• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2020-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/core/CL/kernels/CLQLSTMLayerNormalizationKernel.h"
25 #include "arm_compute/core/CL/ICLTensor.h"
26 #include "arm_compute/core/utils/quantization/AsymmHelpers.h"
27 #include "src/core/helpers/AutoConfiguration.h"
28 #include "src/core/helpers/WindowHelpers.h"
29 #include "support/StringSupport.h"
30 
31 namespace arm_compute
32 {
33 namespace
34 {
compute_output_qinfo()35 QuantizationInfo compute_output_qinfo()
36 {
37     return QuantizationInfo(1.f / 4096);
38 }
39 
validate_and_configure_window(ITensorInfo * input,ITensorInfo * output)40 std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output)
41 {
42     ARM_COMPUTE_ERROR_ON_NULLPTR(input);
43     // Output auto inizialitation if not yet initialized
44     auto_init_if_empty(*output, *input);
45     output->set_quantization_info(compute_output_qinfo());
46 
47     const uint32_t temp_num_elems_processed_per_iteration = max_cl_vector_width / input->element_size();
48     /* If width is less then step, then make step same as width to avoid global size being step instead of actual width. */
49     /* Or we should fix in arm_compute::enqueue() or arm_compute::calculate_max_window(). */
50     const uint32_t num_elems_processed_per_iteration = (input->dimension(0) < temp_num_elems_processed_per_iteration) ? input->dimension(0) : temp_num_elems_processed_per_iteration;
51 
52     // This kernel doesn't need padding
53     Window win = calculate_max_window(*input, Steps(num_elems_processed_per_iteration));
54 
55     return std::make_pair(Status{}, win);
56 }
validate_arguments(const ITensorInfo * input,const ITensorInfo * output,const ITensorInfo * weight,const ITensorInfo * bias)57 Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const ITensorInfo *weight, const ITensorInfo *bias)
58 {
59     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weight, bias, output);
60 
61     ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->num_dimensions() > 2, "Input tensor cannot have more than 2 dimensions");
62     ARM_COMPUTE_RETURN_ERROR_ON_MSG(weight->num_dimensions() > 1, "Weight tensor cannot have more than 1 dimensions");
63     ARM_COMPUTE_RETURN_ERROR_ON_MSG(bias->num_dimensions() > 1, "Bias tensor cannot have more than 1 dimensions");
64 
65     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QSYMM16);
66     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weight, 1, DataType::QSYMM16);
67     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bias, 1, DataType::S32);
68 
69     ARM_COMPUTE_RETURN_ERROR_ON(input->tensor_shape().x() != weight->tensor_shape().x());
70     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(weight, bias);
71 
72     // Checks performed when output is configured
73     if(output->total_size() != 0)
74     {
75         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
76         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
77     }
78     return Status{};
79 }
80 } // namespace
81 
CLQLSTMLayerNormalizationKernel()82 CLQLSTMLayerNormalizationKernel::CLQLSTMLayerNormalizationKernel()
83     : _input(nullptr), _weight(nullptr), _bias(nullptr), _output(nullptr)
84 {
85     _type = CLKernelType::ELEMENTWISE;
86 }
87 
configure(const CLCompileContext & compile_context,const ICLTensor * input,ICLTensor * output,const ICLTensor * weight,const ICLTensor * bias)88 void CLQLSTMLayerNormalizationKernel::configure(const CLCompileContext &compile_context, const ICLTensor *input, ICLTensor *output, const ICLTensor *weight, const ICLTensor *bias)
89 {
90     ARM_COMPUTE_ERROR_ON_NULLPTR(input, weight, bias, output);
91     auto padding_info = get_padding_info({ input, weight, bias, output });
92 
93     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), weight->info(), bias->info()));
94 
95     _input  = input;
96     _weight = weight;
97     _bias   = bias;
98     _output = output;
99 
100     const uint32_t num_elems_processed_per_iteration = max_cl_vector_width / input->info()->element_size();
101 
102     int32_t                       output_multiplier{};
103     int32_t                       output_shift{};
104     const UniformQuantizationInfo quan_info = _weight->info()->quantization_info().uniform();
105     const Status                  status    = quantization::calculate_quantized_multiplier(quan_info.scale, &output_multiplier, &output_shift);
106     output_shift *= -1;
107 
108     // Set build options
109     CLBuildOptions build_opts;
110     build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(input->info()->data_type()));
111     build_opts.add_option("-DVEC_SIZE=" + support::cpp11::to_string(num_elems_processed_per_iteration));
112     build_opts.add_option("-DWIDTH=" + support::cpp11::to_string(input->info()->dimension(0)));
113     build_opts.add_option("-DOUTPUT_MULTIPLIER=" + support::cpp11::to_string(output_multiplier));
114     build_opts.add_option("-DOUTPUT_SHIFT=" + support::cpp11::to_string(output_shift));
115     build_opts.add_option("-DMIN_BOUND=" + support::cpp11::to_string(std::get<0>(quantization::get_min_max_values_from_quantized_data_type(input->info()->data_type()))));
116     build_opts.add_option("-DMAX_BOUND=" + support::cpp11::to_string(std::get<1>(quantization::get_min_max_values_from_quantized_data_type(input->info()->data_type()))));
117 
118     // Create kernel
119     _kernel = create_kernel(compile_context, "qlstm_layer_normalization", build_opts.options());
120 
121     // Configure kernel window
122     auto win_config = validate_and_configure_window(input->info(), output->info());
123     ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
124     ICLKernel::configure_internal(win_config.second);
125 
126     // Set config_id for enabling LWS tuning
127     _config_id = "qlstm_layer_normalization_";
128     _config_id += lower_string(string_from_data_type(input->info()->data_type()));
129     _config_id += "_";
130     _config_id += support::cpp11::to_string(input->info()->dimension(0));
131     _config_id += "_";
132     _config_id += support::cpp11::to_string(input->info()->dimension(1));
133     ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info));
134 }
135 
configure(const ICLTensor * input,ICLTensor * output,const ICLTensor * weight,const ICLTensor * bias)136 void CLQLSTMLayerNormalizationKernel::configure(const ICLTensor *input, ICLTensor *output, const ICLTensor *weight, const ICLTensor *bias)
137 {
138     configure(CLKernelLibrary::get().get_compile_context(), input, output, weight, bias);
139 }
140 
validate(const ITensorInfo * input,const ITensorInfo * output,const ITensorInfo * weight,const ITensorInfo * bias)141 Status CLQLSTMLayerNormalizationKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const ITensorInfo *weight, const ITensorInfo *bias)
142 {
143     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, weight, bias));
144     ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), output->clone().get()).first);
145     return Status{};
146 }
147 
run(const Window & window,cl::CommandQueue & queue)148 void CLQLSTMLayerNormalizationKernel::run(const Window &window, cl::CommandQueue &queue)
149 {
150     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
151     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
152 
153     Window slice = window.first_slice_window_2D();
154     // Set slice step equal to width to force gws[0] to 1, as each thread normalizes across all rows
155     slice.set_dimension_step(Window::DimX, _input->info()->dimension(0));
156 
157     Window weight_window;
158     Window weight_slice;
159 
160     weight_window.use_tensor_dimensions(_weight->info()->tensor_shape());
161     weight_slice = weight_window.first_slice_window_1D();
162 
163     do
164     {
165         unsigned int idx = 0;
166         add_2D_tensor_argument(idx, _input, slice);
167         add_1D_tensor_argument(idx, _weight, weight_slice);
168         add_1D_tensor_argument(idx, _bias, weight_slice);
169         add_2D_tensor_argument(idx, _output, slice);
170 
171         enqueue(queue, *this, slice, lws_hint());
172     }
173     while(window.slide_window_slice_2D(slice));
174 }
175 } // namespace arm_compute
176