• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2022 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 
25 #include "Pooling3dLayer.h"
26 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
27 #include "tests/validation/Helpers.h"
28 
29 namespace arm_compute
30 {
31 namespace test
32 {
33 namespace validation
34 {
35 namespace reference
36 {
37 using namespace arm_compute::misc::shape_calculator;
38 
39 template <typename T>
pooling_3d_layer_internal(const SimpleTensor<T> & src,const Pooling3dLayerInfo & pool3d_info,SimpleTensor<uint32_t> * indices)40 SimpleTensor<T> pooling_3d_layer_internal(const SimpleTensor<T> &src, const Pooling3dLayerInfo &pool3d_info, SimpleTensor<uint32_t> *indices)
41 {
42     TensorShape     pooled_shape = compute_pool3d_shape(src.shape(), pool3d_info);
43     SimpleTensor<T> dst{ pooled_shape, src.data_type(), 1 };
44 
45     if(indices != nullptr)
46     {
47         *indices = SimpleTensor<uint32_t> { pooled_shape, DataType::U32, 1 };
48     }
49 
50     const int idx_channel = 0;
51     const int idx_width   = 1;
52     const int idx_height  = 2;
53     const int idx_depth   = 3;
54     const int idx_batch   = 4;
55 
56     const int pool_size_width  = pool3d_info.is_global_pooling ? src.shape()[idx_width] : pool3d_info.pool_size.width;
57     const int pool_size_height = pool3d_info.is_global_pooling ? src.shape()[idx_height] : pool3d_info.pool_size.height;
58     const int pool_size_depth  = pool3d_info.is_global_pooling ? src.shape()[idx_depth] : pool3d_info.pool_size.depth;
59 
60     const int pool_stride_width  = static_cast<int>(pool3d_info.stride.width);
61     const int pool_stride_height = static_cast<int>(pool3d_info.stride.height);
62     const int pool_stride_depth  = static_cast<int>(pool3d_info.stride.depth);
63 
64     const int pad_left  = static_cast<int>(pool3d_info.padding.left);
65     const int pad_top   = static_cast<int>(pool3d_info.padding.top);
66     const int pad_front = static_cast<int>(pool3d_info.padding.front);
67 
68     const int pad_right  = static_cast<int>(pool3d_info.padding.right);
69     const int pad_bottom = static_cast<int>(pool3d_info.padding.bottom);
70     const int pad_back   = static_cast<int>(pool3d_info.padding.back);
71 
72     const int num_channels = static_cast<int>(src.shape()[idx_channel]);
73     const int num_batches  = static_cast<int>(src.shape()[idx_batch]);
74 
75     ARM_COMPUTE_ERROR_ON(num_channels != static_cast<int>(dst.shape()[idx_channel]));
76     ARM_COMPUTE_ERROR_ON(num_batches != static_cast<int>(dst.shape()[idx_batch]));
77 
78     const int w_src = static_cast<int>(src.shape()[idx_width]);
79     const int h_src = static_cast<int>(src.shape()[idx_height]);
80     const int d_src = static_cast<int>(src.shape()[idx_depth]);
81     const int w_dst = static_cast<int>(dst.shape()[idx_width]);
82     const int h_dst = static_cast<int>(dst.shape()[idx_height]);
83     const int d_dst = static_cast<int>(dst.shape()[idx_depth]);
84 
85     const bool exclude_padding = pool3d_info.exclude_padding;
86 
87     const int height_stride_src = num_channels * w_src;
88     const int depth_stride_src  = height_stride_src * h_src;
89     const int batch_stride_src  = depth_stride_src * d_src;
90     const int height_stride_dst = num_channels * w_dst;
91     const int depth_stride_dst  = height_stride_dst * h_dst;
92     const int batch_stride_dst  = depth_stride_dst * d_dst;
93 
94     for(int b = 0; b < num_batches; ++b)
95     {
96         const int batch_offset_dst = b * batch_stride_dst;
97         const int batch_offset_src = b * batch_stride_src;
98         for(int c = 0; c < num_channels; ++c)
99         {
100             for(int d = 0; d < d_dst; ++d)
101             {
102                 const int depth_offset_dst = d * depth_stride_dst;
103                 for(int h = 0; h < h_dst; ++h)
104                 {
105                     const int height_offset_dst = h * height_stride_dst;
106                     for(int w = 0; w < w_dst; ++w)
107                     {
108                         int wstart = w * pool_stride_width - pad_left;
109                         int hstart = h * pool_stride_height - pad_top;
110                         int dstart = d * pool_stride_depth - pad_front;
111                         int wend   = std::min(wstart + pool_size_width, w_src + pad_right);
112                         int hend   = std::min(hstart + pool_size_height, h_src + pad_bottom);
113                         int dend   = std::min(dstart + pool_size_depth, d_src + pad_back);
114 
115                         // this may not be equal to pool_w * pool_h * pool_d because of
116                         // DimensionRoundingType choice (CEIL)
117                         int pool_size = (dend - dstart) * (hend - hstart) * (wend - wstart);
118 
119                         // limit [start, end) to [0, w_src)
120                         wstart = std::max(wstart, 0);
121                         hstart = std::max(hstart, 0);
122                         dstart = std::max(dstart, 0);
123                         wend   = std::min(wend, w_src);
124                         hend   = std::min(hend, h_src);
125                         dend   = std::min(dend, d_src);
126 
127                         auto max_val = -std::numeric_limits<T>::infinity();
128                         int  max_index{ 0 };
129                         T    avg_val = static_cast<T>(0.f);
130                         T    l2_val  = static_cast<T>(0.f);
131 
132                         if(exclude_padding)
133                         {
134                             pool_size = (dend - dstart) * (hend - hstart) * (wend - wstart);
135                         }
136 
137                         for(int z = dstart; z < dend; ++z)
138                         {
139                             const int depth_offset_src = z * depth_stride_src;
140                             for(int y = hstart; y < hend; ++y)
141                             {
142                                 const int height_offset_src = y * height_stride_src;
143                                 for(int x = wstart; x < wend; ++x)
144                                 {
145                                     const auto val = static_cast<T>(
146                                                          src[batch_offset_src + depth_offset_src + height_offset_src + x * num_channels + c]);
147                                     if(val > max_val)
148                                     {
149                                         max_val   = val;
150                                         max_index = coord2index(src.shape(), Coordinates(c, x, y, z, 0));
151                                     }
152 
153                                     avg_val += val;
154                                     l2_val += val * val;
155                                 }
156                             }
157                         }
158 
159                         avg_val /= pool_size;
160                         l2_val = static_cast<T>(std::sqrt(l2_val / pool_size));
161 
162                         int dst_index = batch_offset_dst + depth_offset_dst + height_offset_dst + w * num_channels + c;
163                         switch(pool3d_info.pool_type)
164                         {
165                             case PoolingType::MAX:
166                                 dst[dst_index] = static_cast<T>(max_val);
167                                 break;
168                             case PoolingType::AVG:
169                                 dst[dst_index] = static_cast<T>(avg_val);
170                                 break;
171                             case PoolingType::L2:
172                                 dst[dst_index] = static_cast<T>(l2_val);
173                                 break;
174                             default:
175                                 ARM_COMPUTE_ERROR("Pooling Type should be either MAX, AVG or L2");
176                         }
177 
178                         if(indices != nullptr)
179                         {
180                             (*indices)[dst_index] = max_index;
181                         }
182                     }
183                 }
184             }
185         }
186     }
187 
188     return dst;
189 }
190 
191 template SimpleTensor<float> pooling_3d_layer(const SimpleTensor<float> &src, const Pooling3dLayerInfo &pool3d_info, const QuantizationInfo &output_qinfo, SimpleTensor<uint32_t> *indices);
192 template SimpleTensor<half> pooling_3d_layer(const SimpleTensor<half> &src, const Pooling3dLayerInfo &pool3d_info, const QuantizationInfo &output_qinfo, SimpleTensor<uint32_t> *indices);
193 
194 template <typename T>
pooling_3d_layer(const SimpleTensor<T> & src,const Pooling3dLayerInfo & pool3d_info,const QuantizationInfo & output_qinfo,SimpleTensor<uint32_t> * indices)195 SimpleTensor<T> pooling_3d_layer(const SimpleTensor<T> &src, const Pooling3dLayerInfo &pool3d_info, const QuantizationInfo &output_qinfo, SimpleTensor<uint32_t> *indices)
196 {
197     ARM_COMPUTE_UNUSED(output_qinfo);
198     return pooling_3d_layer_internal<T>(src, pool3d_info, indices);
199 }
200 
201 template <>
pooling_3d_layer(const SimpleTensor<int8_t> & src,const Pooling3dLayerInfo & pool3d_info,const QuantizationInfo & output_qinfo,SimpleTensor<uint32_t> * indices)202 SimpleTensor<int8_t> pooling_3d_layer<int8_t>(const SimpleTensor<int8_t> &src, const Pooling3dLayerInfo &pool3d_info, const QuantizationInfo &output_qinfo, SimpleTensor<uint32_t> *indices)
203 {
204     SimpleTensor<float> src_tmp = convert_from_asymmetric(src);
205     SimpleTensor<float> dst_tmp = pooling_3d_layer_internal<float>(src_tmp, pool3d_info, indices);
206     return convert_to_asymmetric<int8_t>(dst_tmp, output_qinfo);
207 }
208 
209 template <>
pooling_3d_layer(const SimpleTensor<uint8_t> & src,const Pooling3dLayerInfo & pool3d_info,const QuantizationInfo & output_qinfo,SimpleTensor<uint32_t> * indices)210 SimpleTensor<uint8_t> pooling_3d_layer<uint8_t>(const SimpleTensor<uint8_t> &src, const Pooling3dLayerInfo &pool3d_info, const QuantizationInfo &output_qinfo, SimpleTensor<uint32_t> *indices)
211 {
212     SimpleTensor<float> src_tmp = convert_from_asymmetric(src);
213     SimpleTensor<float> dst_tmp = pooling_3d_layer_internal<float>(src_tmp, pool3d_info, indices);
214     return convert_to_asymmetric<uint8_t>(dst_tmp, output_qinfo);
215 }
216 
217 } // namespace reference
218 } // namespace validation
219 } // namespace test
220 } // namespace arm_compute
221