• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2018-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/graph/mutators/InPlaceOperationMutator.h"
25 
26 #include "arm_compute/core/Helpers.h"
27 #include "arm_compute/core/Validate.h"
28 #include "arm_compute/graph/Graph.h"
29 #include "arm_compute/graph/Logger.h"
30 #include "arm_compute/graph/nodes/DepthwiseConvolutionLayerNode.h"
31 #include "arm_compute/graph/nodes/FusedDepthwiseConvolutionBatchNormalizationNode.h"
32 #include "support/Cast.h"
33 
34 using namespace arm_compute::utils::cast;
35 
36 namespace arm_compute
37 {
38 namespace graph
39 {
40 namespace
41 {
42 // Check if the output edges of the parent node are separate tensors. If not,
43 // it means the same output is connected to multiple nodes and computations on
44 // these nodes cannot be done in-place.
output_edges_are_separate_tensors(Graph & g,const Edge * input_edge)45 bool output_edges_are_separate_tensors(Graph &g, const Edge *input_edge)
46 {
47     const auto parent_node   = input_edge->producer();
48     const auto input_tensor  = input_edge->tensor();
49     const auto input_edge_id = input_edge->id();
50 
51     if(parent_node == nullptr)
52     {
53         return false;
54     }
55 
56     const auto output_edges = parent_node->output_edges();
57 
58     // If the output is connected to only one edge, then computations can
59     // be done in-place.
60     if(output_edges.size() == 1)
61     {
62         return true;
63     }
64 
65     return std::all_of(output_edges.begin(),
66                        output_edges.end(),
67                        [&](const EdgeID & edge_id)
68     {
69         // Skip check on current input edge
70         if(edge_id == input_edge_id)
71         {
72             return true;
73         }
74 
75         auto edge = g.edge(edge_id);
76         return edge->tensor() != input_tensor;
77     });
78 }
79 
80 // If do in-place calculation, then need to use the new output and inherit original output's accessor
set_new_output_and_inherit_accessor(std::unique_ptr<INode> & node,Tensor * orig_output,Tensor * new_output)81 void set_new_output_and_inherit_accessor(std::unique_ptr<INode> &node, Tensor *orig_output, Tensor *new_output)
82 {
83     ARM_COMPUTE_LOG_GRAPH_INFO("Switching to in-place computation for the node with ID : "
84                                << node->id() << " and name : " << node->name() << std::endl);
85     // Update accessor
86     new_output->set_accessor(orig_output->extract_accessor());
87     // Update output
88     node->set_output_tensor(new_output->id(), 0);
89 }
90 
91 // Try to mutate the node to perform the depthwise in-place calculation
try_in_place_depthwiseconv(std::unique_ptr<INode> & node)92 void try_in_place_depthwiseconv(std::unique_ptr<INode> &node)
93 {
94     // Get input edge
95     Edge *input_edge  = node->input_edge(0);
96     Edge *weight_edge = node->input_edge(1);
97     ARM_COMPUTE_ERROR_ON(input_edge == nullptr || weight_edge == nullptr);
98 
99     auto input_tensor  = input_edge->tensor();
100     auto weight_tensor = weight_edge->tensor();
101     ARM_COMPUTE_ERROR_ON(input_tensor == nullptr || weight_tensor == nullptr);
102 
103     const auto input_shape = input_tensor->desc().shape;
104     const auto qinfo_input = input_tensor->desc().quant_info;
105 
106     const auto weight_shape  = weight_tensor->desc().shape;
107     const auto weight_layout = weight_tensor->desc().layout;
108 
109     // Extract PadStrideInfo and depth multiplier
110     PadStrideInfo conv_info{};
111     unsigned int  depth_multiplier{};
112     if(node->type() == NodeType::FusedDepthwiseConvolutionBatchNormalizationLayer)
113     {
114         conv_info        = polymorphic_downcast<FusedDepthwiseConvolutionBatchNormalizationNode *>(node.get())->convolution_info();
115         depth_multiplier = polymorphic_downcast<FusedDepthwiseConvolutionBatchNormalizationNode *>(node.get())->depth_multiplier();
116     }
117     else if(node->type() == NodeType::DepthwiseConvolutionLayer)
118     {
119         conv_info        = polymorphic_downcast<DepthwiseConvolutionLayerNode *>(node.get())->convolution_info();
120         depth_multiplier = polymorphic_downcast<DepthwiseConvolutionLayerNode *>(node.get())->depth_multiplier();
121     }
122 
123     // Get current output tensor
124     auto current_output_tensor = node->output(0);
125     ARM_COMPUTE_ERROR_ON(current_output_tensor == nullptr);
126     const auto out_shape = current_output_tensor->desc().shape;
127     const auto qinfo_out = current_output_tensor->desc().quant_info;
128 
129     bool input_can_in_place = !arm_compute::detail::have_different_dimensions(out_shape, input_shape, 0) && (qinfo_input == qinfo_out) && (input_tensor->accessor() == nullptr);
130 
131     // Specify conditions with which input can be in-placed
132     input_can_in_place &= weight_layout == input_tensor->desc().layout && weight_layout == DataLayout::NHWC;
133 
134     const int  weights_width_idx  = get_data_layout_dimension_index(weight_layout, DataLayoutDimension::WIDTH);
135     const int  weights_height_idx = get_data_layout_dimension_index(weight_layout, DataLayoutDimension::HEIGHT);
136     const bool is_1x1             = weight_shape[weights_width_idx] == 1U && weight_shape[weights_height_idx] == 1U;
137     input_can_in_place &= is_1x1;
138 
139     input_can_in_place &= depth_multiplier == 1;
140     input_can_in_place &= conv_info.stride() == std::make_pair(1U, 1U);
141     input_can_in_place &= !conv_info.has_padding();
142     // NOTE: Dilation should also be (1, 1). However currently dilation is not supported in the depthwise conv node
143 
144     if(input_can_in_place)
145     {
146         set_new_output_and_inherit_accessor(node, current_output_tensor, input_tensor);
147     }
148     else
149     {
150         ARM_COMPUTE_LOG_GRAPH_VERBOSE("Prevented in-place operation as there is an accessor bound to the input tensor or the quantization info are different.\n");
151     }
152 }
153 
154 // Try to mutate the node to perform the elementwise in-place calculation
try_in_place_elementwise(std::unique_ptr<INode> & node)155 void try_in_place_elementwise(std::unique_ptr<INode> &node)
156 {
157     // Get input edge
158     Edge *input0_edge = node->input_edge(0);
159     Edge *input1_edge = node->input_edge(1);
160     ARM_COMPUTE_ERROR_ON(input0_edge == nullptr || input1_edge == nullptr);
161 
162     auto input0_tensor = input0_edge->tensor();
163     auto input1_tensor = input1_edge->tensor();
164     ARM_COMPUTE_ERROR_ON(input0_tensor == nullptr || input1_tensor == nullptr);
165 
166     const auto shape0 = input0_tensor->desc().shape;
167     const auto shape1 = input1_tensor->desc().shape;
168     const auto qinfo0 = input0_tensor->desc().quant_info;
169     const auto qinfo1 = input1_tensor->desc().quant_info;
170 
171     const TensorShape out_shape = TensorShape::broadcast_shape(shape0, shape1);
172     // Inputs are not broadcast compatible
173     if(out_shape.total_size() == 0)
174     {
175         return;
176     }
177 
178     // Get current output tensor
179     auto current_output_tensor = node->output(0);
180     ARM_COMPUTE_ERROR_ON(current_output_tensor == nullptr);
181     const auto qinfo_out = current_output_tensor->desc().quant_info;
182 
183     // Can do in place, if the input has same shape as output, has same quntisation info as output, has same data type as output and input doesn't have accessor.
184     bool input0_can_in_place = !arm_compute::detail::have_different_dimensions(out_shape, shape0, 0) && (qinfo0 == qinfo_out)
185                                && (input0_tensor->desc().data_type == current_output_tensor->desc().data_type) && (input0_tensor->accessor() == nullptr);
186     bool input1_can_in_place = !arm_compute::detail::have_different_dimensions(out_shape, shape1, 0) && (qinfo1 == qinfo_out)
187                                && (input1_tensor->desc().data_type == current_output_tensor->desc().data_type) && (input1_tensor->accessor() == nullptr);
188 
189     if(input0_can_in_place)
190     {
191         set_new_output_and_inherit_accessor(node, current_output_tensor, input0_tensor);
192     }
193     else if(input1_can_in_place)
194     {
195         set_new_output_and_inherit_accessor(node, current_output_tensor, input1_tensor);
196     }
197     else
198     {
199         ARM_COMPUTE_LOG_GRAPH_VERBOSE("Prevented in-place operation as there is an accessor bound to the input tensor or the quantization info are different.\n");
200     }
201 }
202 } // namespace
203 
name()204 const char *InPlaceOperationMutator::name()
205 {
206     return "InPlaceOperationMutator";
207 }
208 
type() const209 IGraphMutator::MutationType InPlaceOperationMutator::type() const
210 {
211     return IGraphMutator::MutationType::Backend;
212 }
213 
mutate(Graph & g)214 void InPlaceOperationMutator::mutate(Graph &g)
215 {
216     std::set<NodeType> in_place_nodes =
217     {
218         NodeType::ActivationLayer,
219         NodeType::BatchNormalizationLayer,
220         NodeType::EltwiseLayer,
221         NodeType::UnaryEltwiseLayer,
222         NodeType::DepthwiseConvolutionLayer,
223         NodeType::FusedDepthwiseConvolutionBatchNormalizationLayer,
224         NodeType::PrintLayer
225     };
226 
227     // Not interested in the order of nodes
228     for(auto &node : g.nodes())
229     {
230         if(node && in_place_nodes.find(node->type()) != std::end(in_place_nodes))
231         {
232             // Get input edge
233             Edge *input_edge = node->input_edge(0);
234 
235             // Check if parent has a single output if yes then force in place calculation else not
236             if((input_edge != nullptr) && output_edges_are_separate_tensors(g, input_edge))
237             {
238                 if(node->type() == NodeType::EltwiseLayer)
239                 {
240                     try_in_place_elementwise(node);
241                 }
242                 else if(node->type() == NodeType::FusedDepthwiseConvolutionBatchNormalizationLayer || node->type() == NodeType::DepthwiseConvolutionLayer)
243                 {
244                     try_in_place_depthwiseconv(node);
245                 }
246                 else
247                 {
248                     // Get current and new output tensors
249                     auto current_output_tensor = node->output(0);
250                     auto new_output_tensor     = input_edge->tensor();
251 
252                     ARM_COMPUTE_ERROR_ON(current_output_tensor == nullptr || new_output_tensor == nullptr);
253 
254                     // Prevent in-place operation if there is an accessor bound to the in-place tensor or quantization info are different
255                     if(new_output_tensor->accessor() != nullptr || current_output_tensor->desc().quant_info != new_output_tensor->desc().quant_info)
256                     {
257                         ARM_COMPUTE_LOG_GRAPH_VERBOSE("Prevented in-place operation as there is an accessor bound to the input tensor or the quantization info are different.\n");
258                     }
259                     else
260                     {
261                         set_new_output_and_inherit_accessor(node, current_output_tensor, new_output_tensor);
262                     }
263                 }
264             }
265         }
266     }
267 }
268 } // namespace graph
269 } // namespace arm_compute
270