• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2013 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <gtest/gtest.h>
18 
19 #include <elf.h>
20 #include <limits.h>
21 #include <malloc.h>
22 #include <pthread.h>
23 #include <semaphore.h>
24 #include <signal.h>
25 #include <stdint.h>
26 #include <stdio.h>
27 #include <stdlib.h>
28 #include <string.h>
29 #include <sys/auxv.h>
30 #include <sys/cdefs.h>
31 #include <sys/prctl.h>
32 #include <sys/types.h>
33 #include <sys/wait.h>
34 #include <unistd.h>
35 
36 #include <algorithm>
37 #include <atomic>
38 #include <functional>
39 #include <string>
40 #include <thread>
41 #include <unordered_map>
42 #include <utility>
43 #include <vector>
44 
45 #include <tinyxml2.h>
46 
47 #include <android-base/file.h>
48 #include <android-base/test_utils.h>
49 
50 #include "utils.h"
51 
52 #if defined(__BIONIC__)
53 
54 #include "SignalUtils.h"
55 #include "dlext_private.h"
56 
57 #include "platform/bionic/malloc.h"
58 #include "platform/bionic/mte.h"
59 #include "platform/bionic/reserved_signals.h"
60 #include "private/bionic_config.h"
61 
62 #define HAVE_REALLOCARRAY 1
63 
64 #elif defined(__GLIBC__)
65 
66 #define HAVE_REALLOCARRAY __GLIBC_PREREQ(2, 26)
67 
68 #elif defined(ANDROID_HOST_MUSL)
69 
70 #define HAVE_REALLOCARRAY 1
71 
72 #endif
73 
TEST(malloc,malloc_std)74 TEST(malloc, malloc_std) {
75   // Simple malloc test.
76   void *ptr = malloc(100);
77   ASSERT_TRUE(ptr != nullptr);
78   ASSERT_LE(100U, malloc_usable_size(ptr));
79   free(ptr);
80 }
81 
TEST(malloc,malloc_overflow)82 TEST(malloc, malloc_overflow) {
83   SKIP_WITH_HWASAN;
84   errno = 0;
85   ASSERT_EQ(nullptr, malloc(SIZE_MAX));
86   ASSERT_EQ(ENOMEM, errno);
87 }
88 
TEST(malloc,calloc_std)89 TEST(malloc, calloc_std) {
90   // Simple calloc test.
91   size_t alloc_len = 100;
92   char *ptr = (char *)calloc(1, alloc_len);
93   ASSERT_TRUE(ptr != nullptr);
94   ASSERT_LE(alloc_len, malloc_usable_size(ptr));
95   for (size_t i = 0; i < alloc_len; i++) {
96     ASSERT_EQ(0, ptr[i]);
97   }
98   free(ptr);
99 }
100 
TEST(malloc,calloc_mem_init_disabled)101 TEST(malloc, calloc_mem_init_disabled) {
102 #if defined(__BIONIC__)
103   // calloc should still zero memory if mem-init is disabled.
104   // With jemalloc the mallopts will fail but that shouldn't affect the
105   // execution of the test.
106   mallopt(M_THREAD_DISABLE_MEM_INIT, 1);
107   size_t alloc_len = 100;
108   char *ptr = reinterpret_cast<char*>(calloc(1, alloc_len));
109   for (size_t i = 0; i < alloc_len; i++) {
110     ASSERT_EQ(0, ptr[i]);
111   }
112   free(ptr);
113   mallopt(M_THREAD_DISABLE_MEM_INIT, 0);
114 #else
115   GTEST_SKIP() << "bionic-only test";
116 #endif
117 }
118 
TEST(malloc,calloc_illegal)119 TEST(malloc, calloc_illegal) {
120   SKIP_WITH_HWASAN;
121   errno = 0;
122   ASSERT_EQ(nullptr, calloc(-1, 100));
123   ASSERT_EQ(ENOMEM, errno);
124 }
125 
TEST(malloc,calloc_overflow)126 TEST(malloc, calloc_overflow) {
127   SKIP_WITH_HWASAN;
128   errno = 0;
129   ASSERT_EQ(nullptr, calloc(1, SIZE_MAX));
130   ASSERT_EQ(ENOMEM, errno);
131   errno = 0;
132   ASSERT_EQ(nullptr, calloc(SIZE_MAX, SIZE_MAX));
133   ASSERT_EQ(ENOMEM, errno);
134   errno = 0;
135   ASSERT_EQ(nullptr, calloc(2, SIZE_MAX));
136   ASSERT_EQ(ENOMEM, errno);
137   errno = 0;
138   ASSERT_EQ(nullptr, calloc(SIZE_MAX, 2));
139   ASSERT_EQ(ENOMEM, errno);
140 }
141 
TEST(malloc,memalign_multiple)142 TEST(malloc, memalign_multiple) {
143   SKIP_WITH_HWASAN << "hwasan requires power of 2 alignment";
144   // Memalign test where the alignment is any value.
145   for (size_t i = 0; i <= 12; i++) {
146     for (size_t alignment = 1 << i; alignment < (1U << (i+1)); alignment++) {
147       char *ptr = reinterpret_cast<char*>(memalign(alignment, 100));
148       ASSERT_TRUE(ptr != nullptr) << "Failed at alignment " << alignment;
149       ASSERT_LE(100U, malloc_usable_size(ptr)) << "Failed at alignment " << alignment;
150       ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(ptr) % ((1U << i)))
151           << "Failed at alignment " << alignment;
152       free(ptr);
153     }
154   }
155 }
156 
TEST(malloc,memalign_overflow)157 TEST(malloc, memalign_overflow) {
158   SKIP_WITH_HWASAN;
159   ASSERT_EQ(nullptr, memalign(4096, SIZE_MAX));
160 }
161 
TEST(malloc,memalign_non_power2)162 TEST(malloc, memalign_non_power2) {
163   SKIP_WITH_HWASAN;
164   void* ptr;
165   for (size_t align = 0; align <= 256; align++) {
166     ptr = memalign(align, 1024);
167     ASSERT_TRUE(ptr != nullptr) << "Failed at align " << align;
168     free(ptr);
169   }
170 }
171 
TEST(malloc,memalign_realloc)172 TEST(malloc, memalign_realloc) {
173   // Memalign and then realloc the pointer a couple of times.
174   for (size_t alignment = 1; alignment <= 4096; alignment <<= 1) {
175     char *ptr = (char*)memalign(alignment, 100);
176     ASSERT_TRUE(ptr != nullptr);
177     ASSERT_LE(100U, malloc_usable_size(ptr));
178     ASSERT_EQ(0U, (intptr_t)ptr % alignment);
179     memset(ptr, 0x23, 100);
180 
181     ptr = (char*)realloc(ptr, 200);
182     ASSERT_TRUE(ptr != nullptr);
183     ASSERT_LE(200U, malloc_usable_size(ptr));
184     ASSERT_TRUE(ptr != nullptr);
185     for (size_t i = 0; i < 100; i++) {
186       ASSERT_EQ(0x23, ptr[i]);
187     }
188     memset(ptr, 0x45, 200);
189 
190     ptr = (char*)realloc(ptr, 300);
191     ASSERT_TRUE(ptr != nullptr);
192     ASSERT_LE(300U, malloc_usable_size(ptr));
193     for (size_t i = 0; i < 200; i++) {
194       ASSERT_EQ(0x45, ptr[i]);
195     }
196     memset(ptr, 0x67, 300);
197 
198     ptr = (char*)realloc(ptr, 250);
199     ASSERT_TRUE(ptr != nullptr);
200     ASSERT_LE(250U, malloc_usable_size(ptr));
201     for (size_t i = 0; i < 250; i++) {
202       ASSERT_EQ(0x67, ptr[i]);
203     }
204     free(ptr);
205   }
206 }
207 
TEST(malloc,malloc_realloc_larger)208 TEST(malloc, malloc_realloc_larger) {
209   // Realloc to a larger size, malloc is used for the original allocation.
210   char *ptr = (char *)malloc(100);
211   ASSERT_TRUE(ptr != nullptr);
212   ASSERT_LE(100U, malloc_usable_size(ptr));
213   memset(ptr, 67, 100);
214 
215   ptr = (char *)realloc(ptr, 200);
216   ASSERT_TRUE(ptr != nullptr);
217   ASSERT_LE(200U, malloc_usable_size(ptr));
218   for (size_t i = 0; i < 100; i++) {
219     ASSERT_EQ(67, ptr[i]);
220   }
221   free(ptr);
222 }
223 
TEST(malloc,malloc_realloc_smaller)224 TEST(malloc, malloc_realloc_smaller) {
225   // Realloc to a smaller size, malloc is used for the original allocation.
226   char *ptr = (char *)malloc(200);
227   ASSERT_TRUE(ptr != nullptr);
228   ASSERT_LE(200U, malloc_usable_size(ptr));
229   memset(ptr, 67, 200);
230 
231   ptr = (char *)realloc(ptr, 100);
232   ASSERT_TRUE(ptr != nullptr);
233   ASSERT_LE(100U, malloc_usable_size(ptr));
234   for (size_t i = 0; i < 100; i++) {
235     ASSERT_EQ(67, ptr[i]);
236   }
237   free(ptr);
238 }
239 
TEST(malloc,malloc_multiple_realloc)240 TEST(malloc, malloc_multiple_realloc) {
241   // Multiple reallocs, malloc is used for the original allocation.
242   char *ptr = (char *)malloc(200);
243   ASSERT_TRUE(ptr != nullptr);
244   ASSERT_LE(200U, malloc_usable_size(ptr));
245   memset(ptr, 0x23, 200);
246 
247   ptr = (char *)realloc(ptr, 100);
248   ASSERT_TRUE(ptr != nullptr);
249   ASSERT_LE(100U, malloc_usable_size(ptr));
250   for (size_t i = 0; i < 100; i++) {
251     ASSERT_EQ(0x23, ptr[i]);
252   }
253 
254   ptr = (char*)realloc(ptr, 50);
255   ASSERT_TRUE(ptr != nullptr);
256   ASSERT_LE(50U, malloc_usable_size(ptr));
257   for (size_t i = 0; i < 50; i++) {
258     ASSERT_EQ(0x23, ptr[i]);
259   }
260 
261   ptr = (char*)realloc(ptr, 150);
262   ASSERT_TRUE(ptr != nullptr);
263   ASSERT_LE(150U, malloc_usable_size(ptr));
264   for (size_t i = 0; i < 50; i++) {
265     ASSERT_EQ(0x23, ptr[i]);
266   }
267   memset(ptr, 0x23, 150);
268 
269   ptr = (char*)realloc(ptr, 425);
270   ASSERT_TRUE(ptr != nullptr);
271   ASSERT_LE(425U, malloc_usable_size(ptr));
272   for (size_t i = 0; i < 150; i++) {
273     ASSERT_EQ(0x23, ptr[i]);
274   }
275   free(ptr);
276 }
277 
TEST(malloc,calloc_realloc_larger)278 TEST(malloc, calloc_realloc_larger) {
279   // Realloc to a larger size, calloc is used for the original allocation.
280   char *ptr = (char *)calloc(1, 100);
281   ASSERT_TRUE(ptr != nullptr);
282   ASSERT_LE(100U, malloc_usable_size(ptr));
283 
284   ptr = (char *)realloc(ptr, 200);
285   ASSERT_TRUE(ptr != nullptr);
286   ASSERT_LE(200U, malloc_usable_size(ptr));
287   for (size_t i = 0; i < 100; i++) {
288     ASSERT_EQ(0, ptr[i]);
289   }
290   free(ptr);
291 }
292 
TEST(malloc,calloc_realloc_smaller)293 TEST(malloc, calloc_realloc_smaller) {
294   // Realloc to a smaller size, calloc is used for the original allocation.
295   char *ptr = (char *)calloc(1, 200);
296   ASSERT_TRUE(ptr != nullptr);
297   ASSERT_LE(200U, malloc_usable_size(ptr));
298 
299   ptr = (char *)realloc(ptr, 100);
300   ASSERT_TRUE(ptr != nullptr);
301   ASSERT_LE(100U, malloc_usable_size(ptr));
302   for (size_t i = 0; i < 100; i++) {
303     ASSERT_EQ(0, ptr[i]);
304   }
305   free(ptr);
306 }
307 
TEST(malloc,calloc_multiple_realloc)308 TEST(malloc, calloc_multiple_realloc) {
309   // Multiple reallocs, calloc is used for the original allocation.
310   char *ptr = (char *)calloc(1, 200);
311   ASSERT_TRUE(ptr != nullptr);
312   ASSERT_LE(200U, malloc_usable_size(ptr));
313 
314   ptr = (char *)realloc(ptr, 100);
315   ASSERT_TRUE(ptr != nullptr);
316   ASSERT_LE(100U, malloc_usable_size(ptr));
317   for (size_t i = 0; i < 100; i++) {
318     ASSERT_EQ(0, ptr[i]);
319   }
320 
321   ptr = (char*)realloc(ptr, 50);
322   ASSERT_TRUE(ptr != nullptr);
323   ASSERT_LE(50U, malloc_usable_size(ptr));
324   for (size_t i = 0; i < 50; i++) {
325     ASSERT_EQ(0, ptr[i]);
326   }
327 
328   ptr = (char*)realloc(ptr, 150);
329   ASSERT_TRUE(ptr != nullptr);
330   ASSERT_LE(150U, malloc_usable_size(ptr));
331   for (size_t i = 0; i < 50; i++) {
332     ASSERT_EQ(0, ptr[i]);
333   }
334   memset(ptr, 0, 150);
335 
336   ptr = (char*)realloc(ptr, 425);
337   ASSERT_TRUE(ptr != nullptr);
338   ASSERT_LE(425U, malloc_usable_size(ptr));
339   for (size_t i = 0; i < 150; i++) {
340     ASSERT_EQ(0, ptr[i]);
341   }
342   free(ptr);
343 }
344 
TEST(malloc,realloc_overflow)345 TEST(malloc, realloc_overflow) {
346   SKIP_WITH_HWASAN;
347   errno = 0;
348   ASSERT_EQ(nullptr, realloc(nullptr, SIZE_MAX));
349   ASSERT_EQ(ENOMEM, errno);
350   void* ptr = malloc(100);
351   ASSERT_TRUE(ptr != nullptr);
352   errno = 0;
353   ASSERT_EQ(nullptr, realloc(ptr, SIZE_MAX));
354   ASSERT_EQ(ENOMEM, errno);
355   free(ptr);
356 }
357 
358 #if defined(HAVE_DEPRECATED_MALLOC_FUNCS)
359 extern "C" void* pvalloc(size_t);
360 extern "C" void* valloc(size_t);
361 #endif
362 
TEST(malloc,pvalloc_std)363 TEST(malloc, pvalloc_std) {
364 #if defined(HAVE_DEPRECATED_MALLOC_FUNCS)
365   size_t pagesize = sysconf(_SC_PAGESIZE);
366   void* ptr = pvalloc(100);
367   ASSERT_TRUE(ptr != nullptr);
368   ASSERT_TRUE((reinterpret_cast<uintptr_t>(ptr) & (pagesize-1)) == 0);
369   ASSERT_LE(pagesize, malloc_usable_size(ptr));
370   free(ptr);
371 #else
372   GTEST_SKIP() << "pvalloc not supported.";
373 #endif
374 }
375 
TEST(malloc,pvalloc_overflow)376 TEST(malloc, pvalloc_overflow) {
377 #if defined(HAVE_DEPRECATED_MALLOC_FUNCS)
378   ASSERT_EQ(nullptr, pvalloc(SIZE_MAX));
379 #else
380   GTEST_SKIP() << "pvalloc not supported.";
381 #endif
382 }
383 
TEST(malloc,valloc_std)384 TEST(malloc, valloc_std) {
385 #if defined(HAVE_DEPRECATED_MALLOC_FUNCS)
386   size_t pagesize = sysconf(_SC_PAGESIZE);
387   void* ptr = valloc(100);
388   ASSERT_TRUE(ptr != nullptr);
389   ASSERT_TRUE((reinterpret_cast<uintptr_t>(ptr) & (pagesize-1)) == 0);
390   free(ptr);
391 #else
392   GTEST_SKIP() << "valloc not supported.";
393 #endif
394 }
395 
TEST(malloc,valloc_overflow)396 TEST(malloc, valloc_overflow) {
397 #if defined(HAVE_DEPRECATED_MALLOC_FUNCS)
398   ASSERT_EQ(nullptr, valloc(SIZE_MAX));
399 #else
400   GTEST_SKIP() << "valloc not supported.";
401 #endif
402 }
403 
TEST(malloc,malloc_info)404 TEST(malloc, malloc_info) {
405 #ifdef __BIONIC__
406   SKIP_WITH_HWASAN; // hwasan does not implement malloc_info
407 
408   TemporaryFile tf;
409   ASSERT_TRUE(tf.fd != -1);
410   FILE* fp = fdopen(tf.fd, "w+");
411   tf.release();
412   ASSERT_TRUE(fp != nullptr);
413   ASSERT_EQ(0, malloc_info(0, fp));
414   ASSERT_EQ(0, fclose(fp));
415 
416   std::string contents;
417   ASSERT_TRUE(android::base::ReadFileToString(tf.path, &contents));
418 
419   tinyxml2::XMLDocument doc;
420   ASSERT_EQ(tinyxml2::XML_SUCCESS, doc.Parse(contents.c_str()));
421 
422   auto root = doc.FirstChildElement();
423   ASSERT_NE(nullptr, root);
424   ASSERT_STREQ("malloc", root->Name());
425   std::string version(root->Attribute("version"));
426   if (version == "jemalloc-1") {
427     auto arena = root->FirstChildElement();
428     for (; arena != nullptr; arena = arena->NextSiblingElement()) {
429       int val;
430 
431       ASSERT_STREQ("heap", arena->Name());
432       ASSERT_EQ(tinyxml2::XML_SUCCESS, arena->QueryIntAttribute("nr", &val));
433       ASSERT_EQ(tinyxml2::XML_SUCCESS,
434                 arena->FirstChildElement("allocated-large")->QueryIntText(&val));
435       ASSERT_EQ(tinyxml2::XML_SUCCESS,
436                 arena->FirstChildElement("allocated-huge")->QueryIntText(&val));
437       ASSERT_EQ(tinyxml2::XML_SUCCESS,
438                 arena->FirstChildElement("allocated-bins")->QueryIntText(&val));
439       ASSERT_EQ(tinyxml2::XML_SUCCESS,
440                 arena->FirstChildElement("bins-total")->QueryIntText(&val));
441 
442       auto bin = arena->FirstChildElement("bin");
443       for (; bin != nullptr; bin = bin ->NextSiblingElement()) {
444         if (strcmp(bin->Name(), "bin") == 0) {
445           ASSERT_EQ(tinyxml2::XML_SUCCESS, bin->QueryIntAttribute("nr", &val));
446           ASSERT_EQ(tinyxml2::XML_SUCCESS,
447                     bin->FirstChildElement("allocated")->QueryIntText(&val));
448           ASSERT_EQ(tinyxml2::XML_SUCCESS,
449                     bin->FirstChildElement("nmalloc")->QueryIntText(&val));
450           ASSERT_EQ(tinyxml2::XML_SUCCESS,
451                     bin->FirstChildElement("ndalloc")->QueryIntText(&val));
452         }
453       }
454     }
455   } else if (version == "scudo-1") {
456     auto element = root->FirstChildElement();
457     for (; element != nullptr; element = element->NextSiblingElement()) {
458       int val;
459 
460       ASSERT_STREQ("alloc", element->Name());
461       ASSERT_EQ(tinyxml2::XML_SUCCESS, element->QueryIntAttribute("size", &val));
462       ASSERT_EQ(tinyxml2::XML_SUCCESS, element->QueryIntAttribute("count", &val));
463     }
464   } else {
465     // Do not verify output for debug malloc.
466     ASSERT_TRUE(version == "debug-malloc-1") << "Unknown version: " << version;
467   }
468 #endif
469 }
470 
TEST(malloc,malloc_info_matches_mallinfo)471 TEST(malloc, malloc_info_matches_mallinfo) {
472 #ifdef __BIONIC__
473   SKIP_WITH_HWASAN; // hwasan does not implement malloc_info
474 
475   TemporaryFile tf;
476   ASSERT_TRUE(tf.fd != -1);
477   FILE* fp = fdopen(tf.fd, "w+");
478   tf.release();
479   ASSERT_TRUE(fp != nullptr);
480   size_t mallinfo_before_allocated_bytes = mallinfo().uordblks;
481   ASSERT_EQ(0, malloc_info(0, fp));
482   size_t mallinfo_after_allocated_bytes = mallinfo().uordblks;
483   ASSERT_EQ(0, fclose(fp));
484 
485   std::string contents;
486   ASSERT_TRUE(android::base::ReadFileToString(tf.path, &contents));
487 
488   tinyxml2::XMLDocument doc;
489   ASSERT_EQ(tinyxml2::XML_SUCCESS, doc.Parse(contents.c_str()));
490 
491   size_t total_allocated_bytes = 0;
492   auto root = doc.FirstChildElement();
493   ASSERT_NE(nullptr, root);
494   ASSERT_STREQ("malloc", root->Name());
495   std::string version(root->Attribute("version"));
496   if (version == "jemalloc-1") {
497     auto arena = root->FirstChildElement();
498     for (; arena != nullptr; arena = arena->NextSiblingElement()) {
499       int val;
500 
501       ASSERT_STREQ("heap", arena->Name());
502       ASSERT_EQ(tinyxml2::XML_SUCCESS, arena->QueryIntAttribute("nr", &val));
503       ASSERT_EQ(tinyxml2::XML_SUCCESS,
504                 arena->FirstChildElement("allocated-large")->QueryIntText(&val));
505       total_allocated_bytes += val;
506       ASSERT_EQ(tinyxml2::XML_SUCCESS,
507                 arena->FirstChildElement("allocated-huge")->QueryIntText(&val));
508       total_allocated_bytes += val;
509       ASSERT_EQ(tinyxml2::XML_SUCCESS,
510                 arena->FirstChildElement("allocated-bins")->QueryIntText(&val));
511       total_allocated_bytes += val;
512       ASSERT_EQ(tinyxml2::XML_SUCCESS,
513                 arena->FirstChildElement("bins-total")->QueryIntText(&val));
514     }
515     // The total needs to be between the mallinfo call before and after
516     // since malloc_info allocates some memory.
517     EXPECT_LE(mallinfo_before_allocated_bytes, total_allocated_bytes);
518     EXPECT_GE(mallinfo_after_allocated_bytes, total_allocated_bytes);
519   } else if (version == "scudo-1") {
520     auto element = root->FirstChildElement();
521     for (; element != nullptr; element = element->NextSiblingElement()) {
522       ASSERT_STREQ("alloc", element->Name());
523       int size;
524       ASSERT_EQ(tinyxml2::XML_SUCCESS, element->QueryIntAttribute("size", &size));
525       int count;
526       ASSERT_EQ(tinyxml2::XML_SUCCESS, element->QueryIntAttribute("count", &count));
527       total_allocated_bytes += size * count;
528     }
529     // Scudo only gives the information on the primary, so simply make
530     // sure that the value is non-zero.
531     EXPECT_NE(0U, total_allocated_bytes);
532   } else {
533     // Do not verify output for debug malloc.
534     ASSERT_TRUE(version == "debug-malloc-1") << "Unknown version: " << version;
535   }
536 #endif
537 }
538 
TEST(malloc,calloc_usable_size)539 TEST(malloc, calloc_usable_size) {
540   for (size_t size = 1; size <= 2048; size++) {
541     void* pointer = malloc(size);
542     ASSERT_TRUE(pointer != nullptr);
543     memset(pointer, 0xeb, malloc_usable_size(pointer));
544     free(pointer);
545 
546     // We should get a previous pointer that has been set to non-zero.
547     // If calloc does not zero out all of the data, this will fail.
548     uint8_t* zero_mem = reinterpret_cast<uint8_t*>(calloc(1, size));
549     ASSERT_TRUE(pointer != nullptr);
550     size_t usable_size = malloc_usable_size(zero_mem);
551     for (size_t i = 0; i < usable_size; i++) {
552       ASSERT_EQ(0, zero_mem[i]) << "Failed at allocation size " << size << " at byte " << i;
553     }
554     free(zero_mem);
555   }
556 }
557 
TEST(malloc,malloc_0)558 TEST(malloc, malloc_0) {
559   void* p = malloc(0);
560   ASSERT_TRUE(p != nullptr);
561   free(p);
562 }
563 
TEST(malloc,calloc_0_0)564 TEST(malloc, calloc_0_0) {
565   void* p = calloc(0, 0);
566   ASSERT_TRUE(p != nullptr);
567   free(p);
568 }
569 
TEST(malloc,calloc_0_1)570 TEST(malloc, calloc_0_1) {
571   void* p = calloc(0, 1);
572   ASSERT_TRUE(p != nullptr);
573   free(p);
574 }
575 
TEST(malloc,calloc_1_0)576 TEST(malloc, calloc_1_0) {
577   void* p = calloc(1, 0);
578   ASSERT_TRUE(p != nullptr);
579   free(p);
580 }
581 
TEST(malloc,realloc_nullptr_0)582 TEST(malloc, realloc_nullptr_0) {
583   // realloc(nullptr, size) is actually malloc(size).
584   void* p = realloc(nullptr, 0);
585   ASSERT_TRUE(p != nullptr);
586   free(p);
587 }
588 
TEST(malloc,realloc_0)589 TEST(malloc, realloc_0) {
590   void* p = malloc(1024);
591   ASSERT_TRUE(p != nullptr);
592   // realloc(p, 0) is actually free(p).
593   void* p2 = realloc(p, 0);
594   ASSERT_TRUE(p2 == nullptr);
595 }
596 
597 constexpr size_t MAX_LOOPS = 200;
598 
599 // Make sure that memory returned by malloc is aligned to allow these data types.
TEST(malloc,verify_alignment)600 TEST(malloc, verify_alignment) {
601   uint32_t** values_32 = new uint32_t*[MAX_LOOPS];
602   uint64_t** values_64 = new uint64_t*[MAX_LOOPS];
603   long double** values_ldouble = new long double*[MAX_LOOPS];
604   // Use filler to attempt to force the allocator to get potentially bad alignments.
605   void** filler = new void*[MAX_LOOPS];
606 
607   for (size_t i = 0; i < MAX_LOOPS; i++) {
608     // Check uint32_t pointers.
609     filler[i] = malloc(1);
610     ASSERT_TRUE(filler[i] != nullptr);
611 
612     values_32[i] = reinterpret_cast<uint32_t*>(malloc(sizeof(uint32_t)));
613     ASSERT_TRUE(values_32[i] != nullptr);
614     *values_32[i] = i;
615     ASSERT_EQ(*values_32[i], i);
616     ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(values_32[i]) & (sizeof(uint32_t) - 1));
617 
618     free(filler[i]);
619   }
620 
621   for (size_t i = 0; i < MAX_LOOPS; i++) {
622     // Check uint64_t pointers.
623     filler[i] = malloc(1);
624     ASSERT_TRUE(filler[i] != nullptr);
625 
626     values_64[i] = reinterpret_cast<uint64_t*>(malloc(sizeof(uint64_t)));
627     ASSERT_TRUE(values_64[i] != nullptr);
628     *values_64[i] = 0x1000 + i;
629     ASSERT_EQ(*values_64[i], 0x1000 + i);
630     ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(values_64[i]) & (sizeof(uint64_t) - 1));
631 
632     free(filler[i]);
633   }
634 
635   for (size_t i = 0; i < MAX_LOOPS; i++) {
636     // Check long double pointers.
637     filler[i] = malloc(1);
638     ASSERT_TRUE(filler[i] != nullptr);
639 
640     values_ldouble[i] = reinterpret_cast<long double*>(malloc(sizeof(long double)));
641     ASSERT_TRUE(values_ldouble[i] != nullptr);
642     *values_ldouble[i] = 5.5 + i;
643     ASSERT_DOUBLE_EQ(*values_ldouble[i], 5.5 + i);
644     // 32 bit glibc has a long double size of 12 bytes, so hardcode the
645     // required alignment to 0x7.
646 #if !defined(__BIONIC__) && !defined(__LP64__)
647     ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(values_ldouble[i]) & 0x7);
648 #else
649     ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(values_ldouble[i]) & (sizeof(long double) - 1));
650 #endif
651 
652     free(filler[i]);
653   }
654 
655   for (size_t i = 0; i < MAX_LOOPS; i++) {
656     free(values_32[i]);
657     free(values_64[i]);
658     free(values_ldouble[i]);
659   }
660 
661   delete[] filler;
662   delete[] values_32;
663   delete[] values_64;
664   delete[] values_ldouble;
665 }
666 
TEST(malloc,mallopt_smoke)667 TEST(malloc, mallopt_smoke) {
668 #if defined(__BIONIC__)
669   errno = 0;
670   ASSERT_EQ(0, mallopt(-1000, 1));
671   // mallopt doesn't set errno.
672   ASSERT_EQ(0, errno);
673 #else
674   GTEST_SKIP() << "bionic-only test";
675 #endif
676 }
677 
TEST(malloc,mallopt_decay)678 TEST(malloc, mallopt_decay) {
679 #if defined(__BIONIC__)
680   SKIP_WITH_HWASAN << "hwasan does not implement mallopt";
681   errno = 0;
682   ASSERT_EQ(1, mallopt(M_DECAY_TIME, 1));
683   ASSERT_EQ(1, mallopt(M_DECAY_TIME, 0));
684   ASSERT_EQ(1, mallopt(M_DECAY_TIME, 1));
685   ASSERT_EQ(1, mallopt(M_DECAY_TIME, 0));
686 #else
687   GTEST_SKIP() << "bionic-only test";
688 #endif
689 }
690 
TEST(malloc,mallopt_purge)691 TEST(malloc, mallopt_purge) {
692 #if defined(__BIONIC__)
693   SKIP_WITH_HWASAN << "hwasan does not implement mallopt";
694   errno = 0;
695   ASSERT_EQ(1, mallopt(M_PURGE, 0));
696 #else
697   GTEST_SKIP() << "bionic-only test";
698 #endif
699 }
700 
TEST(malloc,mallopt_purge_all)701 TEST(malloc, mallopt_purge_all) {
702 #if defined(__BIONIC__)
703   SKIP_WITH_HWASAN << "hwasan does not implement mallopt";
704   errno = 0;
705   ASSERT_EQ(1, mallopt(M_PURGE_ALL, 0));
706 #else
707   GTEST_SKIP() << "bionic-only test";
708 #endif
709 }
710 
711 // Verify that all of the mallopt values are unique.
TEST(malloc,mallopt_unique_params)712 TEST(malloc, mallopt_unique_params) {
713 #if defined(__BIONIC__)
714   std::vector<std::pair<int, std::string>> params{
715       std::make_pair(M_DECAY_TIME, "M_DECAY_TIME"),
716       std::make_pair(M_PURGE, "M_PURGE"),
717       std::make_pair(M_PURGE_ALL, "M_PURGE_ALL"),
718       std::make_pair(M_MEMTAG_TUNING, "M_MEMTAG_TUNING"),
719       std::make_pair(M_THREAD_DISABLE_MEM_INIT, "M_THREAD_DISABLE_MEM_INIT"),
720       std::make_pair(M_CACHE_COUNT_MAX, "M_CACHE_COUNT_MAX"),
721       std::make_pair(M_CACHE_SIZE_MAX, "M_CACHE_SIZE_MAX"),
722       std::make_pair(M_TSDS_COUNT_MAX, "M_TSDS_COUNT_MAX"),
723       std::make_pair(M_BIONIC_ZERO_INIT, "M_BIONIC_ZERO_INIT"),
724       std::make_pair(M_BIONIC_SET_HEAP_TAGGING_LEVEL, "M_BIONIC_SET_HEAP_TAGGING_LEVEL"),
725   };
726 
727   std::unordered_map<int, std::string> all_params;
728   for (const auto& param : params) {
729     EXPECT_TRUE(all_params.count(param.first) == 0)
730         << "mallopt params " << all_params[param.first] << " and " << param.second
731         << " have the same value " << param.first;
732     all_params.insert(param);
733   }
734 #else
735   GTEST_SKIP() << "bionic-only test";
736 #endif
737 }
738 
739 #if defined(__BIONIC__)
GetAllocatorVersion(bool * allocator_scudo)740 static void GetAllocatorVersion(bool* allocator_scudo) {
741   TemporaryFile tf;
742   ASSERT_TRUE(tf.fd != -1);
743   FILE* fp = fdopen(tf.fd, "w+");
744   tf.release();
745   ASSERT_TRUE(fp != nullptr);
746   if (malloc_info(0, fp) != 0) {
747     *allocator_scudo = false;
748     return;
749   }
750   ASSERT_EQ(0, fclose(fp));
751 
752   std::string contents;
753   ASSERT_TRUE(android::base::ReadFileToString(tf.path, &contents));
754 
755   tinyxml2::XMLDocument doc;
756   ASSERT_EQ(tinyxml2::XML_SUCCESS, doc.Parse(contents.c_str()));
757 
758   auto root = doc.FirstChildElement();
759   ASSERT_NE(nullptr, root);
760   ASSERT_STREQ("malloc", root->Name());
761   std::string version(root->Attribute("version"));
762   *allocator_scudo = (version == "scudo-1");
763 }
764 #endif
765 
TEST(malloc,mallopt_scudo_only_options)766 TEST(malloc, mallopt_scudo_only_options) {
767 #if defined(__BIONIC__)
768   SKIP_WITH_HWASAN << "hwasan does not implement mallopt";
769   bool allocator_scudo;
770   GetAllocatorVersion(&allocator_scudo);
771   if (!allocator_scudo) {
772     GTEST_SKIP() << "scudo allocator only test";
773   }
774   ASSERT_EQ(1, mallopt(M_CACHE_COUNT_MAX, 100));
775   ASSERT_EQ(1, mallopt(M_CACHE_SIZE_MAX, 1024 * 1024 * 2));
776   ASSERT_EQ(1, mallopt(M_TSDS_COUNT_MAX, 8));
777 #else
778   GTEST_SKIP() << "bionic-only test";
779 #endif
780 }
781 
TEST(malloc,reallocarray_overflow)782 TEST(malloc, reallocarray_overflow) {
783 #if HAVE_REALLOCARRAY
784   // Values that cause overflow to a result small enough (8 on LP64) that malloc would "succeed".
785   size_t a = static_cast<size_t>(INTPTR_MIN + 4);
786   size_t b = 2;
787 
788   errno = 0;
789   ASSERT_TRUE(reallocarray(nullptr, a, b) == nullptr);
790   ASSERT_EQ(ENOMEM, errno);
791 
792   errno = 0;
793   ASSERT_TRUE(reallocarray(nullptr, b, a) == nullptr);
794   ASSERT_EQ(ENOMEM, errno);
795 #else
796   GTEST_SKIP() << "reallocarray not available";
797 #endif
798 }
799 
TEST(malloc,reallocarray)800 TEST(malloc, reallocarray) {
801 #if HAVE_REALLOCARRAY
802   void* p = reallocarray(nullptr, 2, 32);
803   ASSERT_TRUE(p != nullptr);
804   ASSERT_GE(malloc_usable_size(p), 64U);
805 #else
806   GTEST_SKIP() << "reallocarray not available";
807 #endif
808 }
809 
TEST(malloc,mallinfo)810 TEST(malloc, mallinfo) {
811 #if defined(__BIONIC__) || defined(ANDROID_HOST_MUSL)
812   SKIP_WITH_HWASAN << "hwasan does not implement mallinfo";
813   static size_t sizes[] = {
814     8, 32, 128, 4096, 32768, 131072, 1024000, 10240000, 20480000, 300000000
815   };
816 
817   constexpr static size_t kMaxAllocs = 50;
818 
819   for (size_t size : sizes) {
820     // If some of these allocations are stuck in a thread cache, then keep
821     // looping until we make an allocation that changes the total size of the
822     // memory allocated.
823     // jemalloc implementations counts the thread cache allocations against
824     // total memory allocated.
825     void* ptrs[kMaxAllocs] = {};
826     bool pass = false;
827     for (size_t i = 0; i < kMaxAllocs; i++) {
828       size_t allocated = mallinfo().uordblks;
829       ptrs[i] = malloc(size);
830       ASSERT_TRUE(ptrs[i] != nullptr);
831       size_t new_allocated = mallinfo().uordblks;
832       if (allocated != new_allocated) {
833         size_t usable_size = malloc_usable_size(ptrs[i]);
834         // Only check if the total got bigger by at least allocation size.
835         // Sometimes the mallinfo numbers can go backwards due to compaction
836         // and/or freeing of cached data.
837         if (new_allocated >= allocated + usable_size) {
838           pass = true;
839           break;
840         }
841       }
842     }
843     for (void* ptr : ptrs) {
844       free(ptr);
845     }
846     ASSERT_TRUE(pass)
847         << "For size " << size << " allocated bytes did not increase after "
848         << kMaxAllocs << " allocations.";
849   }
850 #else
851   GTEST_SKIP() << "glibc is broken";
852 #endif
853 }
854 
TEST(malloc,mallinfo2)855 TEST(malloc, mallinfo2) {
856 #if defined(__BIONIC__) || defined(ANDROID_HOST_MUSL)
857   SKIP_WITH_HWASAN << "hwasan does not implement mallinfo2";
858   static size_t sizes[] = {8, 32, 128, 4096, 32768, 131072, 1024000, 10240000, 20480000, 300000000};
859 
860   constexpr static size_t kMaxAllocs = 50;
861 
862   for (size_t size : sizes) {
863     // If some of these allocations are stuck in a thread cache, then keep
864     // looping until we make an allocation that changes the total size of the
865     // memory allocated.
866     // jemalloc implementations counts the thread cache allocations against
867     // total memory allocated.
868     void* ptrs[kMaxAllocs] = {};
869     bool pass = false;
870     for (size_t i = 0; i < kMaxAllocs; i++) {
871       struct mallinfo info = mallinfo();
872       struct mallinfo2 info2 = mallinfo2();
873       // Verify that mallinfo and mallinfo2 are exactly the same.
874       ASSERT_EQ(static_cast<size_t>(info.arena), info2.arena);
875       ASSERT_EQ(static_cast<size_t>(info.ordblks), info2.ordblks);
876       ASSERT_EQ(static_cast<size_t>(info.smblks), info2.smblks);
877       ASSERT_EQ(static_cast<size_t>(info.hblks), info2.hblks);
878       ASSERT_EQ(static_cast<size_t>(info.hblkhd), info2.hblkhd);
879       ASSERT_EQ(static_cast<size_t>(info.usmblks), info2.usmblks);
880       ASSERT_EQ(static_cast<size_t>(info.fsmblks), info2.fsmblks);
881       ASSERT_EQ(static_cast<size_t>(info.uordblks), info2.uordblks);
882       ASSERT_EQ(static_cast<size_t>(info.fordblks), info2.fordblks);
883       ASSERT_EQ(static_cast<size_t>(info.keepcost), info2.keepcost);
884 
885       size_t allocated = info2.uordblks;
886       ptrs[i] = malloc(size);
887       ASSERT_TRUE(ptrs[i] != nullptr);
888 
889       info = mallinfo();
890       info2 = mallinfo2();
891       // Verify that mallinfo and mallinfo2 are exactly the same.
892       ASSERT_EQ(static_cast<size_t>(info.arena), info2.arena);
893       ASSERT_EQ(static_cast<size_t>(info.ordblks), info2.ordblks);
894       ASSERT_EQ(static_cast<size_t>(info.smblks), info2.smblks);
895       ASSERT_EQ(static_cast<size_t>(info.hblks), info2.hblks);
896       ASSERT_EQ(static_cast<size_t>(info.hblkhd), info2.hblkhd);
897       ASSERT_EQ(static_cast<size_t>(info.usmblks), info2.usmblks);
898       ASSERT_EQ(static_cast<size_t>(info.fsmblks), info2.fsmblks);
899       ASSERT_EQ(static_cast<size_t>(info.uordblks), info2.uordblks);
900       ASSERT_EQ(static_cast<size_t>(info.fordblks), info2.fordblks);
901       ASSERT_EQ(static_cast<size_t>(info.keepcost), info2.keepcost);
902 
903       size_t new_allocated = info2.uordblks;
904       if (allocated != new_allocated) {
905         size_t usable_size = malloc_usable_size(ptrs[i]);
906         // Only check if the total got bigger by at least allocation size.
907         // Sometimes the mallinfo2 numbers can go backwards due to compaction
908         // and/or freeing of cached data.
909         if (new_allocated >= allocated + usable_size) {
910           pass = true;
911           break;
912         }
913       }
914     }
915     for (void* ptr : ptrs) {
916       free(ptr);
917     }
918     ASSERT_TRUE(pass) << "For size " << size << " allocated bytes did not increase after "
919                       << kMaxAllocs << " allocations.";
920   }
921 #else
922   GTEST_SKIP() << "glibc is broken";
923 #endif
924 }
925 
926 template <typename Type>
VerifyAlignment(Type * floating)927 void __attribute__((optnone)) VerifyAlignment(Type* floating) {
928   size_t expected_alignment = alignof(Type);
929   if (expected_alignment != 0) {
930     ASSERT_EQ(0U, (expected_alignment - 1) & reinterpret_cast<uintptr_t>(floating))
931         << "Expected alignment " << expected_alignment << " ptr value " << floating;
932   }
933 }
934 
935 template <typename Type>
TestAllocateType()936 void __attribute__((optnone)) TestAllocateType() {
937   // The number of allocations to do in a row. This is to attempt to
938   // expose the worst case alignment for native allocators that use
939   // bins.
940   static constexpr size_t kMaxConsecutiveAllocs = 100;
941 
942   // Verify using new directly.
943   Type* types[kMaxConsecutiveAllocs];
944   for (size_t i = 0; i < kMaxConsecutiveAllocs; i++) {
945     types[i] = new Type;
946     VerifyAlignment(types[i]);
947     if (::testing::Test::HasFatalFailure()) {
948       return;
949     }
950   }
951   for (size_t i = 0; i < kMaxConsecutiveAllocs; i++) {
952     delete types[i];
953   }
954 
955   // Verify using malloc.
956   for (size_t i = 0; i < kMaxConsecutiveAllocs; i++) {
957     types[i] = reinterpret_cast<Type*>(malloc(sizeof(Type)));
958     ASSERT_TRUE(types[i] != nullptr);
959     VerifyAlignment(types[i]);
960     if (::testing::Test::HasFatalFailure()) {
961       return;
962     }
963   }
964   for (size_t i = 0; i < kMaxConsecutiveAllocs; i++) {
965     free(types[i]);
966   }
967 
968   // Verify using a vector.
969   std::vector<Type> type_vector(kMaxConsecutiveAllocs);
970   for (size_t i = 0; i < type_vector.size(); i++) {
971     VerifyAlignment(&type_vector[i]);
972     if (::testing::Test::HasFatalFailure()) {
973       return;
974     }
975   }
976 }
977 
978 #if defined(__ANDROID__)
AndroidVerifyAlignment(size_t alloc_size,size_t aligned_bytes)979 static void __attribute__((optnone)) AndroidVerifyAlignment(size_t alloc_size, size_t aligned_bytes) {
980   void* ptrs[100];
981   uintptr_t mask = aligned_bytes - 1;
982   for (size_t i = 0; i < sizeof(ptrs) / sizeof(void*); i++) {
983     ptrs[i] = malloc(alloc_size);
984     ASSERT_TRUE(ptrs[i] != nullptr);
985     ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(ptrs[i]) & mask)
986         << "Expected at least " << aligned_bytes << " byte alignment: size "
987         << alloc_size << " actual ptr " << ptrs[i];
988   }
989 }
990 #endif
991 
AlignCheck()992 void AlignCheck() {
993   // See http://www.open-std.org/jtc1/sc22/wg14/www/docs/summary.htm#dr_445
994   // for a discussion of type alignment.
995   ASSERT_NO_FATAL_FAILURE(TestAllocateType<float>());
996   ASSERT_NO_FATAL_FAILURE(TestAllocateType<double>());
997   ASSERT_NO_FATAL_FAILURE(TestAllocateType<long double>());
998 
999   ASSERT_NO_FATAL_FAILURE(TestAllocateType<char>());
1000   ASSERT_NO_FATAL_FAILURE(TestAllocateType<char16_t>());
1001   ASSERT_NO_FATAL_FAILURE(TestAllocateType<char32_t>());
1002   ASSERT_NO_FATAL_FAILURE(TestAllocateType<wchar_t>());
1003   ASSERT_NO_FATAL_FAILURE(TestAllocateType<signed char>());
1004   ASSERT_NO_FATAL_FAILURE(TestAllocateType<short int>());
1005   ASSERT_NO_FATAL_FAILURE(TestAllocateType<int>());
1006   ASSERT_NO_FATAL_FAILURE(TestAllocateType<long int>());
1007   ASSERT_NO_FATAL_FAILURE(TestAllocateType<long long int>());
1008   ASSERT_NO_FATAL_FAILURE(TestAllocateType<unsigned char>());
1009   ASSERT_NO_FATAL_FAILURE(TestAllocateType<unsigned short int>());
1010   ASSERT_NO_FATAL_FAILURE(TestAllocateType<unsigned int>());
1011   ASSERT_NO_FATAL_FAILURE(TestAllocateType<unsigned long int>());
1012   ASSERT_NO_FATAL_FAILURE(TestAllocateType<unsigned long long int>());
1013 
1014 #if defined(__ANDROID__)
1015   // On Android, there is a lot of code that expects certain alignments:
1016   //  1. Allocations of a size that rounds up to a multiple of 16 bytes
1017   //     must have at least 16 byte alignment.
1018   //  2. Allocations of a size that rounds up to a multiple of 8 bytes and
1019   //     not 16 bytes, are only required to have at least 8 byte alignment.
1020   // In addition, on Android clang has been configured for 64 bit such that:
1021   //  3. Allocations <= 8 bytes must be aligned to at least 8 bytes.
1022   //  4. Allocations > 8 bytes must be aligned to at least 16 bytes.
1023   // For 32 bit environments, only the first two requirements must be met.
1024 
1025   // See http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2293.htm for
1026   // a discussion of this alignment mess. The code below is enforcing
1027   // strong-alignment, since who knows what code depends on this behavior now.
1028   // As mentioned before, for 64 bit this will enforce the higher
1029   // requirement since clang expects this behavior on Android now.
1030   for (size_t i = 1; i <= 128; i++) {
1031 #if defined(__LP64__)
1032     if (i <= 8) {
1033       AndroidVerifyAlignment(i, 8);
1034     } else {
1035       AndroidVerifyAlignment(i, 16);
1036     }
1037 #else
1038     size_t rounded = (i + 7) & ~7;
1039     if ((rounded % 16) == 0) {
1040       AndroidVerifyAlignment(i, 16);
1041     } else {
1042       AndroidVerifyAlignment(i, 8);
1043     }
1044 #endif
1045     if (::testing::Test::HasFatalFailure()) {
1046       return;
1047     }
1048   }
1049 #endif
1050 }
1051 
TEST(malloc,align_check)1052 TEST(malloc, align_check) {
1053   AlignCheck();
1054 }
1055 
1056 // Jemalloc doesn't pass this test right now, so leave it as disabled.
TEST(malloc,DISABLED_alloc_after_fork)1057 TEST(malloc, DISABLED_alloc_after_fork) {
1058   // Both of these need to be a power of 2.
1059   static constexpr size_t kMinAllocationSize = 8;
1060   static constexpr size_t kMaxAllocationSize = 2097152;
1061 
1062   static constexpr size_t kNumAllocatingThreads = 5;
1063   static constexpr size_t kNumForkLoops = 100;
1064 
1065   std::atomic_bool stop;
1066 
1067   // Create threads that simply allocate and free different sizes.
1068   std::vector<std::thread*> threads;
1069   for (size_t i = 0; i < kNumAllocatingThreads; i++) {
1070     std::thread* t = new std::thread([&stop] {
1071       while (!stop) {
1072         for (size_t size = kMinAllocationSize; size <= kMaxAllocationSize; size <<= 1) {
1073           void* ptr;
1074           DoNotOptimize(ptr = malloc(size));
1075           free(ptr);
1076         }
1077       }
1078     });
1079     threads.push_back(t);
1080   }
1081 
1082   // Create a thread to fork and allocate.
1083   for (size_t i = 0; i < kNumForkLoops; i++) {
1084     pid_t pid;
1085     if ((pid = fork()) == 0) {
1086       for (size_t size = kMinAllocationSize; size <= kMaxAllocationSize; size <<= 1) {
1087         void* ptr;
1088         DoNotOptimize(ptr = malloc(size));
1089         ASSERT_TRUE(ptr != nullptr);
1090         // Make sure we can touch all of the allocation.
1091         memset(ptr, 0x1, size);
1092         ASSERT_LE(size, malloc_usable_size(ptr));
1093         free(ptr);
1094       }
1095       _exit(10);
1096     }
1097     ASSERT_NE(-1, pid);
1098     AssertChildExited(pid, 10);
1099   }
1100 
1101   stop = true;
1102   for (auto thread : threads) {
1103     thread->join();
1104     delete thread;
1105   }
1106 }
1107 
TEST(android_mallopt,error_on_unexpected_option)1108 TEST(android_mallopt, error_on_unexpected_option) {
1109 #if defined(__BIONIC__)
1110   const int unrecognized_option = -1;
1111   errno = 0;
1112   EXPECT_EQ(false, android_mallopt(unrecognized_option, nullptr, 0));
1113   EXPECT_EQ(ENOTSUP, errno);
1114 #else
1115   GTEST_SKIP() << "bionic-only test";
1116 #endif
1117 }
1118 
IsDynamic()1119 bool IsDynamic() {
1120 #if defined(__LP64__)
1121   Elf64_Ehdr ehdr;
1122 #else
1123   Elf32_Ehdr ehdr;
1124 #endif
1125   std::string path(android::base::GetExecutablePath());
1126 
1127   int fd = open(path.c_str(), O_RDONLY | O_CLOEXEC);
1128   if (fd == -1) {
1129     // Assume dynamic on error.
1130     return true;
1131   }
1132   bool read_completed = android::base::ReadFully(fd, &ehdr, sizeof(ehdr));
1133   close(fd);
1134   // Assume dynamic in error cases.
1135   return !read_completed || ehdr.e_type == ET_DYN;
1136 }
1137 
TEST(android_mallopt,init_zygote_child_profiling)1138 TEST(android_mallopt, init_zygote_child_profiling) {
1139 #if defined(__BIONIC__)
1140   // Successful call.
1141   errno = 0;
1142   if (IsDynamic()) {
1143     EXPECT_EQ(true, android_mallopt(M_INIT_ZYGOTE_CHILD_PROFILING, nullptr, 0));
1144     EXPECT_EQ(0, errno);
1145   } else {
1146     // Not supported in static executables.
1147     EXPECT_EQ(false, android_mallopt(M_INIT_ZYGOTE_CHILD_PROFILING, nullptr, 0));
1148     EXPECT_EQ(ENOTSUP, errno);
1149   }
1150 
1151   // Unexpected arguments rejected.
1152   errno = 0;
1153   char unexpected = 0;
1154   EXPECT_EQ(false, android_mallopt(M_INIT_ZYGOTE_CHILD_PROFILING, &unexpected, 1));
1155   if (IsDynamic()) {
1156     EXPECT_EQ(EINVAL, errno);
1157   } else {
1158     EXPECT_EQ(ENOTSUP, errno);
1159   }
1160 #else
1161   GTEST_SKIP() << "bionic-only test";
1162 #endif
1163 }
1164 
1165 #if defined(__BIONIC__)
1166 template <typename FuncType>
CheckAllocationFunction(FuncType func)1167 void CheckAllocationFunction(FuncType func) {
1168   // Assumes that no more than 108MB of memory is allocated before this.
1169   size_t limit = 128 * 1024 * 1024;
1170   ASSERT_TRUE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit)));
1171   if (!func(20 * 1024 * 1024))
1172     exit(1);
1173   if (func(128 * 1024 * 1024))
1174     exit(1);
1175   exit(0);
1176 }
1177 #endif
1178 
TEST(android_mallopt,set_allocation_limit)1179 TEST(android_mallopt, set_allocation_limit) {
1180 #if defined(__BIONIC__)
1181   EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { return calloc(bytes, 1) != nullptr; }),
1182               testing::ExitedWithCode(0), "");
1183   EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { return calloc(1, bytes) != nullptr; }),
1184               testing::ExitedWithCode(0), "");
1185   EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { return malloc(bytes) != nullptr; }),
1186               testing::ExitedWithCode(0), "");
1187   EXPECT_EXIT(CheckAllocationFunction(
1188                   [](size_t bytes) { return memalign(sizeof(void*), bytes) != nullptr; }),
1189               testing::ExitedWithCode(0), "");
1190   EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) {
1191                 void* ptr;
1192                 return posix_memalign(&ptr, sizeof(void *), bytes) == 0;
1193               }),
1194               testing::ExitedWithCode(0), "");
1195   EXPECT_EXIT(CheckAllocationFunction(
1196                   [](size_t bytes) { return aligned_alloc(sizeof(void*), bytes) != nullptr; }),
1197               testing::ExitedWithCode(0), "");
1198   EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) {
1199                 void* p = malloc(1024 * 1024);
1200                 return realloc(p, bytes) != nullptr;
1201               }),
1202               testing::ExitedWithCode(0), "");
1203 #if !defined(__LP64__)
1204   EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { return pvalloc(bytes) != nullptr; }),
1205               testing::ExitedWithCode(0), "");
1206   EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { return valloc(bytes) != nullptr; }),
1207               testing::ExitedWithCode(0), "");
1208 #endif
1209 #else
1210   GTEST_SKIP() << "bionic extension";
1211 #endif
1212 }
1213 
TEST(android_mallopt,set_allocation_limit_multiple)1214 TEST(android_mallopt, set_allocation_limit_multiple) {
1215 #if defined(__BIONIC__)
1216   // Only the first set should work.
1217   size_t limit = 256 * 1024 * 1024;
1218   ASSERT_TRUE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit)));
1219   limit = 32 * 1024 * 1024;
1220   ASSERT_FALSE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit)));
1221 #else
1222   GTEST_SKIP() << "bionic extension";
1223 #endif
1224 }
1225 
1226 #if defined(__BIONIC__)
1227 static constexpr size_t kAllocationSize = 8 * 1024 * 1024;
1228 
GetMaxAllocations()1229 static size_t GetMaxAllocations() {
1230   size_t max_pointers = 0;
1231   void* ptrs[20];
1232   for (size_t i = 0; i < sizeof(ptrs) / sizeof(void*); i++) {
1233     ptrs[i] = malloc(kAllocationSize);
1234     if (ptrs[i] == nullptr) {
1235       max_pointers = i;
1236       break;
1237     }
1238   }
1239   for (size_t i = 0; i < max_pointers; i++) {
1240     free(ptrs[i]);
1241   }
1242   return max_pointers;
1243 }
1244 
VerifyMaxPointers(size_t max_pointers)1245 static void VerifyMaxPointers(size_t max_pointers) {
1246   // Now verify that we can allocate the same number as before.
1247   void* ptrs[20];
1248   for (size_t i = 0; i < max_pointers; i++) {
1249     ptrs[i] = malloc(kAllocationSize);
1250     ASSERT_TRUE(ptrs[i] != nullptr) << "Failed to allocate on iteration " << i;
1251   }
1252 
1253   // Make sure the next allocation still fails.
1254   ASSERT_TRUE(malloc(kAllocationSize) == nullptr);
1255   for (size_t i = 0; i < max_pointers; i++) {
1256     free(ptrs[i]);
1257   }
1258 }
1259 #endif
1260 
TEST(android_mallopt,set_allocation_limit_realloc_increase)1261 TEST(android_mallopt, set_allocation_limit_realloc_increase) {
1262 #if defined(__BIONIC__)
1263   size_t limit = 128 * 1024 * 1024;
1264   ASSERT_TRUE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit)));
1265 
1266   size_t max_pointers = GetMaxAllocations();
1267   ASSERT_TRUE(max_pointers != 0) << "Limit never reached.";
1268 
1269   void* memory = malloc(10 * 1024 * 1024);
1270   ASSERT_TRUE(memory != nullptr);
1271 
1272   // Increase size.
1273   memory = realloc(memory, 20 * 1024 * 1024);
1274   ASSERT_TRUE(memory != nullptr);
1275   memory = realloc(memory, 40 * 1024 * 1024);
1276   ASSERT_TRUE(memory != nullptr);
1277   memory = realloc(memory, 60 * 1024 * 1024);
1278   ASSERT_TRUE(memory != nullptr);
1279   memory = realloc(memory, 80 * 1024 * 1024);
1280   ASSERT_TRUE(memory != nullptr);
1281   // Now push past limit.
1282   memory = realloc(memory, 130 * 1024 * 1024);
1283   ASSERT_TRUE(memory == nullptr);
1284 
1285   VerifyMaxPointers(max_pointers);
1286 #else
1287   GTEST_SKIP() << "bionic extension";
1288 #endif
1289 }
1290 
TEST(android_mallopt,set_allocation_limit_realloc_decrease)1291 TEST(android_mallopt, set_allocation_limit_realloc_decrease) {
1292 #if defined(__BIONIC__)
1293   size_t limit = 100 * 1024 * 1024;
1294   ASSERT_TRUE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit)));
1295 
1296   size_t max_pointers = GetMaxAllocations();
1297   ASSERT_TRUE(max_pointers != 0) << "Limit never reached.";
1298 
1299   void* memory = malloc(80 * 1024 * 1024);
1300   ASSERT_TRUE(memory != nullptr);
1301 
1302   // Decrease size.
1303   memory = realloc(memory, 60 * 1024 * 1024);
1304   ASSERT_TRUE(memory != nullptr);
1305   memory = realloc(memory, 40 * 1024 * 1024);
1306   ASSERT_TRUE(memory != nullptr);
1307   memory = realloc(memory, 20 * 1024 * 1024);
1308   ASSERT_TRUE(memory != nullptr);
1309   memory = realloc(memory, 10 * 1024 * 1024);
1310   ASSERT_TRUE(memory != nullptr);
1311   free(memory);
1312 
1313   VerifyMaxPointers(max_pointers);
1314 #else
1315   GTEST_SKIP() << "bionic extension";
1316 #endif
1317 }
1318 
TEST(android_mallopt,set_allocation_limit_realloc_free)1319 TEST(android_mallopt, set_allocation_limit_realloc_free) {
1320 #if defined(__BIONIC__)
1321   size_t limit = 100 * 1024 * 1024;
1322   ASSERT_TRUE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit)));
1323 
1324   size_t max_pointers = GetMaxAllocations();
1325   ASSERT_TRUE(max_pointers != 0) << "Limit never reached.";
1326 
1327   void* memory = malloc(60 * 1024 * 1024);
1328   ASSERT_TRUE(memory != nullptr);
1329 
1330   memory = realloc(memory, 0);
1331   ASSERT_TRUE(memory == nullptr);
1332 
1333   VerifyMaxPointers(max_pointers);
1334 #else
1335   GTEST_SKIP() << "bionic extension";
1336 #endif
1337 }
1338 
1339 #if defined(__BIONIC__)
SetAllocationLimit(void * data)1340 static void* SetAllocationLimit(void* data) {
1341   std::atomic_bool* go = reinterpret_cast<std::atomic_bool*>(data);
1342   while (!go->load()) {
1343   }
1344   size_t limit = 500 * 1024 * 1024;
1345   if (android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit))) {
1346     return reinterpret_cast<void*>(-1);
1347   }
1348   return nullptr;
1349 }
1350 
SetAllocationLimitMultipleThreads()1351 static void SetAllocationLimitMultipleThreads() {
1352   std::atomic_bool go;
1353   go = false;
1354 
1355   static constexpr size_t kNumThreads = 4;
1356   pthread_t threads[kNumThreads];
1357   for (size_t i = 0; i < kNumThreads; i++) {
1358     ASSERT_EQ(0, pthread_create(&threads[i], nullptr, SetAllocationLimit, &go));
1359   }
1360 
1361   // Let them go all at once.
1362   go = true;
1363   // Send hardcoded signal (BIONIC_SIGNAL_PROFILER with value 0) to trigger
1364   // heapprofd handler.
1365   union sigval signal_value;
1366   signal_value.sival_int = 0;
1367   ASSERT_EQ(0, sigqueue(getpid(), BIONIC_SIGNAL_PROFILER, signal_value));
1368 
1369   size_t num_successful = 0;
1370   for (size_t i = 0; i < kNumThreads; i++) {
1371     void* result;
1372     ASSERT_EQ(0, pthread_join(threads[i], &result));
1373     if (result != nullptr) {
1374       num_successful++;
1375     }
1376   }
1377   ASSERT_EQ(1U, num_successful);
1378   exit(0);
1379 }
1380 #endif
1381 
TEST(android_mallopt,set_allocation_limit_multiple_threads)1382 TEST(android_mallopt, set_allocation_limit_multiple_threads) {
1383 #if defined(__BIONIC__)
1384   if (IsDynamic()) {
1385     ASSERT_TRUE(android_mallopt(M_INIT_ZYGOTE_CHILD_PROFILING, nullptr, 0));
1386   }
1387 
1388   // Run this a number of times as a stress test.
1389   for (size_t i = 0; i < 100; i++) {
1390     // Not using ASSERT_EXIT because errors messages are not displayed.
1391     pid_t pid;
1392     if ((pid = fork()) == 0) {
1393       ASSERT_NO_FATAL_FAILURE(SetAllocationLimitMultipleThreads());
1394     }
1395     ASSERT_NE(-1, pid);
1396     int status;
1397     ASSERT_EQ(pid, wait(&status));
1398     ASSERT_EQ(0, WEXITSTATUS(status));
1399   }
1400 #else
1401   GTEST_SKIP() << "bionic extension";
1402 #endif
1403 }
1404 
1405 #if defined(__BIONIC__)
1406 using Action = android_mallopt_gwp_asan_options_t::Action;
TEST(android_mallopt,DISABLED_multiple_enable_gwp_asan)1407 TEST(android_mallopt, DISABLED_multiple_enable_gwp_asan) {
1408   android_mallopt_gwp_asan_options_t options;
1409   options.program_name = "";  // Don't infer GWP-ASan options from sysprops.
1410   options.desire = Action::DONT_TURN_ON_UNLESS_OVERRIDDEN;
1411   // GWP-ASan should already be enabled. Trying to enable or disable it should
1412   // always pass.
1413   ASSERT_TRUE(android_mallopt(M_INITIALIZE_GWP_ASAN, &options, sizeof(options)));
1414   options.desire = Action::TURN_ON_WITH_SAMPLING;
1415   ASSERT_TRUE(android_mallopt(M_INITIALIZE_GWP_ASAN, &options, sizeof(options)));
1416 }
1417 #endif  // defined(__BIONIC__)
1418 
TEST(android_mallopt,multiple_enable_gwp_asan)1419 TEST(android_mallopt, multiple_enable_gwp_asan) {
1420 #if defined(__BIONIC__)
1421   // Always enable GWP-Asan, with default options.
1422   RunGwpAsanTest("*.DISABLED_multiple_enable_gwp_asan");
1423 #else
1424   GTEST_SKIP() << "bionic extension";
1425 #endif
1426 }
1427 
TEST(android_mallopt,memtag_stack_is_on)1428 TEST(android_mallopt, memtag_stack_is_on) {
1429 #if defined(__BIONIC__)
1430   bool memtag_stack;
1431   EXPECT_TRUE(android_mallopt(M_MEMTAG_STACK_IS_ON, &memtag_stack, sizeof(memtag_stack)));
1432 #else
1433   GTEST_SKIP() << "bionic extension";
1434 #endif
1435 }
1436 
TestHeapZeroing(int num_iterations,int (* get_alloc_size)(int iteration))1437 void TestHeapZeroing(int num_iterations, int (*get_alloc_size)(int iteration)) {
1438   std::vector<void*> allocs;
1439   constexpr int kMaxBytesToCheckZero = 64;
1440   const char kBlankMemory[kMaxBytesToCheckZero] = {};
1441 
1442   for (int i = 0; i < num_iterations; ++i) {
1443     int size = get_alloc_size(i);
1444     allocs.push_back(malloc(size));
1445     memset(allocs.back(), 'X', std::min(size, kMaxBytesToCheckZero));
1446   }
1447 
1448   for (void* alloc : allocs) {
1449     free(alloc);
1450   }
1451   allocs.clear();
1452 
1453   for (int i = 0; i < num_iterations; ++i) {
1454     int size = get_alloc_size(i);
1455     allocs.push_back(malloc(size));
1456     ASSERT_EQ(0, memcmp(allocs.back(), kBlankMemory, std::min(size, kMaxBytesToCheckZero)));
1457   }
1458 
1459   for (void* alloc : allocs) {
1460     free(alloc);
1461   }
1462 }
1463 
TEST(malloc,zero_init)1464 TEST(malloc, zero_init) {
1465 #if defined(__BIONIC__)
1466   SKIP_WITH_HWASAN << "hwasan does not implement mallopt";
1467   bool allocator_scudo;
1468   GetAllocatorVersion(&allocator_scudo);
1469   if (!allocator_scudo) {
1470     GTEST_SKIP() << "scudo allocator only test";
1471   }
1472 
1473   mallopt(M_BIONIC_ZERO_INIT, 1);
1474 
1475   // Test using a block of 4K small (1-32 byte) allocations.
1476   TestHeapZeroing(/* num_iterations */ 0x1000, [](int iteration) -> int {
1477     return 1 + iteration % 32;
1478   });
1479 
1480   // Also test large allocations that land in the scudo secondary, as this is
1481   // the only part of Scudo that's changed by enabling zero initialization with
1482   // MTE. Uses 32 allocations, totalling 60MiB memory. Decay time (time to
1483   // release secondary allocations back to the OS) was modified to 0ms/1ms by
1484   // mallopt_decay. Ensure that we delay for at least a second before releasing
1485   // pages to the OS in order to avoid implicit zeroing by the kernel.
1486   mallopt(M_DECAY_TIME, 1000);
1487   TestHeapZeroing(/* num_iterations */ 32, [](int iteration) -> int {
1488     return 1 << (19 + iteration % 4);
1489   });
1490 
1491 #else
1492   GTEST_SKIP() << "bionic-only test";
1493 #endif
1494 }
1495 
1496 // Note that MTE is enabled on cc_tests on devices that support MTE.
TEST(malloc,disable_mte)1497 TEST(malloc, disable_mte) {
1498 #if defined(__BIONIC__)
1499   if (!mte_supported()) {
1500     GTEST_SKIP() << "This function can only be tested with MTE";
1501   }
1502 
1503   sem_t sem;
1504   ASSERT_EQ(0, sem_init(&sem, 0, 0));
1505 
1506   pthread_t thread;
1507   ASSERT_EQ(0, pthread_create(
1508                    &thread, nullptr,
1509                    [](void* ptr) -> void* {
1510                      auto* sem = reinterpret_cast<sem_t*>(ptr);
1511                      sem_wait(sem);
1512                      return reinterpret_cast<void*>(prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0));
1513                    },
1514                    &sem));
1515 
1516   ASSERT_EQ(1, mallopt(M_BIONIC_SET_HEAP_TAGGING_LEVEL, M_HEAP_TAGGING_LEVEL_NONE));
1517   ASSERT_EQ(0, sem_post(&sem));
1518 
1519   int my_tagged_addr_ctrl = prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0);
1520   ASSERT_EQ(static_cast<unsigned long>(PR_MTE_TCF_NONE), my_tagged_addr_ctrl & PR_MTE_TCF_MASK);
1521 
1522   void* retval;
1523   ASSERT_EQ(0, pthread_join(thread, &retval));
1524   int thread_tagged_addr_ctrl = reinterpret_cast<uintptr_t>(retval);
1525   ASSERT_EQ(my_tagged_addr_ctrl, thread_tagged_addr_ctrl);
1526 #else
1527   GTEST_SKIP() << "bionic extension";
1528 #endif
1529 }
1530 
TEST(malloc,allocation_slack)1531 TEST(malloc, allocation_slack) {
1532 #if defined(__BIONIC__)
1533   SKIP_WITH_NATIVE_BRIDGE;  // http://b/189606147
1534 
1535   bool allocator_scudo;
1536   GetAllocatorVersion(&allocator_scudo);
1537   if (!allocator_scudo) {
1538     GTEST_SKIP() << "scudo allocator only test";
1539   }
1540 
1541   // Test that older target SDK levels let you access a few bytes off the end of
1542   // a large allocation.
1543   android_set_application_target_sdk_version(29);
1544   auto p = std::make_unique<char[]>(131072);
1545   volatile char *vp = p.get();
1546   volatile char oob ATTRIBUTE_UNUSED = vp[131072];
1547 #else
1548   GTEST_SKIP() << "bionic extension";
1549 #endif
1550 }
1551 
1552 // Regression test for b/206701345 -- scudo bug, MTE only.
1553 // Fix: https://reviews.llvm.org/D105261
1554 // Fix: https://android-review.googlesource.com/c/platform/external/scudo/+/1763655
TEST(malloc,realloc_mte_crash_b206701345)1555 TEST(malloc, realloc_mte_crash_b206701345) {
1556   // We want to hit in-place realloc at the very end of an mmap-ed region.  Not
1557   // all size classes allow such placement - mmap size has to be divisible by
1558   // the block size. At the time of writing this could only be reproduced with
1559   // 64 byte size class (i.e. 48 byte allocations), but that may change in the
1560   // future. Try several different classes at the lower end.
1561   std::vector<void*> ptrs(10000);
1562   for (int i = 1; i < 32; ++i) {
1563     size_t sz = 16 * i - 1;
1564     for (void*& p : ptrs) {
1565       p = realloc(malloc(sz), sz + 1);
1566     }
1567 
1568     for (void* p : ptrs) {
1569       free(p);
1570     }
1571   }
1572 }
1573 
VerifyAllocationsAreZero(std::function<void * (size_t)> alloc_func,std::string function_name,std::vector<size_t> & test_sizes,size_t max_allocations)1574 void VerifyAllocationsAreZero(std::function<void*(size_t)> alloc_func, std::string function_name,
1575                               std::vector<size_t>& test_sizes, size_t max_allocations) {
1576   // Vector of zero'd data used for comparisons. Make it twice the largest size.
1577   std::vector<char> zero(test_sizes.back() * 2, 0);
1578 
1579   SCOPED_TRACE(testing::Message() << function_name << " failed to zero memory");
1580 
1581   for (size_t test_size : test_sizes) {
1582     std::vector<void*> ptrs(max_allocations);
1583     for (size_t i = 0; i < ptrs.size(); i++) {
1584       SCOPED_TRACE(testing::Message() << "size " << test_size << " at iteration " << i);
1585       ptrs[i] = alloc_func(test_size);
1586       ASSERT_TRUE(ptrs[i] != nullptr);
1587       size_t alloc_size = malloc_usable_size(ptrs[i]);
1588       ASSERT_LE(alloc_size, zero.size());
1589       ASSERT_EQ(0, memcmp(ptrs[i], zero.data(), alloc_size));
1590 
1591       // Set the memory to non-zero to make sure if the pointer
1592       // is reused it's still zero.
1593       memset(ptrs[i], 0xab, alloc_size);
1594     }
1595     // Free the pointers.
1596     for (size_t i = 0; i < ptrs.size(); i++) {
1597       free(ptrs[i]);
1598     }
1599     for (size_t i = 0; i < ptrs.size(); i++) {
1600       SCOPED_TRACE(testing::Message() << "size " << test_size << " at iteration " << i);
1601       ptrs[i] = malloc(test_size);
1602       ASSERT_TRUE(ptrs[i] != nullptr);
1603       size_t alloc_size = malloc_usable_size(ptrs[i]);
1604       ASSERT_LE(alloc_size, zero.size());
1605       ASSERT_EQ(0, memcmp(ptrs[i], zero.data(), alloc_size));
1606     }
1607     // Free all of the pointers later to maximize the chance of reusing from
1608     // the first loop.
1609     for (size_t i = 0; i < ptrs.size(); i++) {
1610       free(ptrs[i]);
1611     }
1612   }
1613 }
1614 
1615 // Verify that small and medium allocations are always zero.
1616 // @CddTest = 9.7/C-4-1
TEST(malloc,zeroed_allocations_small_medium_sizes)1617 TEST(malloc, zeroed_allocations_small_medium_sizes) {
1618 #if !defined(__BIONIC__)
1619   GTEST_SKIP() << "Only valid on bionic";
1620 #endif
1621 
1622   if (IsLowRamDevice()) {
1623     GTEST_SKIP() << "Skipped on low memory devices.";
1624   }
1625 
1626   constexpr size_t kMaxAllocations = 1024;
1627   std::vector<size_t> test_sizes = {16, 48, 128, 1024, 4096, 65536};
1628   VerifyAllocationsAreZero([](size_t size) -> void* { return malloc(size); }, "malloc", test_sizes,
1629                            kMaxAllocations);
1630 
1631   VerifyAllocationsAreZero([](size_t size) -> void* { return memalign(64, size); }, "memalign",
1632                            test_sizes, kMaxAllocations);
1633 
1634   VerifyAllocationsAreZero(
1635       [](size_t size) -> void* {
1636         void* ptr;
1637         if (posix_memalign(&ptr, 64, size) == 0) {
1638           return ptr;
1639         }
1640         return nullptr;
1641       },
1642       "posix_memalign", test_sizes, kMaxAllocations);
1643 }
1644 
1645 // Verify that large allocations are always zero.
1646 // @CddTest = 9.7/C-4-1
TEST(malloc,zeroed_allocations_large_sizes)1647 TEST(malloc, zeroed_allocations_large_sizes) {
1648 #if !defined(__BIONIC__)
1649   GTEST_SKIP() << "Only valid on bionic";
1650 #endif
1651 
1652   if (IsLowRamDevice()) {
1653     GTEST_SKIP() << "Skipped on low memory devices.";
1654   }
1655 
1656   constexpr size_t kMaxAllocations = 20;
1657   std::vector<size_t> test_sizes = {1000000, 2000000, 3000000, 4000000};
1658   VerifyAllocationsAreZero([](size_t size) -> void* { return malloc(size); }, "malloc", test_sizes,
1659                            kMaxAllocations);
1660 
1661   VerifyAllocationsAreZero([](size_t size) -> void* { return memalign(64, size); }, "memalign",
1662                            test_sizes, kMaxAllocations);
1663 
1664   VerifyAllocationsAreZero(
1665       [](size_t size) -> void* {
1666         void* ptr;
1667         if (posix_memalign(&ptr, 64, size) == 0) {
1668           return ptr;
1669         }
1670         return nullptr;
1671       },
1672       "posix_memalign", test_sizes, kMaxAllocations);
1673 }
1674 
1675 // Verify that reallocs are zeroed when expanded.
1676 // @CddTest = 9.7/C-4-1
TEST(malloc,zeroed_allocations_realloc)1677 TEST(malloc, zeroed_allocations_realloc) {
1678 #if !defined(__BIONIC__)
1679   GTEST_SKIP() << "Only valid on bionic";
1680 #endif
1681 
1682   if (IsLowRamDevice()) {
1683     GTEST_SKIP() << "Skipped on low memory devices.";
1684   }
1685 
1686   // Vector of zero'd data used for comparisons.
1687   constexpr size_t kMaxMemorySize = 131072;
1688   std::vector<char> zero(kMaxMemorySize, 0);
1689 
1690   constexpr size_t kMaxAllocations = 1024;
1691   std::vector<size_t> test_sizes = {16, 48, 128, 1024, 4096, 65536};
1692   // Do a number of allocations and set them to non-zero.
1693   for (size_t test_size : test_sizes) {
1694     std::vector<void*> ptrs(kMaxAllocations);
1695     for (size_t i = 0; i < kMaxAllocations; i++) {
1696       ptrs[i] = malloc(test_size);
1697       ASSERT_TRUE(ptrs[i] != nullptr);
1698 
1699       // Set the memory to non-zero to make sure if the pointer
1700       // is reused it's still zero.
1701       memset(ptrs[i], 0xab, malloc_usable_size(ptrs[i]));
1702     }
1703     // Free the pointers.
1704     for (size_t i = 0; i < kMaxAllocations; i++) {
1705       free(ptrs[i]);
1706     }
1707   }
1708 
1709   // Do the reallocs to a larger size and verify the rest of the allocation
1710   // is zero.
1711   constexpr size_t kInitialSize = 8;
1712   for (size_t test_size : test_sizes) {
1713     std::vector<void*> ptrs(kMaxAllocations);
1714     for (size_t i = 0; i < kMaxAllocations; i++) {
1715       ptrs[i] = malloc(kInitialSize);
1716       ASSERT_TRUE(ptrs[i] != nullptr);
1717       size_t orig_alloc_size = malloc_usable_size(ptrs[i]);
1718 
1719       ptrs[i] = realloc(ptrs[i], test_size);
1720       ASSERT_TRUE(ptrs[i] != nullptr);
1721       size_t new_alloc_size = malloc_usable_size(ptrs[i]);
1722       char* ptr = reinterpret_cast<char*>(ptrs[i]);
1723       ASSERT_EQ(0, memcmp(&ptr[orig_alloc_size], zero.data(), new_alloc_size - orig_alloc_size))
1724           << "realloc from " << kInitialSize << " to size " << test_size << " at iteration " << i;
1725     }
1726     for (size_t i = 0; i < kMaxAllocations; i++) {
1727       free(ptrs[i]);
1728     }
1729   }
1730 }
1731