• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2021-2022 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 
25 #include "src/cpu/kernels/softmax/generic/sve2/impl.h"
26 #include "arm_compute/core/Types.h"
27 #include "src/core/NEON/wrapper/wrapper.h"
28 
29 namespace arm_compute
30 {
31 namespace cpu
32 {
33 template <typename ScalarType>
sve2_softmax_logits_1d_quantized(const ITensor * in,const ITensor * max,void * const tmp,ITensor * out,float beta,bool is_log,const Window & window)34 void sve2_softmax_logits_1d_quantized(const ITensor *in, const ITensor *max, void *const tmp,
35                                       ITensor *out, float beta, bool is_log, const Window &window)
36 {
37     const int start_x     = in->info()->valid_region().anchor.x();
38     const int input_width = in->info()->valid_region().shape.x();
39 
40     const float scale_beta     = -beta * in->info()->quantization_info().uniform().scale;
41     const auto  scale_beta_vec = svdup_n_f32(scale_beta);
42 
43     Iterator   in_it(in, window);
44     Iterator   max_it(max, window);
45     Iterator   out_it(out, window);
46     const auto all_true_pg = wrapper::svptrue<ScalarType>();
47     using SVEType          = typename wrapper::traits::sve_vector<ScalarType>::type;
48 
49     const int inc_1 = static_cast<int>(svcntw());
50     const int inc_2 = static_cast<int>(2 * svcntw());
51     const int inc_3 = static_cast<int>(3 * svcntw());
52 
53     execute_window_loop(window, [&](const Coordinates &)
54     {
55         /* Get pointers */
56         const auto in_ptr  = reinterpret_cast<const ScalarType *>(in_it.ptr()) + start_x;
57         const auto out_ptr = reinterpret_cast<ScalarType *>(out_it.ptr()) + start_x;
58         const auto tmp_ptr = reinterpret_cast<float *>(tmp);
59 
60         float sum{};
61 
62         /* Compute exponentials and sum */
63         {
64             /* Get max value */
65             const auto max_val = *reinterpret_cast<const ScalarType *>(max_it.ptr());
66             const auto vec_max = wrapper::svdup_n(max_val);
67 
68             /* Init sum to zero */
69             auto vec_sum_0 = svdup_n_f32(0.f);
70             auto vec_sum_1 = svdup_n_f32(0.f);
71             auto vec_sum_2 = svdup_n_f32(0.f);
72             auto vec_sum_3 = svdup_n_f32(0.f);
73 
74             /* Loop over row and compute exponentials and sum */
75             int      x    = 0;
76             svbool_t pg   = wrapper::svwhilelt<ScalarType>(x, input_width);
77             svbool_t pg_0 = svunpklo(svunpklo(pg));
78             svbool_t pg_1 = svunpkhi(svunpklo(pg));
79             svbool_t pg_2 = svunpklo(svunpkhi(pg));
80             svbool_t pg_3 = svunpkhi(svunpkhi(pg));
81             do
82             {
83                 const auto vec_elements     = svld1(pg, in_ptr + x);
84                 const auto vec_elements_sub = svreinterpret_u8(svsub_z(pg, vec_max, vec_elements));
85 
86                 auto vec_elements_flt_0 = svcvt_f32_z(pg_0, svunpklo(svunpklo(vec_elements_sub)));
87                 auto vec_elements_flt_1 = svcvt_f32_z(pg_1, svunpkhi(svunpklo(vec_elements_sub)));
88                 auto vec_elements_flt_2 = svcvt_f32_z(pg_2, svunpklo(svunpkhi(vec_elements_sub)));
89                 auto vec_elements_flt_3 = svcvt_f32_z(pg_3, svunpkhi(svunpkhi(vec_elements_sub)));
90 
91                 if(is_log)
92                 {
93                     vec_elements_flt_0 = svmul_f32_z(pg_0, vec_elements_flt_0, scale_beta_vec);
94                     vec_elements_flt_1 = svmul_f32_z(pg_1, vec_elements_flt_1, scale_beta_vec);
95                     vec_elements_flt_2 = svmul_f32_z(pg_2, vec_elements_flt_2, scale_beta_vec);
96                     vec_elements_flt_3 = svmul_f32_z(pg_3, vec_elements_flt_3, scale_beta_vec);
97                     vec_sum_0          = svadd_f32_m(pg_0, vec_sum_0, svexp_f32_z(pg_0, vec_elements_flt_0));
98                     vec_sum_1          = svadd_f32_m(pg_1, vec_sum_1, svexp_f32_z(pg_1, vec_elements_flt_1));
99                     vec_sum_2          = svadd_f32_m(pg_2, vec_sum_2, svexp_f32_z(pg_2, vec_elements_flt_2));
100                     vec_sum_3          = svadd_f32_m(pg_3, vec_sum_3, svexp_f32_z(pg_3, vec_elements_flt_3));
101                 }
102                 else
103                 {
104                     vec_elements_flt_0 = svexp_f32_z(pg_0, svmul_f32_z(pg_0, vec_elements_flt_0, scale_beta_vec));
105                     vec_elements_flt_1 = svexp_f32_z(pg_1, svmul_f32_z(pg_1, vec_elements_flt_1, scale_beta_vec));
106                     vec_elements_flt_2 = svexp_f32_z(pg_2, svmul_f32_z(pg_2, vec_elements_flt_2, scale_beta_vec));
107                     vec_elements_flt_3 = svexp_f32_z(pg_3, svmul_f32_z(pg_3, vec_elements_flt_3, scale_beta_vec));
108                     vec_sum_0          = svadd_f32_m(pg_0, vec_sum_0, vec_elements_flt_0);
109                     vec_sum_1          = svadd_f32_m(pg_1, vec_sum_1, vec_elements_flt_1);
110                     vec_sum_2          = svadd_f32_m(pg_2, vec_sum_2, vec_elements_flt_2);
111                     vec_sum_3          = svadd_f32_m(pg_3, vec_sum_3, vec_elements_flt_3);
112                 }
113 
114                 svst1_f32(pg_0, tmp_ptr + x, vec_elements_flt_0);
115                 svst1_f32(pg_1, tmp_ptr + x + inc_1, vec_elements_flt_1);
116                 svst1_f32(pg_2, tmp_ptr + x + inc_2, vec_elements_flt_2);
117                 svst1_f32(pg_3, tmp_ptr + x + inc_3, vec_elements_flt_3);
118 
119                 x += wrapper::svcnt<ScalarType>();
120                 pg   = wrapper::svwhilelt<ScalarType>(x, input_width);
121                 pg_0 = svunpklo(svunpklo(pg));
122                 pg_1 = svunpkhi(svunpklo(pg));
123                 pg_2 = svunpklo(svunpkhi(pg));
124                 pg_3 = svunpkhi(svunpkhi(pg));
125             }
126             while(svptest_any(all_true_pg, pg));
127 
128             /* Reduce sum */
129             const auto vec_sum = svadd_f32_z(all_true_pg, svadd_f32_z(all_true_pg, vec_sum_0, vec_sum_1), svadd_f32_z(all_true_pg, vec_sum_2, vec_sum_3));
130             sum                = svaddv_f32(all_true_pg, vec_sum);
131 
132             /* Run remaining elements */
133             x = 0;
134             if(is_log)
135             {
136                 sum = std::log(sum);
137             }
138             else
139             {
140                 sum = 256.f / sum;
141             }
142         }
143 
144         /* Normalize exponentials */
145         {
146             constexpr bool is_qasymm8_signed = std::is_same<ScalarType, qasymm8_signed_t>::value;
147             /* Loop over row and compute softmax */
148             int      x    = 0;
149             svbool_t pg   = wrapper::svwhilelt<ScalarType>(x, input_width);
150             svbool_t pg_0 = svunpklo(svunpklo(pg));
151             svbool_t pg_1 = svunpkhi(svunpklo(pg));
152             svbool_t pg_2 = svunpklo(svunpkhi(pg));
153             svbool_t pg_3 = svunpkhi(svunpkhi(pg));
154             do
155             {
156                 auto vec_in_0 = svld1_f32(pg_0, tmp_ptr + x);
157                 auto vec_in_1 = svld1_f32(pg_1, tmp_ptr + x + inc_1);
158                 auto vec_in_2 = svld1_f32(pg_2, tmp_ptr + x + inc_2);
159                 auto vec_in_3 = svld1_f32(pg_3, tmp_ptr + x + inc_3);
160 
161                 svfloat32_t res_0{};
162                 svfloat32_t res_1{};
163                 svfloat32_t res_2{};
164                 svfloat32_t res_3{};
165 
166                 if(is_log)
167                 {
168                     res_0 = svsub_f32_z(pg_0, vec_in_0, svdup_n_f32(sum));
169                     res_1 = svsub_f32_z(pg_1, vec_in_1, svdup_n_f32(sum));
170                     res_2 = svsub_f32_z(pg_2, vec_in_2, svdup_n_f32(sum));
171                     res_3 = svsub_f32_z(pg_3, vec_in_3, svdup_n_f32(sum));
172                 }
173                 else
174                 {
175                     res_0 = svmul_f32_z(pg_0, vec_in_0, svdup_n_f32(sum));
176                     res_1 = svmul_f32_z(pg_1, vec_in_1, svdup_n_f32(sum));
177                     res_2 = svmul_f32_z(pg_2, vec_in_2, svdup_n_f32(sum));
178                     res_3 = svmul_f32_z(pg_3, vec_in_3, svdup_n_f32(sum));
179 
180                     if(is_qasymm8_signed)
181                     {
182                         const auto offset_vec = svdup_n_f32(128.f);
183                         res_0                 = svsub_z(pg_0, res_0, offset_vec);
184                         res_1                 = svsub_z(pg_1, res_1, offset_vec);
185                         res_2                 = svsub_z(pg_2, res_2, offset_vec);
186                         res_3                 = svsub_z(pg_3, res_3, offset_vec);
187                     }
188                 }
189 
190                 // Store value
191                 const auto out = convert_float_to_int<SVEType>(res_0, res_1, res_2, res_3);
192                 svst1(pg, out_ptr + x, out);
193                 x += wrapper::svcnt<ScalarType>();
194                 pg   = wrapper::svwhilelt<ScalarType>(x, input_width);
195                 pg_0 = svunpklo(svunpklo(pg));
196                 pg_1 = svunpkhi(svunpklo(pg));
197                 pg_2 = svunpklo(svunpkhi(pg));
198                 pg_3 = svunpkhi(svunpkhi(pg));
199             }
200             while(svptest_any(all_true_pg, pg));
201         }
202     },
203     in_it, max_it, out_it);
204 }
205 
206 template void sve2_softmax_logits_1d_quantized<qasymm8_signed_t>(const ITensor *in, const ITensor *max, void *const tmp,
207                                                                  ITensor *out, float beta, bool is_log, const Window &window);
208 template void sve2_softmax_logits_1d_quantized<qasymm8_t>(const ITensor *in, const ITensor *max, void *const tmp,
209                                                           ITensor *out, float beta, bool is_log, const Window &window);
210 } // namespace cpu
211 } // namespace arm_compute
212