1 // Auto-generated file. Do not edit!
2 // Template: src/f32-raddstoreexpminusmax/sse2-rr2-p5.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <emmintrin.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16
17
xnn_f32_raddstoreexpminusmax_ukernel__sse2_rr2_p5_x20(size_t elements,const float * input,const float * max,float * output,float * sum,const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS (1)])18 void xnn_f32_raddstoreexpminusmax_ukernel__sse2_rr2_p5_x20(
19 size_t elements,
20 const float* input,
21 const float* max,
22 float* output,
23 float* sum,
24 const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
25 {
26 assert(elements % sizeof(float) == 0);
27
28 const __m128 vi_max = _mm_load1_ps(max);
29 const __m128 vlog2e = _mm_load_ps(params->sse2_rr2_p5.log2e);
30 const __m128 vmagic_bias = _mm_load_ps(params->sse2_rr2_p5.magic_bias);
31 const __m128 vminus_ln2_hi = _mm_load_ps(params->sse2_rr2_p5.minus_ln2_hi);
32 const __m128 vminus_ln2_lo = _mm_load_ps(params->sse2_rr2_p5.minus_ln2_lo);
33 const __m128 vc5 = _mm_load_ps(params->sse2_rr2_p5.c5);
34 const __m128 vc4 = _mm_load_ps(params->sse2_rr2_p5.c4);
35 const __m128 vc3 = _mm_load_ps(params->sse2_rr2_p5.c3);
36 const __m128 vc2 = _mm_load_ps(params->sse2_rr2_p5.c2);
37 const __m128 vc1 = _mm_load_ps(params->sse2_rr2_p5.c1);
38 const __m128 vdenorm_cutoff = _mm_load_ps(params->sse2_rr2_p5.denorm_cutoff);
39
40 __m128 vacc0 = _mm_setzero_ps();
41 for (; elements >= 20 * sizeof(float); elements -= 20 * sizeof(float)) {
42 // Load 20 (5x4) inputs at a time.
43 const __m128 vi0123 = _mm_loadu_ps(input);
44 const __m128 vi4567 = _mm_loadu_ps(input + 4);
45 const __m128 vi89AB = _mm_loadu_ps(input + 8);
46 const __m128 viCDEF = _mm_loadu_ps(input + 12);
47 const __m128 viGHIJ = _mm_loadu_ps(input + 16);
48 input += 20;
49
50 // Subtract maximum input x := i - i_max. This implies x <= 0.
51 const __m128 vx0123 = _mm_sub_ps(vi0123, vi_max);
52 const __m128 vx4567 = _mm_sub_ps(vi4567, vi_max);
53 const __m128 vx89AB = _mm_sub_ps(vi89AB, vi_max);
54 const __m128 vxCDEF = _mm_sub_ps(viCDEF, vi_max);
55 const __m128 vxGHIJ = _mm_sub_ps(viGHIJ, vi_max);
56
57 // Compute reduced argument elements := round(x / log(2)).
58 __m128 vn0123 = _mm_add_ps(_mm_mul_ps(vx0123, vlog2e), vmagic_bias);
59 __m128 vn4567 = _mm_add_ps(_mm_mul_ps(vx4567, vlog2e), vmagic_bias);
60 __m128 vn89AB = _mm_add_ps(_mm_mul_ps(vx89AB, vlog2e), vmagic_bias);
61 __m128 vnCDEF = _mm_add_ps(_mm_mul_ps(vxCDEF, vlog2e), vmagic_bias);
62 __m128 vnGHIJ = _mm_add_ps(_mm_mul_ps(vxGHIJ, vlog2e), vmagic_bias);
63
64 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
65 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
66 const __m128 vs0123 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn0123), 23));
67 const __m128 vs4567 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn4567), 23));
68 const __m128 vs89AB = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn89AB), 23));
69 const __m128 vsCDEF = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vnCDEF), 23));
70 const __m128 vsGHIJ = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vnGHIJ), 23));
71
72 // Subtract the large number back to get final elements := round(x / log(2)).
73 vn0123 = _mm_sub_ps(vn0123, vmagic_bias);
74 vn4567 = _mm_sub_ps(vn4567, vmagic_bias);
75 vn89AB = _mm_sub_ps(vn89AB, vmagic_bias);
76 vnCDEF = _mm_sub_ps(vnCDEF, vmagic_bias);
77 vnGHIJ = _mm_sub_ps(vnGHIJ, vmagic_bias);
78
79 // Compute reduced argument t := x - elements * log(2).
80 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
81 __m128 vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_hi), vx0123);
82 __m128 vt4567 = _mm_add_ps(_mm_mul_ps(vn4567, vminus_ln2_hi), vx4567);
83 __m128 vt89AB = _mm_add_ps(_mm_mul_ps(vn89AB, vminus_ln2_hi), vx89AB);
84 __m128 vtCDEF = _mm_add_ps(_mm_mul_ps(vnCDEF, vminus_ln2_hi), vxCDEF);
85 __m128 vtGHIJ = _mm_add_ps(_mm_mul_ps(vnGHIJ, vminus_ln2_hi), vxGHIJ);
86
87 vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_lo), vt0123);
88 vt4567 = _mm_add_ps(_mm_mul_ps(vn4567, vminus_ln2_lo), vt4567);
89 vt89AB = _mm_add_ps(_mm_mul_ps(vn89AB, vminus_ln2_lo), vt89AB);
90 vtCDEF = _mm_add_ps(_mm_mul_ps(vnCDEF, vminus_ln2_lo), vtCDEF);
91 vtGHIJ = _mm_add_ps(_mm_mul_ps(vnGHIJ, vminus_ln2_lo), vtGHIJ);
92
93 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
94 __m128 vp0123 = _mm_add_ps(_mm_mul_ps(vc5, vt0123), vc4);
95 __m128 vp4567 = _mm_add_ps(_mm_mul_ps(vc5, vt4567), vc4);
96 __m128 vp89AB = _mm_add_ps(_mm_mul_ps(vc5, vt89AB), vc4);
97 __m128 vpCDEF = _mm_add_ps(_mm_mul_ps(vc5, vtCDEF), vc4);
98 __m128 vpGHIJ = _mm_add_ps(_mm_mul_ps(vc5, vtGHIJ), vc4);
99
100 vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc3);
101 vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc3);
102 vp89AB = _mm_add_ps(_mm_mul_ps(vp89AB, vt89AB), vc3);
103 vpCDEF = _mm_add_ps(_mm_mul_ps(vpCDEF, vtCDEF), vc3);
104 vpGHIJ = _mm_add_ps(_mm_mul_ps(vpGHIJ, vtGHIJ), vc3);
105
106 vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc2);
107 vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc2);
108 vp89AB = _mm_add_ps(_mm_mul_ps(vp89AB, vt89AB), vc2);
109 vpCDEF = _mm_add_ps(_mm_mul_ps(vpCDEF, vtCDEF), vc2);
110 vpGHIJ = _mm_add_ps(_mm_mul_ps(vpGHIJ, vtGHIJ), vc2);
111
112 vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc1);
113 vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc1);
114 vp89AB = _mm_add_ps(_mm_mul_ps(vp89AB, vt89AB), vc1);
115 vpCDEF = _mm_add_ps(_mm_mul_ps(vpCDEF, vtCDEF), vc1);
116 vpGHIJ = _mm_add_ps(_mm_mul_ps(vpGHIJ, vtGHIJ), vc1);
117
118 // Reconstruct the final f value:
119 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
120 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
121 // = s + (t * s) * p
122 vt0123 = _mm_mul_ps(vt0123, vs0123);
123 vt4567 = _mm_mul_ps(vt4567, vs4567);
124 vt89AB = _mm_mul_ps(vt89AB, vs89AB);
125 vtCDEF = _mm_mul_ps(vtCDEF, vsCDEF);
126 vtGHIJ = _mm_mul_ps(vtGHIJ, vsGHIJ);
127
128 __m128 vf0123 = _mm_add_ps(_mm_mul_ps(vt0123, vp0123), vs0123);
129 __m128 vf4567 = _mm_add_ps(_mm_mul_ps(vt4567, vp4567), vs4567);
130 __m128 vf89AB = _mm_add_ps(_mm_mul_ps(vt89AB, vp89AB), vs89AB);
131 __m128 vfCDEF = _mm_add_ps(_mm_mul_ps(vtCDEF, vpCDEF), vsCDEF);
132 __m128 vfGHIJ = _mm_add_ps(_mm_mul_ps(vtGHIJ, vpGHIJ), vsGHIJ);
133
134 // For inputs below zero cutoff, replace output with +0.0f.
135 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
136 vf0123 = _mm_andnot_ps(_mm_cmplt_ps(vx0123, vdenorm_cutoff), vf0123);
137 vf4567 = _mm_andnot_ps(_mm_cmplt_ps(vx4567, vdenorm_cutoff), vf4567);
138 vf89AB = _mm_andnot_ps(_mm_cmplt_ps(vx89AB, vdenorm_cutoff), vf89AB);
139 vfCDEF = _mm_andnot_ps(_mm_cmplt_ps(vxCDEF, vdenorm_cutoff), vfCDEF);
140 vfGHIJ = _mm_andnot_ps(_mm_cmplt_ps(vxGHIJ, vdenorm_cutoff), vfGHIJ);
141
142 // Store 20 (5x4) outputs at a time.
143 _mm_storeu_ps(output, vf0123);
144 _mm_storeu_ps(output + 4, vf4567);
145 _mm_storeu_ps(output + 8, vf89AB);
146 _mm_storeu_ps(output + 12, vfCDEF);
147 _mm_storeu_ps(output + 16, vfGHIJ);
148 output += 20;
149
150 // Accumulate computed exponents.
151 vacc0 = _mm_add_ps(vacc0, vf0123);
152 vacc0 = _mm_add_ps(vacc0, vf4567);
153 vacc0 = _mm_add_ps(vacc0, vf89AB);
154 vacc0 = _mm_add_ps(vacc0, vfCDEF);
155 vacc0 = _mm_add_ps(vacc0, vfGHIJ);
156 }
157
158 __m128 vacc = vacc0;
159 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
160 // Load 4 inputs at a time.
161 const __m128 vi = _mm_loadu_ps(input);
162 input += 4;
163
164 // Subtract maximum input x := i - i_max. This implies x <= 0.
165 const __m128 vx = _mm_sub_ps(vi, vi_max);
166
167 // Compute reduced argument elements := round(x / log(2)).
168 __m128 vn = _mm_add_ps(_mm_mul_ps(vx, vlog2e), vmagic_bias);
169
170 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
171 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
172 const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
173
174 // Subtract the large number back to get final elements := round(x / log(2)).
175 vn = _mm_sub_ps(vn, vmagic_bias);
176
177 // Compute reduced argument t := x - elements * log(2).
178 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
179 __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vx);
180 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
181
182 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
183 __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
184 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
185 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
186 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
187
188 // Reconstruct the final f value:
189 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
190 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
191 // = s + (t * s) * p
192 vt = _mm_mul_ps(vt, vs);
193 __m128 vf = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
194
195 // For inputs below zero cutoff, replace output with +0.0f.
196 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
197 vf = _mm_andnot_ps(_mm_cmplt_ps(vx, vdenorm_cutoff), vf);
198
199 // Store 4 outputs at a time.
200 _mm_storeu_ps(output, vf);
201 output += 4;
202
203 // Accumulate computed exponents.
204 vacc = _mm_add_ps(vacc, vf);
205 }
206 if (elements != 0) {
207 assert(elements >= 1 * sizeof(float));
208 assert(elements <= 3 * sizeof(float));
209 // Load 4 inputs at a time.
210 const __m128 vi = _mm_loadu_ps(input);
211
212 // Subtract maximum input x := i - i_max. This implies x <= 0.
213 const __m128 vx = _mm_sub_ps(vi, vi_max);
214
215 // Compute reduced argument elements := round(x / log(2)).
216 __m128 vn = _mm_add_ps(_mm_mul_ps(vx, vlog2e), vmagic_bias);
217
218 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
219 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
220 const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
221
222 // Subtract the large number back to get final elements := round(x / log(2)).
223 vn = _mm_sub_ps(vn, vmagic_bias);
224
225 // Compute reduced argument t := x - elements * log(2).
226 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
227 __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vx);
228 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
229
230 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
231 __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
232 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
233 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
234 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
235
236 // Reconstruct the final f value:
237 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
238 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
239 // = s + (t * s) * p
240 vt = _mm_mul_ps(vt, vs);
241 __m128 vf = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
242
243 // For inputs below zero cutoff, replace output with +0.0f.
244 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
245 vf = _mm_andnot_ps(_mm_cmplt_ps(vx, vdenorm_cutoff), vf);
246
247 if (elements & (2 * sizeof(float))) {
248 // Store 2 outputs at a time.
249 _mm_storel_pi((__m64*) output, vf);
250 output += 2;
251
252 // Accumulate 2 computed exponents.
253 vacc = _mm_add_ps(vacc, _mm_movelh_ps(vf, _mm_setzero_ps()));
254
255 vf = _mm_movehl_ps(vf, vf);
256 }
257 if (elements & (1 * sizeof(float))) {
258 // Store 1 output at a time.
259 _mm_store_ss(output, vf);
260
261 // Accumulate 1 computed exponent.
262 vacc = _mm_add_ss(vacc, vf);
263 }
264 }
265 // Reduce 4 elements in the SIMD register
266 vacc = _mm_add_ps(vacc, _mm_movehl_ps(vacc, vacc));
267 vacc = _mm_add_ss(vacc, _mm_shuffle_ps(vacc, vacc, _MM_SHUFFLE(2, 3, 0, 1)));
268 _mm_store_ss(sum, vacc);
269 }
270