1 /*
2 * Copyright (c) 2018-2021 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24 #include "arm_compute/graph/mutators/InPlaceOperationMutator.h"
25
26 #include "arm_compute/core/Helpers.h"
27 #include "arm_compute/core/Validate.h"
28 #include "arm_compute/graph/Graph.h"
29 #include "arm_compute/graph/Logger.h"
30 #include "arm_compute/graph/nodes/DepthwiseConvolutionLayerNode.h"
31 #include "arm_compute/graph/nodes/FusedDepthwiseConvolutionBatchNormalizationNode.h"
32 #include "support/Cast.h"
33
34 using namespace arm_compute::utils::cast;
35
36 namespace arm_compute
37 {
38 namespace graph
39 {
40 namespace
41 {
42 // Check if the output edges of the parent node are separate tensors. If not,
43 // it means the same output is connected to multiple nodes and computations on
44 // these nodes cannot be done in-place.
output_edges_are_separate_tensors(Graph & g,const Edge * input_edge)45 bool output_edges_are_separate_tensors(Graph &g, const Edge *input_edge)
46 {
47 const auto parent_node = input_edge->producer();
48 const auto input_tensor = input_edge->tensor();
49 const auto input_edge_id = input_edge->id();
50
51 if(parent_node == nullptr)
52 {
53 return false;
54 }
55
56 const auto output_edges = parent_node->output_edges();
57
58 // If the output is connected to only one edge, then computations can
59 // be done in-place.
60 if(output_edges.size() == 1)
61 {
62 return true;
63 }
64
65 return std::all_of(output_edges.begin(),
66 output_edges.end(),
67 [&](const EdgeID & edge_id)
68 {
69 // Skip check on current input edge
70 if(edge_id == input_edge_id)
71 {
72 return true;
73 }
74
75 auto edge = g.edge(edge_id);
76 return edge->tensor() != input_tensor;
77 });
78 }
79
80 // If do in-place calculation, then need to use the new output and inherit original output's accessor
set_new_output_and_inherit_accessor(std::unique_ptr<INode> & node,Tensor * orig_output,Tensor * new_output)81 void set_new_output_and_inherit_accessor(std::unique_ptr<INode> &node, Tensor *orig_output, Tensor *new_output)
82 {
83 ARM_COMPUTE_LOG_GRAPH_INFO("Switching to in-place computation for the node with ID : "
84 << node->id() << " and name : " << node->name() << std::endl);
85 // Update accessor
86 new_output->set_accessor(orig_output->extract_accessor());
87 // Update output
88 node->set_output_tensor(new_output->id(), 0);
89 }
90
91 // Try to mutate the node to perform the depthwise in-place calculation
try_in_place_depthwiseconv(std::unique_ptr<INode> & node)92 void try_in_place_depthwiseconv(std::unique_ptr<INode> &node)
93 {
94 // Get input edge
95 Edge *input_edge = node->input_edge(0);
96 Edge *weight_edge = node->input_edge(1);
97 ARM_COMPUTE_ERROR_ON(input_edge == nullptr || weight_edge == nullptr);
98
99 auto input_tensor = input_edge->tensor();
100 auto weight_tensor = weight_edge->tensor();
101 ARM_COMPUTE_ERROR_ON(input_tensor == nullptr || weight_tensor == nullptr);
102
103 const auto input_shape = input_tensor->desc().shape;
104 const auto qinfo_input = input_tensor->desc().quant_info;
105
106 const auto weight_shape = weight_tensor->desc().shape;
107 const auto weight_layout = weight_tensor->desc().layout;
108
109 // Extract PadStrideInfo and depth multiplier
110 PadStrideInfo conv_info{};
111 unsigned int depth_multiplier{};
112 if(node->type() == NodeType::FusedDepthwiseConvolutionBatchNormalizationLayer)
113 {
114 conv_info = polymorphic_downcast<FusedDepthwiseConvolutionBatchNormalizationNode *>(node.get())->convolution_info();
115 depth_multiplier = polymorphic_downcast<FusedDepthwiseConvolutionBatchNormalizationNode *>(node.get())->depth_multiplier();
116 }
117 else if(node->type() == NodeType::DepthwiseConvolutionLayer)
118 {
119 conv_info = polymorphic_downcast<DepthwiseConvolutionLayerNode *>(node.get())->convolution_info();
120 depth_multiplier = polymorphic_downcast<DepthwiseConvolutionLayerNode *>(node.get())->depth_multiplier();
121 }
122
123 // Get current output tensor
124 auto current_output_tensor = node->output(0);
125 ARM_COMPUTE_ERROR_ON(current_output_tensor == nullptr);
126 const auto out_shape = current_output_tensor->desc().shape;
127 const auto qinfo_out = current_output_tensor->desc().quant_info;
128
129 bool input_can_in_place = !arm_compute::detail::have_different_dimensions(out_shape, input_shape, 0) && (qinfo_input == qinfo_out) && (input_tensor->accessor() == nullptr);
130
131 // Specify conditions with which input can be in-placed
132 input_can_in_place &= weight_layout == input_tensor->desc().layout && weight_layout == DataLayout::NHWC;
133
134 const int weights_width_idx = get_data_layout_dimension_index(weight_layout, DataLayoutDimension::WIDTH);
135 const int weights_height_idx = get_data_layout_dimension_index(weight_layout, DataLayoutDimension::HEIGHT);
136 const bool is_1x1 = weight_shape[weights_width_idx] == 1U && weight_shape[weights_height_idx] == 1U;
137 input_can_in_place &= is_1x1;
138
139 input_can_in_place &= depth_multiplier == 1;
140 input_can_in_place &= conv_info.stride() == std::make_pair(1U, 1U);
141 input_can_in_place &= !conv_info.has_padding();
142 // NOTE: Dilation should also be (1, 1). However currently dilation is not supported in the depthwise conv node
143
144 if(input_can_in_place)
145 {
146 set_new_output_and_inherit_accessor(node, current_output_tensor, input_tensor);
147 }
148 else
149 {
150 ARM_COMPUTE_LOG_GRAPH_VERBOSE("Prevented in-place operation as there is an accessor bound to the input tensor or the quantization info are different.\n");
151 }
152 }
153
154 // Try to mutate the node to perform the elementwise in-place calculation
try_in_place_elementwise(std::unique_ptr<INode> & node)155 void try_in_place_elementwise(std::unique_ptr<INode> &node)
156 {
157 // Get input edge
158 Edge *input0_edge = node->input_edge(0);
159 Edge *input1_edge = node->input_edge(1);
160 ARM_COMPUTE_ERROR_ON(input0_edge == nullptr || input1_edge == nullptr);
161
162 auto input0_tensor = input0_edge->tensor();
163 auto input1_tensor = input1_edge->tensor();
164 ARM_COMPUTE_ERROR_ON(input0_tensor == nullptr || input1_tensor == nullptr);
165
166 const auto shape0 = input0_tensor->desc().shape;
167 const auto shape1 = input1_tensor->desc().shape;
168 const auto qinfo0 = input0_tensor->desc().quant_info;
169 const auto qinfo1 = input1_tensor->desc().quant_info;
170
171 const TensorShape out_shape = TensorShape::broadcast_shape(shape0, shape1);
172 // Inputs are not broadcast compatible
173 if(out_shape.total_size() == 0)
174 {
175 return;
176 }
177
178 // Get current output tensor
179 auto current_output_tensor = node->output(0);
180 ARM_COMPUTE_ERROR_ON(current_output_tensor == nullptr);
181 const auto qinfo_out = current_output_tensor->desc().quant_info;
182
183 // Can do in place, if the input has same shape as output, has same quntisation info as output, has same data type as output and input doesn't have accessor.
184 bool input0_can_in_place = !arm_compute::detail::have_different_dimensions(out_shape, shape0, 0) && (qinfo0 == qinfo_out)
185 && (input0_tensor->desc().data_type == current_output_tensor->desc().data_type) && (input0_tensor->accessor() == nullptr);
186 bool input1_can_in_place = !arm_compute::detail::have_different_dimensions(out_shape, shape1, 0) && (qinfo1 == qinfo_out)
187 && (input1_tensor->desc().data_type == current_output_tensor->desc().data_type) && (input1_tensor->accessor() == nullptr);
188
189 if(input0_can_in_place)
190 {
191 set_new_output_and_inherit_accessor(node, current_output_tensor, input0_tensor);
192 }
193 else if(input1_can_in_place)
194 {
195 set_new_output_and_inherit_accessor(node, current_output_tensor, input1_tensor);
196 }
197 else
198 {
199 ARM_COMPUTE_LOG_GRAPH_VERBOSE("Prevented in-place operation as there is an accessor bound to the input tensor or the quantization info are different.\n");
200 }
201 }
202 } // namespace
203
name()204 const char *InPlaceOperationMutator::name()
205 {
206 return "InPlaceOperationMutator";
207 }
208
type() const209 IGraphMutator::MutationType InPlaceOperationMutator::type() const
210 {
211 return IGraphMutator::MutationType::Backend;
212 }
213
mutate(Graph & g)214 void InPlaceOperationMutator::mutate(Graph &g)
215 {
216 std::set<NodeType> in_place_nodes =
217 {
218 NodeType::ActivationLayer,
219 NodeType::BatchNormalizationLayer,
220 NodeType::EltwiseLayer,
221 NodeType::UnaryEltwiseLayer,
222 NodeType::DepthwiseConvolutionLayer,
223 NodeType::FusedDepthwiseConvolutionBatchNormalizationLayer,
224 NodeType::PrintLayer
225 };
226
227 // Not interested in the order of nodes
228 for(auto &node : g.nodes())
229 {
230 if(node && in_place_nodes.find(node->type()) != std::end(in_place_nodes))
231 {
232 // Get input edge
233 Edge *input_edge = node->input_edge(0);
234
235 // Check if parent has a single output if yes then force in place calculation else not
236 if((input_edge != nullptr) && output_edges_are_separate_tensors(g, input_edge))
237 {
238 if(node->type() == NodeType::EltwiseLayer)
239 {
240 try_in_place_elementwise(node);
241 }
242 else if(node->type() == NodeType::FusedDepthwiseConvolutionBatchNormalizationLayer || node->type() == NodeType::DepthwiseConvolutionLayer)
243 {
244 try_in_place_depthwiseconv(node);
245 }
246 else
247 {
248 // Get current and new output tensors
249 auto current_output_tensor = node->output(0);
250 auto new_output_tensor = input_edge->tensor();
251
252 ARM_COMPUTE_ERROR_ON(current_output_tensor == nullptr || new_output_tensor == nullptr);
253
254 // Prevent in-place operation if there is an accessor bound to the in-place tensor or quantization info are different
255 if(new_output_tensor->accessor() != nullptr || current_output_tensor->desc().quant_info != new_output_tensor->desc().quant_info)
256 {
257 ARM_COMPUTE_LOG_GRAPH_VERBOSE("Prevented in-place operation as there is an accessor bound to the input tensor or the quantization info are different.\n");
258 }
259 else
260 {
261 set_new_output_and_inherit_accessor(node, current_output_tensor, new_output_tensor);
262 }
263 }
264 }
265 }
266 }
267 }
268 } // namespace graph
269 } // namespace arm_compute
270