• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2020-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 
25 #include "QLSTMLayerNormalization.h"
26 #include "ArithmeticOperations.h"
27 #include "MeanStdDevNormalizationLayer.h"
28 #include "PixelWiseMultiplication.h"
29 #include "arm_compute/core/utils/misc/Utility.h"
30 #include "arm_compute/core/utils/quantization/AsymmHelpers.h"
31 
32 namespace arm_compute
33 {
34 namespace test
35 {
36 namespace validation
37 {
38 namespace reference
39 {
qlstm_layer_normalization(const SimpleTensor<int16_t> & src,const SimpleTensor<int16_t> & weight,const SimpleTensor<int32_t> & bias)40 SimpleTensor<int16_t> qlstm_layer_normalization(const SimpleTensor<int16_t> &src, const SimpleTensor<int16_t> &weight, const SimpleTensor<int32_t> &bias)
41 {
42     ARM_COMPUTE_ERROR_ON(src.shape().num_dimensions() > 2);
43     SimpleTensor<int16_t> output{ src.shape(), DataType::QSYMM16 };
44 
45     const auto wq_info = weight.quantization_info().uniform();
46     int        output_multiplier{};
47     int        output_shift{};
48     const auto s = quantization::calculate_quantized_multiplier(wq_info.scale, &output_multiplier, &output_shift);
49     output_shift *= -1;
50 
51     if(!bool(s))
52     {
53         output_multiplier = 0;
54         output_shift      = 0;
55     }
56 
57     const uint32_t num_batch = src.shape()[1];
58     const uint32_t num_input = src.shape()[0];
59 
60     for(uint32_t batch_idx = 0; batch_idx < num_batch; ++batch_idx)
61     {
62         int64_t sum{};
63         int64_t sum_sq{};
64 
65         for(uint32_t input_idx = 0; input_idx < num_input; ++input_idx)
66         {
67             const auto index = batch_idx * num_input + input_idx;
68             const auto val   = static_cast<int32_t>(src[index]);
69             sum += val;
70             sum_sq += val * val;
71         }
72 
73         const auto temp     = static_cast<int64_t>(0x100000) / num_input;
74         const auto mean     = sum * 1024 / static_cast<int64_t>(num_input);
75         const auto variance = ((sum_sq * temp) - (mean * mean)) / 0x100000;
76 
77         int32_t stddev_invsqrt_mul{};
78         int32_t stddev_invsqrt_shift{};
79         quantization::get_invsqrt_quantized_multiplier_exp(variance, -1, stddev_invsqrt_mul, stddev_invsqrt_shift);
80 
81         for(uint32_t input_idx = 0; input_idx < num_input; ++input_idx)
82         {
83             const auto    index           = batch_idx * num_input + input_idx;
84             const auto    val             = static_cast<int32_t>(src[index]);
85             const auto    shifted         = (val << 10) - mean;
86             const auto    rescaled        = quantization::multiply_by_quantized_multiplier(shifted, stddev_invsqrt_mul, stddev_invsqrt_shift);
87             const int64_t weighted        = rescaled * weight[input_idx] + bias[input_idx];
88             const auto    reverse_shifted = static_cast<int32_t>((weighted + 512) >> 10);
89             auto          out_val         = quantization::multiply_by_quantized_multiplier(reverse_shifted, output_multiplier, output_shift + 12);
90             out_val                       = arm_compute::utility::clamp<decltype(out_val), int16_t>(out_val, std::numeric_limits<int16_t>::min());
91             output[index]                 = static_cast<int16_t>(out_val);
92         }
93     }
94     return output;
95 }
96 } // namespace reference
97 } // namespace validation
98 } // namespace test
99 } // namespace arm_compute
100