• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef SRC_CORE_NEON_KERNELS_CONV3D_QUANTIZED_H
25 #define SRC_CORE_NEON_KERNELS_CONV3D_QUANTIZED_H
26 
27 #include "arm_compute/core/Types.h"
28 #include "arm_compute/core/utils/misc/Traits.h"
29 #include "arm_compute/core/utils/quantization/AsymmHelpers.h"
30 #include "arm_compute/runtime/FunctionDescriptors.h"
31 #include "src/core/NEON/NEAsymm.h"
32 #include "src/core/NEON/wrapper/wrapper.h"
33 #include "src/core/helpers/WindowHelpers.h"
34 
35 namespace arm_compute
36 {
37 namespace cpu
38 {
39 template <typename T>
directconv3d_quantized_neon_ndhwc(const ITensor * src0,const ITensor * src1,const ITensor * src2,ITensor * dst,const Conv3dInfo & conv_info,const Window & window)40 void directconv3d_quantized_neon_ndhwc(const ITensor *src0, const ITensor *src1, const ITensor *src2, ITensor *dst, const Conv3dInfo &conv_info, const Window &window)
41 {
42     const ITensor *src     = src0;
43     const ITensor *weights = src1;
44     const ITensor *biases  = src2;
45 
46     using vtype                                = wrapper::traits::neon_bitvector<T, wrapper::traits::BitWidth::W128>;
47     using vector_type                          = typename vtype::type;
48     using tag_type                             = typename vtype::tag_type;
49     constexpr int num_elems_read_per_iteration = 16 / sizeof(T);
50     using q16_t                                = typename wrapper::traits::promote_t<T>;
51     using q32_t                                = typename wrapper::traits::promote_t<q16_t>;
52     using q32x4_t                              = typename wrapper::traits::neon_vector<q32_t, 4>::type;
53 
54     const int32_t input_offset   = -src->info()->quantization_info().uniform().offset;
55     const float   input_scale    = src->info()->quantization_info().uniform().scale;
56     const int32_t weights_offset = -weights->info()->quantization_info().uniform().offset;
57     const float   weights_scale  = weights->info()->quantization_info().uniform().scale;
58     const int32_t output_offset  = dst->info()->quantization_info().uniform().offset;
59     const float   output_scale   = dst->info()->quantization_info().uniform().scale;
60 
61     int32_t     output_multiplier = 0;
62     int32_t     output_shift      = 0;
63     const float multiplier        = input_scale * weights_scale / output_scale;
64     arm_compute::quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift);
65 
66     // Scalar quantities (N D H W Cin)
67     const int element_size   = src->info()->element_size();
68     const int input_stride_w = src->info()->strides_in_bytes().y() / element_size;
69     const int input_stride_h = src->info()->strides_in_bytes().z() / element_size;
70     const int input_stride_d = src->info()->strides_in_bytes()[3] / element_size;
71     const int input_stride_n = src->info()->strides_in_bytes()[4] / element_size;
72     const int input_dim_w    = src->info()->dimension(1);
73     const int input_dim_h    = src->info()->dimension(2);
74     const int input_dim_d    = src->info()->dimension(3);
75 
76     // Kernel info (D H W Cin Cout)
77     const unsigned int kernel_stride_w = weights->info()->strides_in_bytes()[2] / element_size;
78     const unsigned int kernel_stride_h = weights->info()->strides_in_bytes()[3] / element_size;
79     const unsigned int kernel_stride_d = weights->info()->strides_in_bytes()[4] / element_size;
80     const int          kernel_dim_w    = weights->info()->dimension(2);
81     const int          kernel_dim_h    = weights->info()->dimension(3);
82     const int          kernel_dim_d    = weights->info()->dimension(4);
83 
84     // Convolution padding and stride
85     const int conv_pad_top   = conv_info.padding.top;
86     const int conv_pad_left  = conv_info.padding.left;
87     const int conv_pad_front = conv_info.padding.front;
88     const int conv_stride_w  = conv_info.stride.width;
89     const int conv_stride_h  = conv_info.stride.height;
90     const int conv_stride_d  = conv_info.stride.depth;
91 
92     // Setup input window for the output iterator
93     Window window_out = window;
94     window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
95 
96     // Setup input window for the weights iterator
97     Window window_w = calculate_max_window(*weights->info(), Steps());
98     window_w.set(Window::DimY, Window::Dimension(0, 1, 1));
99     window_w.set(Window::DimZ, Window::Dimension(0, 1, 1));
100     window_w.set(Window::DimW, Window::Dimension(0, 1, 1));
101     window_w.set(4, Window::Dimension(0, 1, 1));
102 
103     Iterator out(dst, window_out);
104     Iterator wei(weights, window_w);
105 
106     const int32_t *biases_ptr = nullptr;
107     if(biases != nullptr)
108     {
109         biases_ptr = reinterpret_cast<int32_t *>(biases->buffer() + biases->info()->offset_first_element_in_bytes());
110     }
111     execute_window_loop(window_out, [&](const Coordinates & id)
112     {
113         // We are computing the theoretical input starting points
114         const int in_w_start_t = static_cast<int>(id.y()) * conv_stride_w - conv_pad_left;
115         const int in_h_start_t = static_cast<int>(id.z()) * conv_stride_h - conv_pad_top;
116         const int in_d_start_t = static_cast<int>(id[3]) * conv_stride_d - conv_pad_front;
117         const int in_w_end_t   = in_w_start_t + kernel_dim_w;
118         const int in_h_end_t   = in_h_start_t + kernel_dim_h;
119         const int in_d_end_t   = in_d_start_t + kernel_dim_d;
120 
121         // We are computing the valid initial and ending input points by checking the borders
122         const int in_w_start = std::max(in_w_start_t, 0);
123         const int in_h_start = std::max(in_h_start_t, 0);
124         const int in_d_start = std::max(in_d_start_t, 0);
125         const int in_w_end   = std::min(in_w_end_t, input_dim_w);
126         const int in_h_end   = std::min(in_h_end_t, input_dim_h);
127         const int in_d_end   = std::min(in_d_end_t, input_dim_d);
128 
129         // We use the input points to select the valid weight points to use
130         const int wei_w_start = in_w_start - in_w_start_t;
131         const int wei_h_start = in_h_start - in_h_start_t;
132         const int wei_d_start = in_d_start - in_d_start_t;
133         const int wei_w_end   = kernel_dim_w - (in_w_end_t - in_w_end);
134         const int wei_h_end   = kernel_dim_h - (in_h_end_t - in_h_end);
135         const int wei_d_end   = kernel_dim_d - (in_d_end_t - in_d_end);
136 
137         const int      index_c_out_end = weights->info()->dimension(0);
138         const int      index_c_in_end  = weights->info()->dimension(1);
139         const T *const in_ptr_start    = reinterpret_cast<const T *>(src->buffer() + src->info()->offset_first_element_in_bytes()) + id[4] * input_stride_n;
140 
141         execute_window_loop(window_w, [&](const Coordinates & id_w)
142         {
143             /*
144             * This is the loop in the weights, and it goes along OFM (output feature map)
145             */
146             const auto weights_ptr_start = reinterpret_cast<const T *>(wei.ptr());
147             int32_t    acc               = static_cast<int32_t>(0);
148             T         *out_ptr           = reinterpret_cast<T *>(out.ptr());
149             for(int index_wei_d = wei_d_start, index_in_d = in_d_start; index_wei_d < wei_d_end; ++index_wei_d, ++index_in_d)
150             {
151                 const auto in_ptr_d      = in_ptr_start + index_in_d * input_stride_d;
152                 const auto weights_ptr_d = weights_ptr_start + index_wei_d * kernel_stride_d;
153                 for(int index_wei_h = wei_h_start, index_in_h = in_h_start; index_wei_h < wei_h_end; ++index_wei_h, ++index_in_h)
154                 {
155                     const T *const in_ptr_row      = in_ptr_d + index_in_h * input_stride_h;
156                     const T *const weights_ptr_row = weights_ptr_d + index_wei_h * kernel_stride_h;
157                     for(int index_wei_w = wei_w_start, index_in_w = in_w_start; index_wei_w < wei_w_end; ++index_wei_w, ++index_in_w)
158                     {
159                         const T    *in_ptr_mover      = in_ptr_row + index_in_w * input_stride_w;
160                         const T    *weights_ptr_mover = weights_ptr_row + index_wei_w * kernel_stride_w;
161                         int         index_c_in        = 0;
162                         vector_type w_vec             = wrapper::vdup_n(static_cast<T>(0), tag_type());
163 
164                         q32x4_t acc_q32_0 = wrapper::vdup_n(static_cast<q32_t>(0), tag_type());
165                         q32x4_t acc_q32_1 = wrapper::vdup_n(static_cast<q32_t>(0), tag_type());
166                         q32x4_t acc_q32_2 = wrapper::vdup_n(static_cast<q32_t>(0), tag_type());
167                         q32x4_t acc_q32_3 = wrapper::vdup_n(static_cast<q32_t>(0), tag_type());
168 
169                         for(; index_c_in <= index_c_in_end - num_elems_read_per_iteration;
170                             index_c_in += num_elems_read_per_iteration, in_ptr_mover += num_elems_read_per_iteration)
171                         {
172                             const auto src_vec = wrapper::vloadq(in_ptr_mover);
173                             //Load Cin weights
174                             for(int k = 0; k < num_elems_read_per_iteration; ++k, weights_ptr_mover += index_c_out_end)
175                             {
176                                 w_vec = wrapper::vsetlane(*weights_ptr_mover, w_vec, k);
177                             }
178                             q32x4_t src_q32_0 = wrapper::vdup_n(static_cast<q32_t>(input_offset), tag_type());
179                             q32x4_t src_q32_1 = wrapper::vdup_n(static_cast<q32_t>(input_offset), tag_type());
180                             q32x4_t src_q32_2 = wrapper::vdup_n(static_cast<q32_t>(input_offset), tag_type());
181                             q32x4_t src_q32_3 = wrapper::vdup_n(static_cast<q32_t>(input_offset), tag_type());
182 
183                             q32x4_t wei_q32_0 = wrapper::vdup_n(static_cast<q32_t>(weights_offset), tag_type());
184                             q32x4_t wei_q32_1 = wrapper::vdup_n(static_cast<q32_t>(weights_offset), tag_type());
185                             q32x4_t wei_q32_2 = wrapper::vdup_n(static_cast<q32_t>(weights_offset), tag_type());
186                             q32x4_t wei_q32_3 = wrapper::vdup_n(static_cast<q32_t>(weights_offset), tag_type());
187 
188                             const auto src_q16_0 = wrapper::vmovl(wrapper::vgetlow(src_vec));
189                             const auto src_q16_1 = wrapper::vmovl(wrapper::vgethigh(src_vec));
190                             const auto wei_q16_0 = wrapper::vmovl(wrapper::vgetlow(w_vec));
191                             const auto wei_q16_1 = wrapper::vmovl(wrapper::vgethigh(w_vec));
192 
193                             src_q32_0 = wrapper::vadd(src_q32_0, wrapper::vmovl(wrapper::vgetlow(src_q16_0)));
194                             src_q32_1 = wrapper::vadd(src_q32_1, wrapper::vmovl(wrapper::vgethigh(src_q16_0)));
195                             src_q32_2 = wrapper::vadd(src_q32_2, wrapper::vmovl(wrapper::vgetlow(src_q16_1)));
196                             src_q32_3 = wrapper::vadd(src_q32_3, wrapper::vmovl(wrapper::vgethigh(src_q16_1)));
197 
198                             wei_q32_0 = wrapper::vadd(wei_q32_0, wrapper::vmovl(wrapper::vgetlow(wei_q16_0)));
199                             wei_q32_1 = wrapper::vadd(wei_q32_1, wrapper::vmovl(wrapper::vgethigh(wei_q16_0)));
200                             wei_q32_2 = wrapper::vadd(wei_q32_2, wrapper::vmovl(wrapper::vgetlow(wei_q16_1)));
201                             wei_q32_3 = wrapper::vadd(wei_q32_3, wrapper::vmovl(wrapper::vgethigh(wei_q16_1)));
202 
203                             acc_q32_0 = wrapper::vmla(acc_q32_0, wei_q32_0, src_q32_0);
204                             acc_q32_1 = wrapper::vmla(acc_q32_1, wei_q32_1, src_q32_1);
205                             acc_q32_2 = wrapper::vmla(acc_q32_2, wei_q32_2, src_q32_2);
206                             acc_q32_3 = wrapper::vmla(acc_q32_3, wei_q32_3, src_q32_3);
207                         }
208 #if defined(__aarch64__)
209                         acc += wrapper::vaddv(acc_q32_0);
210                         acc += wrapper::vaddv(acc_q32_1);
211                         acc += wrapper::vaddv(acc_q32_2);
212                         acc += wrapper::vaddv(acc_q32_3);
213 #else // __aarch64__
214                         auto temp = wrapper::vpadd(wrapper::vgethigh(acc_q32_0), wrapper::vgetlow(acc_q32_0));
215                         temp      = wrapper::vpadd(temp, temp);
216                         acc       += wrapper::vgetlane(temp, 0);
217 
218                         temp      = wrapper::vpadd(wrapper::vgethigh(acc_q32_1), wrapper::vgetlow(acc_q32_1));
219                         temp      = wrapper::vpadd(temp, temp);
220                         acc       += wrapper::vgetlane(temp, 0);
221 
222                         temp      = wrapper::vpadd(wrapper::vgethigh(acc_q32_2), wrapper::vgetlow(acc_q32_2));
223                         temp      = wrapper::vpadd(temp, temp);
224                         acc       += wrapper::vgetlane(temp, 0);
225 
226                         temp      = wrapper::vpadd(wrapper::vgethigh(acc_q32_3), wrapper::vgetlow(acc_q32_3));
227                         temp      = wrapper::vpadd(temp, temp);
228                         acc       += wrapper::vgetlane(temp, 0);
229 
230 #endif // __aarch64__
231 
232                         for(; index_c_in < index_c_in_end; ++index_c_in, ++in_ptr_mover, weights_ptr_mover += index_c_out_end)
233                         {
234                             const auto src_val = *(in_ptr_mover) + input_offset;
235                             const auto w_val   = *(weights_ptr_mover) + weights_offset;
236                             acc += src_val * w_val;
237                         }
238                     }
239                 }
240             }
241 
242             if(biases)
243             {
244                 acc += *reinterpret_cast<const int32_t *>(biases_ptr + id_w[0]);
245             }
246 
247             T out_val                                   = finalize_quantization(acc, output_multiplier, output_shift, output_offset, T(0), T(0), false);
248             *(reinterpret_cast<T *>(out_ptr + id_w[0])) = out_val;
249         },
250         wei);
251     },
252     out);
253 }
254 } // namespace cpu
255 } // namespace arm_compute
256 #endif // SRC_CORE_NEON_KERNELS_CONV3D_QUANTIZED_H