1 /*
2 * Copyright (c) 2017-2022 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24 #include "src/cpu/kernels/CpuSoftmaxKernel.h"
25
26 #include "arm_compute/core/Error.h"
27 #include "arm_compute/core/Helpers.h"
28 #include "arm_compute/core/ITensor.h"
29 #include "arm_compute/core/TensorInfo.h"
30 #include "arm_compute/core/Validate.h"
31 #include "arm_compute/core/Window.h"
32 #include "src/core/CPP/Validate.h"
33 #include "src/core/helpers/AutoConfiguration.h"
34 #include "src/core/helpers/WindowHelpers.h"
35
36 #include "src/core/common/Registrars.h"
37 #include "src/cpu/kernels/softmax/list.h"
38
39 namespace arm_compute
40 {
41 namespace cpu
42 {
43 namespace kernels
44 {
45 namespace
46 {
47 /* Softmax Logits 1D Max - identifying the max value of 1D Logits */
48 static const std::vector<CpuLogits1DMaxKernel::SoftmaxLogits1DMaxKernel> available_kernels_max_logits =
49 {
50 {
51 "sve_fp32_logits_1d_max",
__anon0caa09040202() 52 [](const DataTypeISASelectorData & data) { return (data.dt == DataType::F32) && data.isa.sve; },
53 REGISTER_FP32_SVE(sve_fp32_logits)
54 },
55 {
56 "sve_fp16_logits_1d_max",
__anon0caa09040302() 57 [](const DataTypeISASelectorData & data) { return (data.dt == DataType::F16) && data.isa.sve && data.isa.fp16; },
58 REGISTER_FP16_SVE(sve_fp16_logits)
59 },
60 {
61 "sve_qu8_logits_1d_max",
__anon0caa09040402() 62 [](const DataTypeISASelectorData & data) { return (data.dt == DataType::QASYMM8) && data.isa.sve; },
63 REGISTER_QASYMM8_SVE(sve_qasymm8_logits)
64 },
65 {
66 "sve_qs8_logits_1d_max",
__anon0caa09040502() 67 [](const DataTypeISASelectorData & data) { return (data.dt == DataType::QASYMM8_SIGNED) && data.isa.sve; },
68 REGISTER_QASYMM8_SIGNED_SVE(sve_qasymm8_signed_logits)
69 },
70 {
71 "neon_fp32_logits_1d_max",
__anon0caa09040602() 72 [](const DataTypeISASelectorData & data) { return (data.dt == DataType::F32); },
73 REGISTER_FP32_NEON(neon_fp32_logits)
74 },
75 {
76 "neon_fp16_logits_1d_max",
__anon0caa09040702() 77 [](const DataTypeISASelectorData & data) { return (data.dt == DataType::F16) && data.isa.fp16; },
78 REGISTER_FP16_NEON(neon_fp16_logits)
79 },
80 {
81 "neon_qu8_logits_1d_max",
__anon0caa09040802() 82 [](const DataTypeISASelectorData & data) { return (data.dt == DataType::QASYMM8); },
83 REGISTER_QASYMM8_NEON(neon_qasymm8_logits)
84 },
85 {
86 "neon_qs8_logits_1d_max",
__anon0caa09040902() 87 [](const DataTypeISASelectorData & data) { return (data.dt == DataType::QASYMM8_SIGNED); },
88 REGISTER_QASYMM8_SIGNED_NEON(neon_qasymm8_singed_logits)
89 },
90 };
91
validate_arguments_logits_1d_max(const ITensorInfo & input,const ITensorInfo & output)92 Status validate_arguments_logits_1d_max(const ITensorInfo &input, const ITensorInfo &output)
93 {
94 ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(&input);
95 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
96
97 // Validate in case of configured output
98 if(output.total_size() != 0)
99 {
100 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input, &output);
101 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(&input, &output);
102 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output.tensor_shape(), TensorShape(input.tensor_shape()).set(0, 1));
103 }
104
105 return Status{};
106 }
107 } //namespace
get_available_kernels()108 const std::vector<CpuLogits1DMaxKernel::SoftmaxLogits1DMaxKernel> &CpuLogits1DMaxKernel::get_available_kernels()
109 {
110 return available_kernels_max_logits;
111 }
112
configure(const ITensorInfo * src,ITensorInfo * dst)113 void CpuLogits1DMaxKernel::configure(const ITensorInfo *src, ITensorInfo *dst)
114 {
115 ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
116 ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_logits_1d_max(*src, *dst));
117
118 // Softmax across the x dimension
119 const TensorShape output_shape = TensorShape(src->tensor_shape()).set(0, 1);
120 // Output auto initialization if not yet initialized
121 auto_init_if_empty(*dst, output_shape, 1, src->data_type(), src->quantization_info());
122
123 const auto *uk = get_implementation(DataTypeISASelectorData{ src->data_type(), CPUInfo::get().get_isa() });
124 ARM_COMPUTE_ERROR_ON(uk == nullptr || uk->ukernel == nullptr);
125
126 _run_method = uk->ukernel;
127 _name = std::string("CpuLogits1DMaxKernel").append("/").append(uk->name);
128
129 Window win = calculate_max_window(*src, Steps());
130 ICpuKernel::configure(win);
131 }
132
validate(const ITensorInfo * src,const ITensorInfo * dst)133 Status CpuLogits1DMaxKernel::validate(const ITensorInfo *src, const ITensorInfo *dst)
134 {
135 ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
136 ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_logits_1d_max(*src, *dst));
137
138 return Status{};
139 }
140
run_op(ITensorPack & tensors,const Window & window,const ThreadInfo & info)141 void CpuLogits1DMaxKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
142 {
143 ARM_COMPUTE_UNUSED(info);
144 ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
145 ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
146 ARM_COMPUTE_ERROR_ON(_run_method == nullptr);
147
148 const auto src = tensors.get_const_tensor(TensorType::ACL_SRC);
149 auto dst = tensors.get_tensor(TensorType::ACL_DST);
150
151 _run_method(src, dst, window);
152 }
153
name() const154 const char *CpuLogits1DMaxKernel::name() const
155 {
156 return _name.c_str();
157 }
158
159 /* Softmax Logits 1D - computation for QASYMM8 with pre-computed max. */
160 template <bool IS_LOG>
161 static const std::vector<typename CpuLogits1DSoftmaxKernel<IS_LOG>::SoftmaxLogits1DKernel> available_kernels_logits =
162 {
163 {
164 "sve2_qu8_softmax_logits_1d",
__anon0caa09040a02() 165 [](const DataTypeISASelectorData & data) { return (data.dt == DataType::QASYMM8) && data.isa.sve2; },
166 REGISTER_QASYMM8_SVE2(sve2_qasymm8_softmax)
167 },
168 {
169 "sve2_qs8_softmax_logits_1d",
__anon0caa09040b02() 170 [](const DataTypeISASelectorData & data) { return (data.dt == DataType::QASYMM8_SIGNED) && data.isa.sve2; },
171 REGISTER_QASYMM8_SIGNED_SVE2(sve2_qasymm8_signed_softmax)
172 },
173 {
174 "sve_fp32_softmax_logits_1d",
__anon0caa09040c02() 175 [](const DataTypeISASelectorData & data) { return (data.dt == DataType::F32) && data.isa.sve; },
176 REGISTER_FP32_SVE(sve_fp32_softmax)
177 },
178 {
179 "sve_fp16_softmax_logits_1d",
__anon0caa09040d02() 180 [](const DataTypeISASelectorData & data) { return (data.dt == DataType::F16) && data.isa.sve && data.isa.fp16; },
181 REGISTER_FP16_SVE(sve_fp16_softmax)
182 },
183
184 {
185 "neon_fp32_softmax_logits_1d",
__anon0caa09040e02() 186 [](const DataTypeISASelectorData & data) { return (data.dt == DataType::F32); },
187 REGISTER_FP32_NEON(neon_fp32_softmax)
188 },
189 {
190 "neon_fp16_softmax_logits_1d",
__anon0caa09040f02() 191 [](const DataTypeISASelectorData & data) { return (data.dt == DataType::F16) && data.isa.fp16; },
192 REGISTER_FP16_NEON(neon_fp16_softmax)
193 },
194 {
195 "neon_qu8_softmax_logits_1d",
__anon0caa09041002() 196 [](const DataTypeISASelectorData & data) { return (data.dt == DataType::QASYMM8); },
197 REGISTER_QASYMM8_NEON(arm_compute::cpu::neon_qasymm8_softmax)
198 },
199 {
200 "neon_qs8_softmax_logits_1d",
__anon0caa09041102() 201 [](const DataTypeISASelectorData & data) { return (data.dt == DataType::QASYMM8_SIGNED); },
202 REGISTER_QASYMM8_SIGNED_NEON(arm_compute::cpu::neon_qasymm8_signed_softmax)
203 },
204 };
205 namespace
206 {
validate_arguments_logits_softmax(const ITensorInfo & src,const ITensorInfo & max,const ITensorInfo & dst,const float beta,const ITensorInfo & tmp,bool is_log)207 Status validate_arguments_logits_softmax(const ITensorInfo &src, const ITensorInfo &max,
208 const ITensorInfo &dst, const float beta, const ITensorInfo &tmp, bool is_log)
209 {
210 ARM_COMPUTE_UNUSED(beta);
211 // Check input
212 ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(&src);
213 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
214
215 const bool is_quantized_asymmetric = is_data_type_quantized_asymmetric(src.data_type());
216
217 // Check max
218 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&src, &max);
219 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(TensorShape(src.tensor_shape()).set(0, 1), max.tensor_shape());
220 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(&src, &max);
221
222 // Check output if configured
223 if(dst.total_size() != 0)
224 {
225 const QuantizationInfo output_quantization = is_quantized_asymmetric ? arm_compute::get_softmax_output_quantization_info(src.data_type(), is_log) : dst.quantization_info();
226 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&src, &dst);
227 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&src, &dst);
228 ARM_COMPUTE_RETURN_ERROR_ON(dst.quantization_info() != output_quantization);
229 }
230
231 // Check tmp if configured
232 if(tmp.total_size() != 0)
233 {
234 const DataType tmp_data_type = is_quantized_asymmetric ? DataType::F32 : src.data_type();
235 ARM_COMPUTE_RETURN_ERROR_ON(tmp.data_type() != tmp_data_type);
236 // We could potentially reduce tmp memory if we could predict or make an assumption
237 // on the maximum number of threads that will run in parallel.
238 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&src, &tmp);
239 }
240
241 return Status{};
242 }
243 } // namespace
244
245 template <bool IS_LOG>
get_available_kernels()246 const std::vector<typename CpuLogits1DSoftmaxKernel<IS_LOG>::SoftmaxLogits1DKernel> &CpuLogits1DSoftmaxKernel<IS_LOG>::get_available_kernels()
247 {
248 return available_kernels_logits<IS_LOG>;
249 }
250
251 template <bool IS_LOG>
configure(const ITensorInfo * src,const ITensorInfo * max,ITensorInfo * dst,const float beta,ITensorInfo * tmp)252 void CpuLogits1DSoftmaxKernel<IS_LOG>::configure(const ITensorInfo *src, const ITensorInfo *max, ITensorInfo *dst, const float beta, ITensorInfo *tmp)
253 {
254 ARM_COMPUTE_ERROR_ON_NULLPTR(src, max, dst, tmp);
255 ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_logits_softmax(*src, *max, *dst, beta, *tmp, IS_LOG));
256
257 // Configure kernel window
258 const bool is_quantized_asymmetric = is_data_type_quantized_asymmetric(src->data_type());
259
260 // Output auto initialization if not yet initialized
261 const QuantizationInfo output_quantization = is_quantized_asymmetric ? arm_compute::get_softmax_output_quantization_info(src->data_type(), IS_LOG) : dst->quantization_info();
262 auto_init_if_empty(*dst, TensorInfo(*src).set_quantization_info(output_quantization).reset_padding());
263
264 // Tmp auto initialization if not yet initialized
265 const DataType tmp_data_type = is_quantized_asymmetric ? DataType::F32 : src->data_type();
266 auto_init_if_empty(*tmp, TensorInfo(*src).set_data_type(tmp_data_type).reset_padding());
267
268 const auto *uk = CpuLogits1DSoftmaxKernel<IS_LOG>::get_implementation(DataTypeISASelectorData{ src->data_type(), CPUInfo::get().get_isa() });
269 ARM_COMPUTE_ERROR_ON(uk == nullptr || uk->ukernel == nullptr);
270
271 std::string kernel_name = IS_LOG ? std::string("CpuLogits1DLogSoftmaxKernel") : std::string("CpuLogits1DSoftmaxKernel");
272
273 _beta = beta;
274 _run_method = uk->ukernel;
275 _name = kernel_name.append("/").append(uk->name);
276
277 // Configure kernel window
278 Window win = calculate_max_window(*max, Steps());
279
280 ICpuKernel<CpuLogits1DSoftmaxKernel<IS_LOG>>::configure(win);
281 }
282
283 template <bool IS_LOG>
validate(const ITensorInfo * src,const ITensorInfo * max,const ITensorInfo * dst,const float beta,const ITensorInfo * tmp)284 Status CpuLogits1DSoftmaxKernel<IS_LOG>::validate(const ITensorInfo *src, const ITensorInfo *max,
285 const ITensorInfo *dst, const float beta, const ITensorInfo *tmp)
286 {
287 ARM_COMPUTE_ERROR_ON_NULLPTR(src, max, dst, tmp);
288 ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_logits_softmax(*src, *max, *dst, beta, *tmp, IS_LOG));
289
290 return Status{};
291 }
292
293 template <bool IS_LOG>
run_op(ITensorPack & tensors,const Window & window,const ThreadInfo & info)294 void CpuLogits1DSoftmaxKernel<IS_LOG>::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
295 {
296 ARM_COMPUTE_UNUSED(info);
297 ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
298 ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel<CpuLogits1DSoftmaxKernel<IS_LOG>>::window(), window);
299 ARM_COMPUTE_ERROR_ON(_run_method == nullptr);
300
301 const auto src = tensors.get_const_tensor(TensorType::ACL_SRC_0);
302 auto max = tensors.get_tensor(TensorType::ACL_SRC_1);
303 auto dst = tensors.get_tensor(TensorType::ACL_DST_0);
304 auto tmp = tensors.get_tensor(TensorType::ACL_DST_1);
305
306 const unsigned int num_elems_processed_per_iteration = src->info()->valid_region().shape.x();
307 const unsigned int tmp_size_for_thread = tmp->info()->element_size() * num_elems_processed_per_iteration;
308
309 ARM_COMPUTE_ERROR_ON(tmp->info()->total_size() < (info.num_threads * tmp_size_for_thread));
310
311 void *tmp_for_thread = tmp->buffer() + (info.thread_id * tmp_size_for_thread);
312 _run_method(src, max, tmp_for_thread, dst, _beta, IS_LOG, window);
313 }
314
315 template <bool IS_LOG>
name() const316 const char *CpuLogits1DSoftmaxKernel<IS_LOG>::name() const
317 {
318 return _name.c_str();
319 }
320
321 template class CpuLogits1DSoftmaxKernel<true>;
322 template class CpuLogits1DSoftmaxKernel<false>;
323
324 } // namespace kernels
325 } // namespace cpu
326 } // namespace arm_compute
327