• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2019-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/core/Types.h"
25 
26 #include "arm_compute/runtime/NEON/functions/NEROIAlignLayer.h"
27 #include "arm_compute/runtime/Tensor.h"
28 #include "arm_compute/runtime/TensorAllocator.h"
29 #include "tests/Globals.h"
30 #include "tests/NEON/Accessor.h"
31 #include "tests/datasets/ROIDataset.h"
32 #include "tests/datasets/ShapeDatasets.h"
33 #include "tests/framework/Macros.h"
34 #include "tests/framework/datasets/Datasets.h"
35 #include "tests/validation/Validation.h"
36 #include "tests/validation/fixtures/ROIAlignLayerFixture.h"
37 #include "utils/TypePrinter.h"
38 
39 namespace arm_compute
40 {
41 namespace test
42 {
43 namespace validation
44 {
45 namespace
46 {
47 RelativeTolerance<float> relative_tolerance_f32(0.01f);
48 AbsoluteTolerance<float> absolute_tolerance_f32(0.001f);
49 
50 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
51 RelativeTolerance<float> relative_tolerance_f16(0.01f);
52 AbsoluteTolerance<float> absolute_tolerance_f16(0.001f);
53 #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
54 
55 constexpr AbsoluteTolerance<uint8_t> tolerance_qasymm8(1);
56 constexpr AbsoluteTolerance<int8_t> tolerance_qasymm8_s(1);
57 } // namespace
58 
59 TEST_SUITE(NEON)
TEST_SUITE(RoiAlign)60 TEST_SUITE(RoiAlign)
61 
62 // *INDENT-OFF*
63 // clang-format off
64 DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(zip(
65                framework::dataset::make("InputInfo", { TensorInfo(TensorShape(250U, 128U, 3U), 1, DataType::F32),
66                                                        TensorInfo(TensorShape(250U, 128U, 3U), 1, DataType::F32), // Mismatching data type input/rois
67                                                        TensorInfo(TensorShape(250U, 128U, 3U), 1, DataType::F32), // Mismatching data type input/output
68                                                        TensorInfo(TensorShape(250U, 128U, 2U), 1, DataType::F32), // Mismatching depth size input/output
69                                                        TensorInfo(TensorShape(250U, 128U, 3U), 1, DataType::F32), // Mismatching number of rois and output batch size
70                                                        TensorInfo(TensorShape(250U, 128U, 3U), 1, DataType::F32), // Invalid number of values per ROIS
71                                                        TensorInfo(TensorShape(250U, 128U, 3U), 1, DataType::F32), // Mismatching height and width input/output
72 
73                                                      }),
74                framework::dataset::make("RoisInfo", { TensorInfo(TensorShape(5, 4U), 1, DataType::F32),
75                                                       TensorInfo(TensorShape(5, 4U), 1, DataType::F16),
76                                                       TensorInfo(TensorShape(5, 4U), 1, DataType::F32),
77                                                       TensorInfo(TensorShape(5, 4U), 1, DataType::F32),
78                                                       TensorInfo(TensorShape(5, 10U), 1, DataType::F32),
79                                                       TensorInfo(TensorShape(4, 4U), 1, DataType::F32),
80                                                       TensorInfo(TensorShape(5, 4U), 1, DataType::F32),
81                                                     })),
82                framework::dataset::make("OutputInfo",{ TensorInfo(TensorShape(7U, 7U, 3U, 4U), 1, DataType::F32),
83                                                        TensorInfo(TensorShape(7U, 7U, 3U, 4U), 1, DataType::F32),
84                                                        TensorInfo(TensorShape(7U, 7U, 3U, 4U), 1, DataType::F16),
85                                                        TensorInfo(TensorShape(7U, 7U, 3U, 4U), 1, DataType::F32),
86                                                        TensorInfo(TensorShape(7U, 7U, 3U, 4U), 1, DataType::F32),
87                                                        TensorInfo(TensorShape(7U, 7U, 3U, 4U), 1, DataType::F32),
88                                                        TensorInfo(TensorShape(5U, 5U, 3U, 4U), 1, DataType::F32),
89                                                      })),
90                framework::dataset::make("PoolInfo", { ROIPoolingLayerInfo(7U, 7U, 1./8),
91                                                       ROIPoolingLayerInfo(7U, 7U, 1./8),
92                                                       ROIPoolingLayerInfo(7U, 7U, 1./8),
93                                                       ROIPoolingLayerInfo(7U, 7U, 1./8),
94                                                       ROIPoolingLayerInfo(7U, 7U, 1./8),
95                                                       ROIPoolingLayerInfo(7U, 7U, 1./8),
96                                                       ROIPoolingLayerInfo(7U, 7U, 1./8),
97                                                       })),
98                framework::dataset::make("Expected", { true, false, false, false, false, false, false })),
99                input_info, rois_info, output_info, pool_info, expected)
100 {
101     ARM_COMPUTE_EXPECT(bool(NEROIAlignLayer::validate(&input_info.clone()->set_is_resizable(true), &rois_info.clone()->set_is_resizable(true), &output_info.clone()->set_is_resizable(true), pool_info)) == expected, framework::LogLevel::ERRORS);
102 }
103 
104 // clang-format on
105 // *INDENT-ON*
106 
107 using NEROIAlignLayerFloatFixture = ROIAlignLayerFixture<Tensor, Accessor, NEROIAlignLayer, float, float>;
108 
109 TEST_SUITE(Float)
110 FIXTURE_DATA_TEST_CASE(SmallROIAlignLayerFloat, NEROIAlignLayerFloatFixture, framework::DatasetMode::ALL,
111                        framework::dataset::combine(framework::dataset::combine(datasets::SmallROIDataset(),
112                                                                                framework::dataset::make("DataType", { DataType::F32 })),
113                                                    framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })))
114 {
115     // Validate output
116     validate(Accessor(_target), _reference, relative_tolerance_f32, .02f, absolute_tolerance_f32);
117 }
118 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
119 using NEROIAlignLayerHalfFixture = ROIAlignLayerFixture<Tensor, Accessor, NEROIAlignLayer, half, half>;
120 FIXTURE_DATA_TEST_CASE(SmallROIAlignLayerHalf, NEROIAlignLayerHalfFixture, framework::DatasetMode::ALL,
121                        framework::dataset::combine(framework::dataset::combine(datasets::SmallROIDataset(),
122                                                                                framework::dataset::make("DataType", { DataType::F16 })),
123                                                    framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })))
124 {
125     // Validate output
126     validate(Accessor(_target), _reference, relative_tolerance_f16, .02f, absolute_tolerance_f16);
127 }
128 #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
129 
130 TEST_SUITE_END() // Float
131 
132 TEST_SUITE(Quantized)
133 template <typename T>
134 using NEROIAlignLayerQuantizedFixture = ROIAlignLayerQuantizedFixture<Tensor, Accessor, NEROIAlignLayer, T, uint16_t>;
135 
136 TEST_SUITE(QASYMM8)
137 FIXTURE_DATA_TEST_CASE(Small, NEROIAlignLayerQuantizedFixture<uint8_t>, framework::DatasetMode::ALL,
138                        combine(combine(combine(combine(datasets::SmallROIDataset(),
139                                                        framework::dataset::make("DataType", { DataType::QASYMM8 })),
140                                                framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })),
141                                        framework::dataset::make("InputQuantizationInfo", { QuantizationInfo(1.f / 255.f, 127) })),
142                                framework::dataset::make("OutputQuantizationInfo", { QuantizationInfo(2.f / 255.f, 120) })))
143 {
144     // Validate output
145     validate(Accessor(_target), _reference, tolerance_qasymm8);
146 }
147 TEST_SUITE_END() // QASYMM8
148 
TEST_SUITE(QASYMM8_SIGNED)149 TEST_SUITE(QASYMM8_SIGNED)
150 FIXTURE_DATA_TEST_CASE(Small, NEROIAlignLayerQuantizedFixture<int8_t>, framework::DatasetMode::ALL,
151                        combine(combine(combine(combine(datasets::SmallROIDataset(),
152                                                        framework::dataset::make("DataType", { DataType::QASYMM8_SIGNED })),
153                                                framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })),
154                                        framework::dataset::make("InputQuantizationInfo", { QuantizationInfo(1.f / 255.f, 127) })),
155                                framework::dataset::make("OutputQuantizationInfo", { QuantizationInfo(2.f / 255.f, 120) })))
156 {
157     // Validate output
158     validate(Accessor(_target), _reference, tolerance_qasymm8_s);
159 }
160 TEST_SUITE_END() // QASYMM8_SIGNED
161 TEST_SUITE_END() // Quantized
162 
163 TEST_SUITE_END() // RoiAlign
164 TEST_SUITE_END() // Neon
165 } // namespace validation
166 } // namespace test
167 } // namespace arm_compute
168