1 // Auto-generated file. Do not edit!
2 // Template: src/f32-raddstoreexpminusmax/wasmsimd-rr2-p5.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <wasm_simd128.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16
17
xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_rr2_p5_x20_acc5(size_t elements,const float * input,const float * max,float * output,float * sum,const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS (1)])18 void xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_rr2_p5_x20_acc5(
19 size_t elements,
20 const float* input,
21 const float* max,
22 float* output,
23 float* sum,
24 const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
25 {
26 assert(elements % sizeof(float) == 0);
27
28 const v128_t vi_max = wasm_v128_load32_splat(max);
29 const v128_t vlog2e = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.log2e);
30 const v128_t vmagic_bias = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.magic_bias);
31 const v128_t vminus_ln2_hi = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.minus_ln2_hi);
32 const v128_t vminus_ln2_lo = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.minus_ln2_lo);
33 const v128_t vc5 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c5);
34 const v128_t vc4 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c4);
35 const v128_t vc3 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c3);
36 const v128_t vc2 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c2);
37 const v128_t vc1 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c1);
38 const v128_t vdenorm_cutoff = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.denorm_cutoff);
39
40 v128_t vacc0 = wasm_f32x4_const_splat(0.0f);
41 v128_t vacc1 = vacc0;
42 v128_t vacc2 = vacc0;
43 v128_t vacc3 = vacc0;
44 v128_t vacc4 = vacc0;
45 for (; elements >= 20 * sizeof(float); elements -= 20 * sizeof(float)) {
46 // Load 20 (5x4) inputs at a time.
47 const v128_t vi0123 = wasm_v128_load(input);
48 const v128_t vi4567 = wasm_v128_load(input + 4);
49 const v128_t vi89AB = wasm_v128_load(input + 8);
50 const v128_t viCDEF = wasm_v128_load(input + 12);
51 const v128_t viGHIJ = wasm_v128_load(input + 16);
52 input += 20;
53
54 // Subtract maximum input x := i - i_max. This implies x <= 0.
55 const v128_t vx0123 = wasm_f32x4_sub(vi0123, vi_max);
56 const v128_t vx4567 = wasm_f32x4_sub(vi4567, vi_max);
57 const v128_t vx89AB = wasm_f32x4_sub(vi89AB, vi_max);
58 const v128_t vxCDEF = wasm_f32x4_sub(viCDEF, vi_max);
59 const v128_t vxGHIJ = wasm_f32x4_sub(viGHIJ, vi_max);
60
61 // Compute reduced argument elements := round(x / log(2)).
62 v128_t vn0123 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx0123, vlog2e));
63 v128_t vn4567 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx4567, vlog2e));
64 v128_t vn89AB = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx89AB, vlog2e));
65 v128_t vnCDEF = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vxCDEF, vlog2e));
66 v128_t vnGHIJ = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vxGHIJ, vlog2e));
67
68 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
69 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
70 const v128_t vs0123 = wasm_i32x4_shl(vn0123, 23);
71 const v128_t vs4567 = wasm_i32x4_shl(vn4567, 23);
72 const v128_t vs89AB = wasm_i32x4_shl(vn89AB, 23);
73 const v128_t vsCDEF = wasm_i32x4_shl(vnCDEF, 23);
74 const v128_t vsGHIJ = wasm_i32x4_shl(vnGHIJ, 23);
75
76 // Subtract the large number back to get final elements := round(x / log(2)).
77 vn0123 = wasm_f32x4_sub(vn0123, vmagic_bias);
78 vn4567 = wasm_f32x4_sub(vn4567, vmagic_bias);
79 vn89AB = wasm_f32x4_sub(vn89AB, vmagic_bias);
80 vnCDEF = wasm_f32x4_sub(vnCDEF, vmagic_bias);
81 vnGHIJ = wasm_f32x4_sub(vnGHIJ, vmagic_bias);
82
83 // Compute reduced argument t := x - elements * log(2).
84 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
85 v128_t vt0123 = wasm_f32x4_add(vx0123, wasm_f32x4_mul(vn0123, vminus_ln2_hi));
86 v128_t vt4567 = wasm_f32x4_add(vx4567, wasm_f32x4_mul(vn4567, vminus_ln2_hi));
87 v128_t vt89AB = wasm_f32x4_add(vx89AB, wasm_f32x4_mul(vn89AB, vminus_ln2_hi));
88 v128_t vtCDEF = wasm_f32x4_add(vxCDEF, wasm_f32x4_mul(vnCDEF, vminus_ln2_hi));
89 v128_t vtGHIJ = wasm_f32x4_add(vxGHIJ, wasm_f32x4_mul(vnGHIJ, vminus_ln2_hi));
90
91 vt0123 = wasm_f32x4_add(vt0123, wasm_f32x4_mul(vn0123, vminus_ln2_lo));
92 vt4567 = wasm_f32x4_add(vt4567, wasm_f32x4_mul(vn4567, vminus_ln2_lo));
93 vt89AB = wasm_f32x4_add(vt89AB, wasm_f32x4_mul(vn89AB, vminus_ln2_lo));
94 vtCDEF = wasm_f32x4_add(vtCDEF, wasm_f32x4_mul(vnCDEF, vminus_ln2_lo));
95 vtGHIJ = wasm_f32x4_add(vtGHIJ, wasm_f32x4_mul(vnGHIJ, vminus_ln2_lo));
96
97 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
98 v128_t vp0123 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt0123));
99 v128_t vp4567 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt4567));
100 v128_t vp89AB = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt89AB));
101 v128_t vpCDEF = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vtCDEF));
102 v128_t vpGHIJ = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vtGHIJ));
103
104 vp0123 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp0123, vt0123));
105 vp4567 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp4567, vt4567));
106 vp89AB = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp89AB, vt89AB));
107 vpCDEF = wasm_f32x4_add(vc3, wasm_f32x4_mul(vpCDEF, vtCDEF));
108 vpGHIJ = wasm_f32x4_add(vc3, wasm_f32x4_mul(vpGHIJ, vtGHIJ));
109
110 vp0123 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp0123, vt0123));
111 vp4567 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp4567, vt4567));
112 vp89AB = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp89AB, vt89AB));
113 vpCDEF = wasm_f32x4_add(vc2, wasm_f32x4_mul(vpCDEF, vtCDEF));
114 vpGHIJ = wasm_f32x4_add(vc2, wasm_f32x4_mul(vpGHIJ, vtGHIJ));
115
116 vp0123 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp0123, vt0123));
117 vp4567 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp4567, vt4567));
118 vp89AB = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp89AB, vt89AB));
119 vpCDEF = wasm_f32x4_add(vc1, wasm_f32x4_mul(vpCDEF, vtCDEF));
120 vpGHIJ = wasm_f32x4_add(vc1, wasm_f32x4_mul(vpGHIJ, vtGHIJ));
121
122 // Reconstruct the final f value:
123 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
124 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
125 // = s + (t * s) * p
126 vt0123 = wasm_f32x4_mul(vt0123, vs0123);
127 vt4567 = wasm_f32x4_mul(vt4567, vs4567);
128 vt89AB = wasm_f32x4_mul(vt89AB, vs89AB);
129 vtCDEF = wasm_f32x4_mul(vtCDEF, vsCDEF);
130 vtGHIJ = wasm_f32x4_mul(vtGHIJ, vsGHIJ);
131
132 v128_t vf0123 = wasm_f32x4_add(vs0123, wasm_f32x4_mul(vt0123, vp0123));
133 v128_t vf4567 = wasm_f32x4_add(vs4567, wasm_f32x4_mul(vt4567, vp4567));
134 v128_t vf89AB = wasm_f32x4_add(vs89AB, wasm_f32x4_mul(vt89AB, vp89AB));
135 v128_t vfCDEF = wasm_f32x4_add(vsCDEF, wasm_f32x4_mul(vtCDEF, vpCDEF));
136 v128_t vfGHIJ = wasm_f32x4_add(vsGHIJ, wasm_f32x4_mul(vtGHIJ, vpGHIJ));
137
138 // For inputs below zero cutoff, replace output with +0.0f.
139 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
140 vf0123 = wasm_v128_andnot(vf0123, wasm_f32x4_lt(vx0123, vdenorm_cutoff));
141 vf4567 = wasm_v128_andnot(vf4567, wasm_f32x4_lt(vx4567, vdenorm_cutoff));
142 vf89AB = wasm_v128_andnot(vf89AB, wasm_f32x4_lt(vx89AB, vdenorm_cutoff));
143 vfCDEF = wasm_v128_andnot(vfCDEF, wasm_f32x4_lt(vxCDEF, vdenorm_cutoff));
144 vfGHIJ = wasm_v128_andnot(vfGHIJ, wasm_f32x4_lt(vxGHIJ, vdenorm_cutoff));
145
146 // Store 20 (5x4) outputs at a time.
147 wasm_v128_store(output, vf0123);
148 wasm_v128_store(output + 4, vf4567);
149 wasm_v128_store(output + 8, vf89AB);
150 wasm_v128_store(output + 12, vfCDEF);
151 wasm_v128_store(output + 16, vfGHIJ);
152 output += 20;
153
154 // Accumulate computed exponents.
155 vacc0 = wasm_f32x4_add(vacc0, vf0123);
156 vacc4 = wasm_f32x4_add(vacc4, vf4567);
157 vacc3 = wasm_f32x4_add(vacc3, vf89AB);
158 vacc2 = wasm_f32x4_add(vacc2, vfCDEF);
159 vacc1 = wasm_f32x4_add(vacc1, vfGHIJ);
160 }
161 // Add up all accumulators to vacc0
162 vacc0 = wasm_f32x4_add(vacc0, vacc1);
163 vacc2 = wasm_f32x4_add(vacc2, vacc3);
164 vacc0 = wasm_f32x4_add(vacc0, vacc2);
165 vacc0 = wasm_f32x4_add(vacc0, vacc4);
166
167 v128_t vacc = vacc0;
168 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
169 // Load 4 inputs at a time.
170 const v128_t vi = wasm_v128_load(input);
171 input += 4;
172
173 // Subtract maximum input x := i - i_max. This implies x <= 0.
174 const v128_t vx = wasm_f32x4_sub(vi, vi_max);
175
176 // Compute reduced argument elements := round(x / log(2)).
177 v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
178
179 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
180 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
181 const v128_t vs = wasm_i32x4_shl(vn, 23);
182
183 // Subtract the large number back to get final elements := round(x / log(2)).
184 vn = wasm_f32x4_sub(vn, vmagic_bias);
185
186 // Compute reduced argument t := x - elements * log(2).
187 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
188 v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
189 vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
190
191 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
192 v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
193 vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
194 vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
195 vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
196
197 // Reconstruct the final f value:
198 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
199 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
200 // = s + (t * s) * p
201 vt = wasm_f32x4_mul(vt, vs);
202 v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
203
204 // For inputs below zero cutoff, replace output with +0.0f.
205 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
206 vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
207
208 // Store 4 outputs at a time.
209 wasm_v128_store(output, vf);
210 output += 4;
211
212 // Accumulate computed exponents.
213 vacc = wasm_f32x4_add(vacc, vf);
214 }
215 vacc = wasm_f32x4_add(vacc, wasm_v32x4_shuffle(vacc, vacc, 2, 3, 2, 3));
216 float vsum = wasm_f32x4_extract_lane(vacc, 0) + wasm_f32x4_extract_lane(vacc, 1);
217 if (elements != 0) {
218 assert(elements >= 1 * sizeof(float));
219 assert(elements <= 3 * sizeof(float));
220 // Load 4 inputs at a time.
221 const v128_t vi = wasm_v128_load(input);
222
223 // Subtract maximum input x := i - i_max. This implies x <= 0.
224 const v128_t vx = wasm_f32x4_sub(vi, vi_max);
225
226 // Compute reduced argument elements := round(x / log(2)).
227 v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
228
229 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
230 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
231 const v128_t vs = wasm_i32x4_shl(vn, 23);
232
233 // Subtract the large number back to get final elements := round(x / log(2)).
234 vn = wasm_f32x4_sub(vn, vmagic_bias);
235
236 // Compute reduced argument t := x - elements * log(2).
237 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
238 v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
239 vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
240
241 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
242 v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
243 vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
244 vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
245 vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
246
247 // Reconstruct the final f value:
248 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
249 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
250 // = s + (t * s) * p
251 vt = wasm_f32x4_mul(vt, vs);
252 v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
253
254 // For inputs below zero cutoff, replace output with +0.0f.
255 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
256 vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
257
258 if (elements & (2 * sizeof(float))) {
259 // Store and accumulate 2 outputs at a time.
260 const float vf0 = wasm_f32x4_extract_lane(vf, 0);
261 output[0] = vf0;
262 vsum += vf0;
263
264 const float vf1 = wasm_f32x4_extract_lane(vf, 1);
265 output[1] = vf1;
266 vsum += vf1;
267
268 vf = wasm_v32x4_shuffle(vf, vf, 2, 3, 2, 3);
269 output += 2;
270 }
271 if (elements & (1 * sizeof(float))) {
272 // Store 1 output at a time.
273 const float vf0 = wasm_f32x4_extract_lane(vf, 0);
274 *output = vf0;
275 vsum += vf0;
276 }
277 }
278 // Reduce 4 elements in the SIMD register
279 *sum = vsum;
280 }
281