• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2014 The Android Open Source Project
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#      http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14"""Verifies EV compensation is applied."""
15
16
17import logging
18import math
19import os.path
20import matplotlib
21from matplotlib import pylab
22from mobly import test_runner
23
24import its_base_test
25import camera_properties_utils
26import capture_request_utils
27import image_processing_utils
28import its_session_utils
29
30_LINEAR_TONEMAP_CURVE = [0.0, 0.0, 1.0, 1.0]
31_LOCKED = 3
32_LUMA_DELTA_ATOL = 0.05
33_LUMA_DELTA_ATOL_SAT = 0.10
34_LUMA_SAT_THRESH = 0.75  # luma value at which ATOL changes from MID to SAT
35_NAME = os.path.splitext(os.path.basename(__file__))[0]
36_PATCH_H = 0.1  # center 10%
37_PATCH_W = 0.1
38_PATCH_X = 0.5 - _PATCH_W/2
39_PATCH_Y = 0.5 - _PATCH_H/2
40_THRESH_CONVERGE_FOR_EV = 8  # AE must converge within this num auto reqs for EV
41
42
43def create_request_with_ev(ev):
44  """Create request with the ev compensation step."""
45  req = capture_request_utils.auto_capture_request()
46  req['android.control.aeExposureCompensation'] = ev
47  req['android.control.aeLock'] = True
48  req['android.control.awbLock'] = True
49  # Use linear tonemap to avoid brightness being impacted by tone curves.
50  req['android.tonemap.mode'] = 0
51  req['android.tonemap.curve'] = {'red': _LINEAR_TONEMAP_CURVE,
52                                  'green': _LINEAR_TONEMAP_CURVE,
53                                  'blue': _LINEAR_TONEMAP_CURVE}
54  return req
55
56
57def create_ev_comp_changes(props):
58  """Create the ev compensation steps and shifts from control params."""
59  ev_compensation_range = props['android.control.aeCompensationRange']
60  range_min = ev_compensation_range[0]
61  range_max = ev_compensation_range[1]
62  ev_per_step = capture_request_utils.rational_to_float(
63      props['android.control.aeCompensationStep'])
64  logging.debug('ev_step_size_in_stops: %.3f', ev_per_step)
65  steps_per_ev = int(round(1.0 / ev_per_step))
66  ev_steps = range(range_min, range_max + 1, steps_per_ev)
67  ev_shifts = [pow(2, step * ev_per_step) for step in ev_steps]
68  return ev_steps, ev_shifts
69
70
71class EvCompensationAdvancedTest(its_base_test.ItsBaseTest):
72  """Tests that EV compensation is applied."""
73
74  def test_ev_compensation_advanced(self):
75    logging.debug('Starting %s', _NAME)
76    with its_session_utils.ItsSession(
77        device_id=self.dut.serial,
78        camera_id=self.camera_id,
79        hidden_physical_id=self.hidden_physical_id) as cam:
80      props = cam.get_camera_properties()
81      props = cam.override_with_hidden_physical_camera_props(props)
82      log_path = self.log_path
83
84      # check SKIP conditions
85      camera_properties_utils.skip_unless(
86          camera_properties_utils.ev_compensation(props) and
87          camera_properties_utils.manual_sensor(props) and
88          camera_properties_utils.manual_post_proc(props) and
89          camera_properties_utils.per_frame_control(props) and
90          camera_properties_utils.ae_lock(props) and
91          camera_properties_utils.awb_lock(props))
92
93      # Load chart for scene
94      its_session_utils.load_scene(
95          cam, props, self.scene, self.tablet,
96          its_session_utils.CHART_DISTANCE_NO_SCALING)
97
98      # Create ev compensation changes
99      ev_steps, ev_shifts = create_ev_comp_changes(props)
100
101      # Converge 3A, and lock AE once converged. skip AF trigger as
102      # dark/bright scene could make AF convergence fail and this test
103      # doesn't care the image sharpness.
104      mono_camera = camera_properties_utils.mono_camera(props)
105      cam.do_3a(ev_comp=0, lock_ae=True, lock_awb=True, do_af=False,
106                mono_camera=mono_camera)
107
108      # Create requests and capture
109      largest_yuv = capture_request_utils.get_largest_yuv_format(props)
110      match_ar = (largest_yuv['width'], largest_yuv['height'])
111      fmt = capture_request_utils.get_near_vga_yuv_format(
112          props, match_ar=match_ar)
113      lumas = []
114      for ev in ev_steps:
115        # Capture a single shot with the same EV comp and locked AE.
116        req = create_request_with_ev(ev)
117        caps = cam.do_capture([req]*_THRESH_CONVERGE_FOR_EV, fmt)
118        for cap in caps:
119          if cap['metadata']['android.control.aeState'] == _LOCKED:
120            ev_meta = cap['metadata']['android.control.aeExposureCompensation']
121            if ev_meta != ev:
122              raise AssertionError(
123                  f'EV comp capture != request! cap: {ev_meta}, req: {ev}')
124            lumas.append(image_processing_utils.extract_luma_from_patch(
125                cap, _PATCH_X, _PATCH_Y, _PATCH_W, _PATCH_H))
126            break
127        if caps[_THRESH_CONVERGE_FOR_EV-1]['metadata'][
128            'android.control.aeState'] != _LOCKED:
129          raise AssertionError('AE does not reach locked state in '
130                               f'{_THRESH_CONVERGE_FOR_EV} frames.')
131        logging.debug('lumas in AE locked captures: %s', str(lumas))
132
133      i_mid = len(ev_steps) // 2
134      luma_normal = lumas[i_mid] / ev_shifts[i_mid]
135      expected_lumas = [min(1.0, luma_normal*shift) for shift in ev_shifts]
136      luma_delta_atols = [_LUMA_DELTA_ATOL if l < _LUMA_SAT_THRESH
137                          else _LUMA_DELTA_ATOL_SAT for l in expected_lumas]
138
139      # Create plot
140      pylab.figure(_NAME)
141      pylab.plot(ev_steps, lumas, '-ro', label='measured', alpha=0.7)
142      pylab.plot(ev_steps, expected_lumas, '-bo', label='expected', alpha=0.7)
143      pylab.title(_NAME)
144      pylab.xlabel('EV Compensation')
145      pylab.ylabel('Mean Luma (Normalized)')
146      pylab.legend(loc='lower right', numpoints=1, fancybox=True)
147      name_with_log_path = os.path.join(log_path, _NAME)
148      matplotlib.pyplot.savefig(f'{name_with_log_path}_plot_means.png')
149
150      for i, luma in enumerate(lumas):
151        luma_delta_atol = luma_delta_atols[i]
152        logging.debug('EV step: %3d, luma: %.3f, model: %.3f, ATOL: %.2f',
153                      ev_steps[i], luma, expected_lumas[i], luma_delta_atol)
154        if not math.isclose(luma, expected_lumas[i],
155                            abs_tol=luma_delta_atol):
156          raise AssertionError('Modeled/measured luma deltas too large! '
157                               f'meas: {lumas[i]}, model: {expected_lumas[i]}, '
158                               f'ATOL: {luma_delta_atol}.')
159
160
161if __name__ == '__main__':
162  test_runner.main()
163