• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2020-2022 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/cpu/kernels/CpuMaxUnpoolingLayerKernel.h"
25 
26 #include "arm_compute/core/TensorInfo.h"
27 #include "arm_compute/core/Validate.h"
28 #include "arm_compute/core/Window.h"
29 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
30 #include "src/core/CPP/Validate.h"
31 #include "src/core/common/Registrars.h"
32 #include "src/core/helpers/AutoConfiguration.h"
33 #include "src/core/helpers/WindowHelpers.h"
34 #include "src/cpu/kernels/maxunpool/list.h"
35 #include "support/ToolchainSupport.h"
36 
37 namespace arm_compute
38 {
39 namespace cpu
40 {
41 namespace kernels
42 {
43 using namespace misc::shape_calculator;
44 
45 namespace
46 {
47 static const std::vector<CpuMaxUnpoolingLayerKernel::MaxUnpoolingKernel> available_kernels =
48 {
49     {
50         "neon_fp32_maxunpooling",
__anon375319200202() 51         [](const DataTypeISASelectorData & data) { return data.dt == DataType::F32; },
52         REGISTER_FP32_NEON(neon_fp32_maxunpooling)
53     },
54     {
55         "neon_fp16_maxunpooling",
__anon375319200302() 56         [](const DataTypeISASelectorData & data) { return data.dt == DataType::F16 && data.isa.fp16; },
57         REGISTER_FP16_NEON(neon_fp16_maxunpooling)
58     },
59     {
60         "neon_qu8_maxunpooling",
__anon375319200402() 61         [](const DataTypeISASelectorData & data) { return data.dt == DataType::QASYMM8; },
62         REGISTER_QASYMM8_NEON(neon_qs8_maxunpooling)
63     },
64     {
65         "neon_qs8_maxunpooling",
__anon375319200502() 66         [](const DataTypeISASelectorData & data) { return data.dt == DataType::QASYMM8_SIGNED; },
67         REGISTER_QASYMM8_SIGNED_NEON(neon_qu8_maxunpooling)
68     },
69 };
70 
validate_arguments(const ITensorInfo * src,const ITensorInfo * indices,const ITensorInfo * dst,const PoolingLayerInfo & pool_info)71 Status validate_arguments(const ITensorInfo *src, const ITensorInfo *indices, const ITensorInfo *dst, const PoolingLayerInfo &pool_info)
72 {
73     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, indices, dst);
74     ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(src);
75     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
76     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(indices, 1, DataType::U32);
77     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(src, indices);
78 
79     int                 pool_stride_x   = 0;
80     int                 pool_stride_y   = 0;
81     PoolingType         pool_type       = pool_info.pool_type;
82     const PadStrideInfo pad_stride_info = pool_info.pad_stride_info;
83     std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride();
84     const int    pool_size_x = pool_info.pool_size.width;
85     const int    pool_size_y = pool_info.pool_size.height;
86     const Size2D pool_size(pool_size_x, pool_size_y);
87 
88     ARM_COMPUTE_RETURN_ERROR_ON_MSG(pool_type != PoolingType::MAX, "Pooling indices only supported for MAX pooling method");
89     ARM_COMPUTE_RETURN_ERROR_ON_MSG((pool_size != Size2D(2, 2)), "Pooling indices only supported for pool size 2x2");
90     if(dst->total_size() != 0)
91     {
92         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, dst);
93         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(src, dst);
94     }
95 
96     return Status{};
97 }
98 } // namespace
99 
configure(const ITensorInfo * src,const ITensorInfo * indices,ITensorInfo * dst,const PoolingLayerInfo & pool_info)100 void CpuMaxUnpoolingLayerKernel::configure(const ITensorInfo *src, const ITensorInfo *indices, ITensorInfo *dst, const PoolingLayerInfo &pool_info)
101 {
102     ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst, indices);
103     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, indices, dst, pool_info));
104     ARM_COMPUTE_UNUSED(indices);
105 
106     const auto uk = CpuMaxUnpoolingLayerKernel::get_implementation(DataTypeISASelectorData{ src->data_type(), CPUInfo::get().get_isa() });
107     ARM_COMPUTE_ERROR_ON_NULLPTR(uk);
108     _run_method = uk->ukernel;
109 
110     const TensorShape output_shape = compute_unpool_shape(*src, pool_info);
111     auto_init_if_empty(*dst, src->clone()->set_tensor_shape(output_shape));
112 
113     auto window = calculate_max_window(*src, Steps());
114     ICpuKernel::configure(window);
115 }
116 
validate(const ITensorInfo * src,const ITensorInfo * indices,const ITensorInfo * dst,const PoolingLayerInfo & pool_info)117 Status CpuMaxUnpoolingLayerKernel::validate(const ITensorInfo *src, const ITensorInfo *indices, const ITensorInfo *dst, const PoolingLayerInfo &pool_info)
118 {
119     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, indices, dst);
120     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, indices, dst, pool_info));
121     return Status{};
122 }
123 
run_op(ITensorPack & tensors,const Window & window,const ThreadInfo & info)124 void CpuMaxUnpoolingLayerKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
125 {
126     ARM_COMPUTE_UNUSED(info);
127     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
128     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
129 
130     const auto src     = tensors.get_const_tensor(TensorType::ACL_SRC_0);
131     const auto indices = tensors.get_const_tensor(TensorType::ACL_SRC_1);
132     const auto dst     = tensors.get_tensor(TensorType::ACL_DST);
133 
134     _run_method(src, indices, dst, window);
135 }
136 
name() const137 const char *CpuMaxUnpoolingLayerKernel::name() const
138 {
139     return "CpuMaxUnpoolingLayerKernel";
140 }
141 
get_available_kernels()142 const std::vector<CpuMaxUnpoolingLayerKernel::MaxUnpoolingKernel> &CpuMaxUnpoolingLayerKernel::get_available_kernels()
143 {
144     return available_kernels;
145 }
146 } // namespace kernels
147 } // namespace cpu
148 } // namespace arm_compute