER)
1511           << "expected monitor-enter @" << dex_lock_info.dex_pc << "; was "
1512           << reinterpret_cast<const void*>(&monitor_enter_instruction);
1513     }
1514 
1515     // Iterate through the set of dex registers, as the compiler may not have held all of them
1516     // live.
1517     bool success = false;
1518     for (uint32_t dex_reg : dex_lock_info.dex_registers) {
1519       uint32_t value;
1520 
1521       // For optimized code we expect the DexRegisterMap to be present - monitor information
1522       // not be optimized out.
1523       success = stack_visitor->GetVReg(m, dex_reg, kReferenceVReg, &value);
1524       if (success) {
1525         ObjPtr<mirror::Object> o = reinterpret_cast<mirror::Object*>(value);
1526         callback(o, callback_context);
1527         break;
1528       }
1529     }
1530     DCHECK(success) << "Failed to find/read reference for monitor-enter at dex pc "
1531                     << dex_lock_info.dex_pc
1532                     << " in method "
1533                     << m->PrettyMethod();
1534     if (!success) {
1535       LOG(WARNING) << "Had a lock reported for dex pc " << dex_lock_info.dex_pc
1536                    << " but was not able to fetch a corresponding object!";
1537     }
1538   }
1539 }
1540 
IsValidLockWord(LockWord lock_word)1541 bool Monitor::IsValidLockWord(LockWord lock_word) {
1542   switch (lock_word.GetState()) {
1543     case LockWord::kUnlocked:
1544       // Nothing to check.
1545       return true;
1546     case LockWord::kThinLocked:
1547       // Basic consistency check of owner.
1548       return lock_word.ThinLockOwner() != ThreadList::kInvalidThreadId;
1549     case LockWord::kFatLocked: {
1550       // Check the  monitor appears in the monitor list.
1551       Monitor* mon = lock_word.FatLockMonitor();
1552       MonitorList* list = Runtime::Current()->GetMonitorList();
1553       MutexLock mu(Thread::Current(), list->monitor_list_lock_);
1554       for (Monitor* list_mon : list->list_) {
1555         if (mon == list_mon) {
1556           return true;  // Found our monitor.
1557         }
1558       }
1559       return false;  // Fail - unowned monitor in an object.
1560     }
1561     case LockWord::kHashCode:
1562       return true;
1563     default:
1564       LOG(FATAL) << "Unreachable";
1565       UNREACHABLE();
1566   }
1567 }
1568 
IsLocked()1569 bool Monitor::IsLocked() REQUIRES_SHARED(Locks::mutator_lock_) {
1570   return GetOwner() != nullptr;
1571 }
1572 
TranslateLocation(ArtMethod * method,uint32_t dex_pc,const char ** source_file,int32_t * line_number)1573 void Monitor::TranslateLocation(ArtMethod* method,
1574                                 uint32_t dex_pc,
1575                                 const char** source_file,
1576                                 int32_t* line_number) {
1577   // If method is null, location is unknown
1578   if (method == nullptr) {
1579     *source_file = "";
1580     *line_number = 0;
1581     return;
1582   }
1583   *source_file = method->GetDeclaringClassSourceFile();
1584   if (*source_file == nullptr) {
1585     *source_file = "";
1586   }
1587   *line_number = method->GetLineNumFromDexPC(dex_pc);
1588 }
1589 
GetOwnerThreadId()1590 uint32_t Monitor::GetOwnerThreadId() {
1591   // Make sure owner is not deallocated during access.
1592   MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
1593   Thread* owner = GetOwner();
1594   if (owner != nullptr) {
1595     return owner->GetThreadId();
1596   } else {
1597     return ThreadList::kInvalidThreadId;
1598   }
1599 }
1600 
MonitorList()1601 MonitorList::MonitorList()
1602     : allow_new_monitors_(true), monitor_list_lock_("MonitorList lock", kMonitorListLock),
1603       monitor_add_condition_("MonitorList disallow condition", monitor_list_lock_) {
1604 }
1605 
~MonitorList()1606 MonitorList::~MonitorList() {
1607   Thread* self = Thread::Current();
1608   MutexLock mu(self, monitor_list_lock_);
1609   // Release all monitors to the pool.
1610   // TODO: Is it an invariant that *all* open monitors are in the list? Then we could
1611   // clear faster in the pool.
1612   MonitorPool::ReleaseMonitors(self, &list_);
1613 }
1614 
DisallowNewMonitors()1615 void MonitorList::DisallowNewMonitors() {
1616   CHECK(!gUseReadBarrier);
1617   MutexLock mu(Thread::Current(), monitor_list_lock_);
1618   allow_new_monitors_ = false;
1619 }
1620 
AllowNewMonitors()1621 void MonitorList::AllowNewMonitors() {
1622   CHECK(!gUseReadBarrier);
1623   Thread* self = Thread::Current();
1624   MutexLock mu(self, monitor_list_lock_);
1625   allow_new_monitors_ = true;
1626   monitor_add_condition_.Broadcast(self);
1627 }
1628 
BroadcastForNewMonitors()1629 void MonitorList::BroadcastForNewMonitors() {
1630   Thread* self = Thread::Current();
1631   MutexLock mu(self, monitor_list_lock_);
1632   monitor_add_condition_.Broadcast(self);
1633 }
1634 
Add(Monitor * m)1635 void MonitorList::Add(Monitor* m) {
1636   Thread* self = Thread::Current();
1637   MutexLock mu(self, monitor_list_lock_);
1638   // CMS needs this to block for concurrent reference processing because an object allocated during
1639   // the GC won't be marked and concurrent reference processing would incorrectly clear the JNI weak
1640   // ref. But CC (gUseReadBarrier == true) doesn't because of the to-space invariant.
1641   while (!gUseReadBarrier && UNLIKELY(!allow_new_monitors_)) {
1642     // Check and run the empty checkpoint before blocking so the empty checkpoint will work in the
1643     // presence of threads blocking for weak ref access.
1644     self->CheckEmptyCheckpointFromWeakRefAccess(&monitor_list_lock_);
1645     monitor_add_condition_.WaitHoldingLocks(self);
1646   }
1647   list_.push_front(m);
1648 }
1649 
SweepMonitorList(IsMarkedVisitor * visitor)1650 void MonitorList::SweepMonitorList(IsMarkedVisitor* visitor) {
1651   Thread* self = Thread::Current();
1652   MutexLock mu(self, monitor_list_lock_);
1653   for (auto it = list_.begin(); it != list_.end(); ) {
1654     Monitor* m = *it;
1655     // Disable the read barrier in GetObject() as this is called by GC.
1656     ObjPtr<mirror::Object> obj = m->GetObject<kWithoutReadBarrier>();
1657     // The object of a monitor can be null if we have deflated it.
1658     ObjPtr<mirror::Object> new_obj = obj != nullptr ? visitor->IsMarked(obj.Ptr()) : nullptr;
1659     if (new_obj == nullptr) {
1660       VLOG(monitor) << "freeing monitor " << m << " belonging to unmarked object "
1661                     << obj;
1662       MonitorPool::ReleaseMonitor(self, m);
1663       it = list_.erase(it);
1664     } else {
1665       m->SetObject(new_obj);
1666       ++it;
1667     }
1668   }
1669 }
1670 
Size()1671 size_t MonitorList::Size() {
1672   Thread* self = Thread::Current();
1673   MutexLock mu(self, monitor_list_lock_);
1674   return list_.size();
1675 }
1676 
1677 class MonitorDeflateVisitor : public IsMarkedVisitor {
1678  public:
MonitorDeflateVisitor()1679   MonitorDeflateVisitor() : self_(Thread::Current()), deflate_count_(0) {}
1680 
IsMarked(mirror::Object * object)1681   mirror::Object* IsMarked(mirror::Object* object) override
1682       REQUIRES_SHARED(Locks::mutator_lock_) {
1683     if (Monitor::Deflate(self_, object)) {
1684       DCHECK_NE(object->GetLockWord(true).GetState(), LockWord::kFatLocked);
1685       ++deflate_count_;
1686       // If we deflated, return null so that the monitor gets removed from the array.
1687       return nullptr;
1688     }
1689     return object;  // Monitor was not deflated.
1690   }
1691 
1692   Thread* const self_;
1693   size_t deflate_count_;
1694 };
1695 
DeflateMonitors()1696 size_t MonitorList::DeflateMonitors() {
1697   MonitorDeflateVisitor visitor;
1698   Locks::mutator_lock_->AssertExclusiveHeld(visitor.self_);
1699   SweepMonitorList(&visitor);
1700   return visitor.deflate_count_;
1701 }
1702 
MonitorInfo(ObjPtr<mirror::Object> obj)1703 MonitorInfo::MonitorInfo(ObjPtr<mirror::Object> obj) : owner_(nullptr), entry_count_(0) {
1704   DCHECK(obj != nullptr);
1705   LockWord lock_word = obj->GetLockWord(true);
1706   switch (lock_word.GetState()) {
1707     case LockWord::kUnlocked:
1708       // Fall-through.
1709     case LockWord::kForwardingAddress:
1710       // Fall-through.
1711     case LockWord::kHashCode:
1712       break;
1713     case LockWord::kThinLocked:
1714       owner_ = Runtime::Current()->GetThreadList()->FindThreadByThreadId(lock_word.ThinLockOwner());
1715       DCHECK(owner_ != nullptr) << "Thin-locked without owner!";
1716       entry_count_ = 1 + lock_word.ThinLockCount();
1717       // Thin locks have no waiters.
1718       break;
1719     case LockWord::kFatLocked: {
1720       Monitor* mon = lock_word.FatLockMonitor();
1721       owner_ = mon->owner_.load(std::memory_order_relaxed);
1722       // Here it is okay for the owner to be null since we don't reset the LockWord back to
1723       // kUnlocked until we get a GC. In cases where this hasn't happened yet we will have a fat
1724       // lock without an owner.
1725       // Neither owner_ nor entry_count_ is touched by threads in "suspended" state, so
1726       // we must see consistent values.
1727       if (owner_ != nullptr) {
1728         entry_count_ = 1 + mon->lock_count_;
1729       } else {
1730         DCHECK_EQ(mon->lock_count_, 0u) << "Monitor is fat-locked without any owner!";
1731       }
1732       for (Thread* waiter = mon->wait_set_; waiter != nullptr; waiter = waiter->GetWaitNext()) {
1733         waiters_.push_back(waiter);
1734       }
1735       break;
1736     }
1737   }
1738 }
1739 
MaybeEnableTimeout()1740 void Monitor::MaybeEnableTimeout() {
1741   std::string current_package = Runtime::Current()->GetProcessPackageName();
1742   bool enabled_for_app = android::base::GetBoolProperty("debug.art.monitor.app", false);
1743   if (current_package == "android" || enabled_for_app) {
1744     monitor_lock_.setEnableMonitorTimeout();
1745     monitor_lock_.setMonitorId(monitor_id_);
1746   }
1747 }
1748 
1749 }  // namespace art
1750