• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 
25 #include "ROIPoolingLayer.h"
26 #include "arm_compute/core/Types.h"
27 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
28 #include "tests/validation/Helpers.h"
29 #include <algorithm>
30 
31 namespace arm_compute
32 {
33 namespace test
34 {
35 namespace validation
36 {
37 namespace reference
38 {
39 template <>
roi_pool_layer(const SimpleTensor<float> & src,const SimpleTensor<uint16_t> & rois,const ROIPoolingLayerInfo & pool_info,const QuantizationInfo & output_qinfo)40 SimpleTensor<float> roi_pool_layer(const SimpleTensor<float> &src, const SimpleTensor<uint16_t> &rois, const ROIPoolingLayerInfo &pool_info, const QuantizationInfo &output_qinfo)
41 {
42     ARM_COMPUTE_UNUSED(output_qinfo);
43 
44     const size_t num_rois         = rois.shape()[1];
45     const size_t values_per_roi   = rois.shape()[0];
46     DataType     output_data_type = src.data_type();
47 
48     TensorShape         input_shape = src.shape();
49     TensorShape         output_shape(pool_info.pooled_width(), pool_info.pooled_height(), src.shape()[2], num_rois);
50     SimpleTensor<float> output(output_shape, output_data_type);
51 
52     const int   pooled_w      = pool_info.pooled_width();
53     const int   pooled_h      = pool_info.pooled_height();
54     const float spatial_scale = pool_info.spatial_scale();
55 
56     // get sizes of x and y dimensions in src tensor
57     const int width  = src.shape()[0];
58     const int height = src.shape()[1];
59 
60     // Move pointer across the fourth dimension
61     const size_t input_stride_w  = input_shape[0] * input_shape[1] * input_shape[2];
62     const size_t output_stride_w = output_shape[0] * output_shape[1] * output_shape[2];
63 
64     const auto *rois_ptr = reinterpret_cast<const uint16_t *>(rois.data());
65 
66     // Iterate through pixel width (X-Axis)
67     for(size_t pw = 0; pw < num_rois; ++pw)
68     {
69         const unsigned int roi_batch = rois_ptr[values_per_roi * pw];
70         const auto         x1        = rois_ptr[values_per_roi * pw + 1];
71         const auto         y1        = rois_ptr[values_per_roi * pw + 2];
72         const auto         x2        = rois_ptr[values_per_roi * pw + 3];
73         const auto         y2        = rois_ptr[values_per_roi * pw + 4];
74 
75         //Iterate through pixel height (Y-Axis)
76         for(size_t fm = 0; fm < input_shape[2]; ++fm)
77         {
78             // Iterate through regions of interest index
79             for(size_t py = 0; py < pool_info.pooled_height(); ++py)
80             {
81                 // Scale ROI
82                 const int roi_anchor_x = support::cpp11::round(x1 * spatial_scale);
83                 const int roi_anchor_y = support::cpp11::round(y1 * spatial_scale);
84                 const int roi_width    = std::max(support::cpp11::round((x2 - x1) * spatial_scale), 1.f);
85                 const int roi_height   = std::max(support::cpp11::round((y2 - y1) * spatial_scale), 1.f);
86 
87                 // Iterate over feature map (Z axis)
88                 for(size_t px = 0; px < pool_info.pooled_width(); ++px)
89                 {
90                     auto region_start_x = static_cast<int>(std::floor((static_cast<float>(px) / pooled_w) * roi_width));
91                     auto region_end_x   = static_cast<int>(std::floor((static_cast<float>(px + 1) / pooled_w) * roi_width));
92                     auto region_start_y = static_cast<int>(std::floor((static_cast<float>(py) / pooled_h) * roi_height));
93                     auto region_end_y   = static_cast<int>(std::floor((static_cast<float>(py + 1) / pooled_h) * roi_height));
94 
95                     region_start_x = std::min(std::max(region_start_x + roi_anchor_x, 0), width);
96                     region_end_x   = std::min(std::max(region_end_x + roi_anchor_x, 0), width);
97                     region_start_y = std::min(std::max(region_start_y + roi_anchor_y, 0), height);
98                     region_end_y   = std::min(std::max(region_end_y + roi_anchor_y, 0), height);
99 
100                     // Iterate through the pooling region
101                     if((region_end_x <= region_start_x) || (region_end_y <= region_start_y))
102                     {
103                         /* Assign element in tensor 'output' at coordinates px, py, fm, roi_indx, to 0 */
104                         auto out_ptr = output.data() + px + py * output_shape[0] + fm * output_shape[0] * output_shape[1] + pw * output_stride_w;
105                         *out_ptr     = 0;
106                     }
107                     else
108                     {
109                         float curr_max = -std::numeric_limits<float>::max();
110                         for(int j = region_start_y; j < region_end_y; ++j)
111                         {
112                             for(int i = region_start_x; i < region_end_x; ++i)
113                             {
114                                 /* Retrieve element from input tensor at coordinates(i, j, fm, roi_batch) */
115                                 float in_element = *(src.data() + i + j * input_shape[0] + fm * input_shape[0] * input_shape[1] + roi_batch * input_stride_w);
116                                 curr_max         = std::max(in_element, curr_max);
117                             }
118                         }
119 
120                         /* Assign element in tensor 'output' at coordinates px, py, fm, roi_indx, to curr_max */
121                         auto out_ptr = output.data() + px + py * output_shape[0] + fm * output_shape[0] * output_shape[1] + pw * output_stride_w;
122                         *out_ptr     = curr_max;
123                     }
124                 }
125             }
126         }
127     }
128 
129     return output;
130 }
131 
132 /*
133     Template genericised method to allow calling of roi_pooling_layer with quantized 8 bit datatype
134 */
135 template <>
roi_pool_layer(const SimpleTensor<uint8_t> & src,const SimpleTensor<uint16_t> & rois,const ROIPoolingLayerInfo & pool_info,const QuantizationInfo & output_qinfo)136 SimpleTensor<uint8_t> roi_pool_layer(const SimpleTensor<uint8_t> &src, const SimpleTensor<uint16_t> &rois, const ROIPoolingLayerInfo &pool_info, const QuantizationInfo &output_qinfo)
137 {
138     const SimpleTensor<float> src_tmp = convert_from_asymmetric(src);
139     SimpleTensor<float>       dst_tmp = roi_pool_layer<float>(src_tmp, rois, pool_info, output_qinfo);
140     SimpleTensor<uint8_t>     dst     = convert_to_asymmetric<uint8_t>(dst_tmp, output_qinfo);
141     return dst;
142 }
143 
144 } // namespace reference
145 } // namespace validation
146 } // namespace test
147 } // namespace arm_compute