• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 * Copyright (c) 2020-2022 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/core/helpers/WindowHelpers.h"
25 
26 namespace arm_compute
27 {
calculate_max_window(const ValidRegion & valid_region,const Steps & steps,bool skip_border,BorderSize border_size)28 Window calculate_max_window(const ValidRegion &valid_region, const Steps &steps, bool skip_border, BorderSize border_size)
29 {
30     if(!skip_border)
31     {
32         border_size = BorderSize(0);
33     }
34 
35     const Coordinates &anchor = valid_region.anchor;
36     const TensorShape &shape  = valid_region.shape;
37 
38     Window window;
39 
40     window.set(0, Window::Dimension(
41                    // Skip the border left of the image
42                    anchor[0] + border_size.left,
43                    // Skip the border right of the image
44                    // Make sure the window width is a multiple of the step size
45                    anchor[0] + border_size.left + ceil_to_multiple(std::max(0, static_cast<int>(shape[0]) - static_cast<int>(border_size.left) - static_cast<int>(border_size.right)), steps[0]),
46                    steps[0]));
47 
48     size_t n = 1;
49 
50     if(anchor.num_dimensions() > 1)
51     {
52         window.set(1, Window::Dimension(
53                        // Skip the border above the image
54                        anchor[1] + border_size.top,
55                        // Skip the border below the image
56                        anchor[1] + border_size.top + ceil_to_multiple(std::max(0, static_cast<int>(shape[1]) - static_cast<int>(border_size.top) - static_cast<int>(border_size.bottom)), steps[1]),
57                        steps[1]));
58 
59         ++n;
60     }
61 
62     if(anchor.num_dimensions() > 2)
63     {
64         window.set(2, Window::Dimension(anchor[2], std::max<size_t>(1, shape[2]), steps[2]));
65 
66         ++n;
67     }
68 
69     for(; n < anchor.num_dimensions(); ++n)
70     {
71         window.set(n, Window::Dimension(anchor[n], std::max<size_t>(1, shape[n])));
72     }
73 
74     for(; n < Coordinates::num_max_dimensions; ++n)
75     {
76         window.set(n, Window::Dimension(0, 1));
77     }
78 
79     return window;
80 }
81 
calculate_max_window(const TensorShape & shape,const Steps & steps,bool skip_border,BorderSize border_size)82 Window calculate_max_window(const TensorShape &shape, const Steps &steps, bool skip_border, BorderSize border_size)
83 {
84     if(!skip_border)
85     {
86         border_size = BorderSize(0);
87     }
88 
89     Window window;
90 
91     window.set(0, Window::Dimension(
92                    // Skip the border left of the image
93                    border_size.left,
94                    // Skip the border right of the image
95                    // Make sure the window width is a multiple of the step size
96                    border_size.left + ceil_to_multiple(std::max(0, static_cast<int>(shape[0]) - static_cast<int>(border_size.left) - static_cast<int>(border_size.right)), steps[0]),
97                    steps[0]));
98 
99     size_t n = 1;
100 
101     if(shape.num_dimensions() > 1)
102     {
103         window.set(1, Window::Dimension(
104                        // Skip the border above the image
105                        border_size.top,
106                        // Skip the border below the image
107                        border_size.top + ceil_to_multiple(std::max(0, static_cast<int>(shape[1]) - static_cast<int>(border_size.top) - static_cast<int>(border_size.bottom)), steps[1]),
108                        steps[1]));
109 
110         ++n;
111     }
112 
113     if(shape.num_dimensions() > 2)
114     {
115         window.set(2, Window::Dimension(0, std::max<size_t>(1, shape[2]), steps[2]));
116 
117         ++n;
118     }
119 
120     for(; n < shape.num_dimensions(); ++n)
121     {
122         window.set(n, Window::Dimension(0, std::max<size_t>(1, shape[n])));
123     }
124 
125     for(; n < Coordinates::num_max_dimensions; ++n)
126     {
127         window.set(n, Window::Dimension(0, 1));
128     }
129 
130     return window;
131 }
132 
calculate_max_enlarged_window(const ValidRegion & valid_region,const Steps & steps,BorderSize border_size)133 Window calculate_max_enlarged_window(const ValidRegion &valid_region, const Steps &steps, BorderSize border_size)
134 {
135     const Coordinates &anchor = valid_region.anchor;
136     const TensorShape &shape  = valid_region.shape;
137 
138     Window window;
139 
140     window.set(0, Window::Dimension(
141                    // move the anchor to the start from the border
142                    anchor[0] - border_size.left,
143                    // move the anchor to include the right end border
144                    // Make sure the window width is a multiple of the step size
145                    anchor[0] - border_size.left + ceil_to_multiple(shape[0] + border_size.left + border_size.right, steps[0]),
146                    steps[0]));
147 
148     size_t n = 1;
149 
150     if(anchor.num_dimensions() > 1)
151     {
152         window.set(1, Window::Dimension(
153                        // Include the border above the image
154                        anchor[1] - border_size.top,
155                        // Include the border below the image
156                        anchor[1] - border_size.top + ceil_to_multiple(shape[1] + border_size.top + border_size.bottom, steps[1]),
157                        steps[1]));
158 
159         ++n;
160     }
161 
162     if(anchor.num_dimensions() > 2)
163     {
164         window.set(2, Window::Dimension(0, std::max<size_t>(1, shape[n]), steps[2]));
165 
166         ++n;
167     }
168 
169     for(; n < anchor.num_dimensions(); ++n)
170     {
171         window.set(n, Window::Dimension(anchor[n], std::max<size_t>(1, shape[n])));
172     }
173 
174     for(; n < Coordinates::num_max_dimensions; ++n)
175     {
176         window.set(n, Window::Dimension(0, 1));
177     }
178 
179     return window;
180 }
181 
calculate_max_window_horizontal(const ValidRegion & valid_region,const Steps & steps,bool skip_border,BorderSize border_size)182 Window calculate_max_window_horizontal(const ValidRegion &valid_region, const Steps &steps, bool skip_border, BorderSize border_size)
183 {
184     if(skip_border)
185     {
186         border_size.top    = 0;
187         border_size.bottom = 0;
188     }
189     else
190     {
191         border_size.left  = 0;
192         border_size.right = 0;
193     }
194 
195     const Coordinates &anchor = valid_region.anchor;
196     const TensorShape &shape  = valid_region.shape;
197 
198     Window window;
199 
200     window.set(0, Window::Dimension(
201                    // Skip the border left of the image
202                    anchor[0] + border_size.left,
203                    // Skip the border right of the image
204                    // Make sure the window width is a multiple of the step size
205                    anchor[0] + border_size.left + ceil_to_multiple(std::max(0, static_cast<int>(shape[0]) - static_cast<int>(border_size.left) - static_cast<int>(border_size.right)), steps[0]),
206                    steps[0]));
207 
208     size_t n = 1;
209 
210     if(anchor.num_dimensions() > 1)
211     {
212         window.set(1, Window::Dimension(
213                        // Skip the border above the image
214                        anchor[1] - border_size.top,
215                        // Skip the border below the image
216                        anchor[1] + shape[1] + border_size.bottom,
217                        1));
218 
219         ++n;
220     }
221 
222     for(; n < anchor.num_dimensions(); ++n)
223     {
224         window.set(n, Window::Dimension(anchor[n], std::max<size_t>(1, shape[n])));
225     }
226 
227     for(; n < Coordinates::num_max_dimensions; ++n)
228     {
229         window.set(n, Window::Dimension(0, 1));
230     }
231 
232     return window;
233 }
234 
calculate_squashed_or_max_window(const ITensorInfo & src0,const ITensorInfo & src1)235 std::pair<Window, size_t> calculate_squashed_or_max_window(const ITensorInfo &src0, const ITensorInfo &src1)
236 {
237     const auto &shape0         = src0.tensor_shape();
238     const auto &shape1         = src1.tensor_shape();
239     const auto &strides0       = src0.strides_in_bytes();
240     const auto &strides1       = src1.strides_in_bytes();
241     const auto  num_dimensions = std::max(src0.num_dimensions(), src1.num_dimensions());
242 
243     Window win;
244     size_t split_dimension = Window::DimY;
245     size_t dim             = 0;
246 
247     size_t squashed_bytes = src0.element_size();
248 
249     // Try to squash the low dimensions together.
250     for(; dim < num_dimensions; ++dim)
251     {
252         if(shape0[dim] != shape1[dim] || strides0[dim] != squashed_bytes || strides1[dim] != squashed_bytes)
253         {
254             break;
255         }
256 
257         squashed_bytes *= shape0[dim];
258     }
259 
260     if(dim == num_dimensions)
261     {
262         auto squashed_elements = squashed_bytes / src0.element_size();
263 
264         split_dimension = Window::DimX;
265 
266         // The input tensors can be interpreted as 1D array.
267         win.set(0, Window::Dimension(0, squashed_elements, 1));
268 
269         for(dim = 1; dim < Coordinates::num_max_dimensions; ++dim)
270         {
271             win.set(dim, Window::Dimension(0, 1, 1));
272         }
273     }
274     else
275     {
276         // Generates the max window.
277         for(dim = 0; dim < Coordinates::num_max_dimensions; ++dim)
278         {
279             win.set(dim, Window::Dimension(0, std::max(shape0[dim], shape1[dim]), 1));
280         }
281     }
282 
283     return std::make_pair(win, split_dimension);
284 }
285 
calculate_squashed_or_max_window(const ITensorInfo & src)286 std::pair<Window, size_t> calculate_squashed_or_max_window(const ITensorInfo &src)
287 {
288     const auto &shape          = src.tensor_shape();
289     const auto &strides        = src.strides_in_bytes();
290     const auto  num_dimensions = src.num_dimensions();
291 
292     Window win;
293     size_t split_dimension = Window::DimY;
294     size_t dim             = 0;
295     size_t squashed_bytes  = src.element_size();
296 
297     // Try to squash the low dimensions together.
298     for(; dim < num_dimensions; ++dim)
299     {
300         if(strides[dim] != squashed_bytes)
301         {
302             break;
303         }
304         squashed_bytes *= shape[dim];
305     }
306     if(dim == num_dimensions)
307     {
308         const auto squashed_elements = squashed_bytes / src.element_size();
309         split_dimension              = Window::DimX;
310         // The input tensor can be interpreted as 1D array.
311         win.set(0, Window::Dimension(0, squashed_elements, 1));
312         for(dim = 1; dim < Coordinates::num_max_dimensions; ++dim)
313         {
314             win.set(dim, Window::Dimension(0, 1, 1));
315         }
316     }
317     else
318     {
319         // Generate the max window.
320         for(dim = 0; dim < Coordinates::num_max_dimensions; ++dim)
321         {
322             win.set(dim, Window::Dimension(0, shape[dim], 1));
323         }
324     }
325     return std::make_pair(win, split_dimension);
326 }
327 
328 } // namespace arm_compute
329