1 // Auto-generated file. Do not edit!
2 // Template: src/f32-raddstoreexpminusmax/wasmsimd-rr2-p5.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <wasm_simd128.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16
17
xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_rr2_p5_x20(size_t elements,const float * input,const float * max,float * output,float * sum,const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS (1)])18 void xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_rr2_p5_x20(
19 size_t elements,
20 const float* input,
21 const float* max,
22 float* output,
23 float* sum,
24 const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
25 {
26 assert(elements % sizeof(float) == 0);
27
28 const v128_t vi_max = wasm_v128_load32_splat(max);
29 const v128_t vlog2e = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.log2e);
30 const v128_t vmagic_bias = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.magic_bias);
31 const v128_t vminus_ln2_hi = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.minus_ln2_hi);
32 const v128_t vminus_ln2_lo = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.minus_ln2_lo);
33 const v128_t vc5 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c5);
34 const v128_t vc4 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c4);
35 const v128_t vc3 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c3);
36 const v128_t vc2 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c2);
37 const v128_t vc1 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c1);
38 const v128_t vdenorm_cutoff = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.denorm_cutoff);
39
40 v128_t vacc0 = wasm_f32x4_const_splat(0.0f);
41 for (; elements >= 20 * sizeof(float); elements -= 20 * sizeof(float)) {
42 // Load 20 (5x4) inputs at a time.
43 const v128_t vi0123 = wasm_v128_load(input);
44 const v128_t vi4567 = wasm_v128_load(input + 4);
45 const v128_t vi89AB = wasm_v128_load(input + 8);
46 const v128_t viCDEF = wasm_v128_load(input + 12);
47 const v128_t viGHIJ = wasm_v128_load(input + 16);
48 input += 20;
49
50 // Subtract maximum input x := i - i_max. This implies x <= 0.
51 const v128_t vx0123 = wasm_f32x4_sub(vi0123, vi_max);
52 const v128_t vx4567 = wasm_f32x4_sub(vi4567, vi_max);
53 const v128_t vx89AB = wasm_f32x4_sub(vi89AB, vi_max);
54 const v128_t vxCDEF = wasm_f32x4_sub(viCDEF, vi_max);
55 const v128_t vxGHIJ = wasm_f32x4_sub(viGHIJ, vi_max);
56
57 // Compute reduced argument elements := round(x / log(2)).
58 v128_t vn0123 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx0123, vlog2e));
59 v128_t vn4567 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx4567, vlog2e));
60 v128_t vn89AB = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx89AB, vlog2e));
61 v128_t vnCDEF = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vxCDEF, vlog2e));
62 v128_t vnGHIJ = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vxGHIJ, vlog2e));
63
64 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
65 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
66 const v128_t vs0123 = wasm_i32x4_shl(vn0123, 23);
67 const v128_t vs4567 = wasm_i32x4_shl(vn4567, 23);
68 const v128_t vs89AB = wasm_i32x4_shl(vn89AB, 23);
69 const v128_t vsCDEF = wasm_i32x4_shl(vnCDEF, 23);
70 const v128_t vsGHIJ = wasm_i32x4_shl(vnGHIJ, 23);
71
72 // Subtract the large number back to get final elements := round(x / log(2)).
73 vn0123 = wasm_f32x4_sub(vn0123, vmagic_bias);
74 vn4567 = wasm_f32x4_sub(vn4567, vmagic_bias);
75 vn89AB = wasm_f32x4_sub(vn89AB, vmagic_bias);
76 vnCDEF = wasm_f32x4_sub(vnCDEF, vmagic_bias);
77 vnGHIJ = wasm_f32x4_sub(vnGHIJ, vmagic_bias);
78
79 // Compute reduced argument t := x - elements * log(2).
80 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
81 v128_t vt0123 = wasm_f32x4_add(vx0123, wasm_f32x4_mul(vn0123, vminus_ln2_hi));
82 v128_t vt4567 = wasm_f32x4_add(vx4567, wasm_f32x4_mul(vn4567, vminus_ln2_hi));
83 v128_t vt89AB = wasm_f32x4_add(vx89AB, wasm_f32x4_mul(vn89AB, vminus_ln2_hi));
84 v128_t vtCDEF = wasm_f32x4_add(vxCDEF, wasm_f32x4_mul(vnCDEF, vminus_ln2_hi));
85 v128_t vtGHIJ = wasm_f32x4_add(vxGHIJ, wasm_f32x4_mul(vnGHIJ, vminus_ln2_hi));
86
87 vt0123 = wasm_f32x4_add(vt0123, wasm_f32x4_mul(vn0123, vminus_ln2_lo));
88 vt4567 = wasm_f32x4_add(vt4567, wasm_f32x4_mul(vn4567, vminus_ln2_lo));
89 vt89AB = wasm_f32x4_add(vt89AB, wasm_f32x4_mul(vn89AB, vminus_ln2_lo));
90 vtCDEF = wasm_f32x4_add(vtCDEF, wasm_f32x4_mul(vnCDEF, vminus_ln2_lo));
91 vtGHIJ = wasm_f32x4_add(vtGHIJ, wasm_f32x4_mul(vnGHIJ, vminus_ln2_lo));
92
93 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
94 v128_t vp0123 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt0123));
95 v128_t vp4567 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt4567));
96 v128_t vp89AB = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt89AB));
97 v128_t vpCDEF = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vtCDEF));
98 v128_t vpGHIJ = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vtGHIJ));
99
100 vp0123 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp0123, vt0123));
101 vp4567 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp4567, vt4567));
102 vp89AB = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp89AB, vt89AB));
103 vpCDEF = wasm_f32x4_add(vc3, wasm_f32x4_mul(vpCDEF, vtCDEF));
104 vpGHIJ = wasm_f32x4_add(vc3, wasm_f32x4_mul(vpGHIJ, vtGHIJ));
105
106 vp0123 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp0123, vt0123));
107 vp4567 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp4567, vt4567));
108 vp89AB = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp89AB, vt89AB));
109 vpCDEF = wasm_f32x4_add(vc2, wasm_f32x4_mul(vpCDEF, vtCDEF));
110 vpGHIJ = wasm_f32x4_add(vc2, wasm_f32x4_mul(vpGHIJ, vtGHIJ));
111
112 vp0123 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp0123, vt0123));
113 vp4567 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp4567, vt4567));
114 vp89AB = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp89AB, vt89AB));
115 vpCDEF = wasm_f32x4_add(vc1, wasm_f32x4_mul(vpCDEF, vtCDEF));
116 vpGHIJ = wasm_f32x4_add(vc1, wasm_f32x4_mul(vpGHIJ, vtGHIJ));
117
118 // Reconstruct the final f value:
119 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
120 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
121 // = s + (t * s) * p
122 vt0123 = wasm_f32x4_mul(vt0123, vs0123);
123 vt4567 = wasm_f32x4_mul(vt4567, vs4567);
124 vt89AB = wasm_f32x4_mul(vt89AB, vs89AB);
125 vtCDEF = wasm_f32x4_mul(vtCDEF, vsCDEF);
126 vtGHIJ = wasm_f32x4_mul(vtGHIJ, vsGHIJ);
127
128 v128_t vf0123 = wasm_f32x4_add(vs0123, wasm_f32x4_mul(vt0123, vp0123));
129 v128_t vf4567 = wasm_f32x4_add(vs4567, wasm_f32x4_mul(vt4567, vp4567));
130 v128_t vf89AB = wasm_f32x4_add(vs89AB, wasm_f32x4_mul(vt89AB, vp89AB));
131 v128_t vfCDEF = wasm_f32x4_add(vsCDEF, wasm_f32x4_mul(vtCDEF, vpCDEF));
132 v128_t vfGHIJ = wasm_f32x4_add(vsGHIJ, wasm_f32x4_mul(vtGHIJ, vpGHIJ));
133
134 // For inputs below zero cutoff, replace output with +0.0f.
135 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
136 vf0123 = wasm_v128_andnot(vf0123, wasm_f32x4_lt(vx0123, vdenorm_cutoff));
137 vf4567 = wasm_v128_andnot(vf4567, wasm_f32x4_lt(vx4567, vdenorm_cutoff));
138 vf89AB = wasm_v128_andnot(vf89AB, wasm_f32x4_lt(vx89AB, vdenorm_cutoff));
139 vfCDEF = wasm_v128_andnot(vfCDEF, wasm_f32x4_lt(vxCDEF, vdenorm_cutoff));
140 vfGHIJ = wasm_v128_andnot(vfGHIJ, wasm_f32x4_lt(vxGHIJ, vdenorm_cutoff));
141
142 // Store 20 (5x4) outputs at a time.
143 wasm_v128_store(output, vf0123);
144 wasm_v128_store(output + 4, vf4567);
145 wasm_v128_store(output + 8, vf89AB);
146 wasm_v128_store(output + 12, vfCDEF);
147 wasm_v128_store(output + 16, vfGHIJ);
148 output += 20;
149
150 // Accumulate computed exponents.
151 vacc0 = wasm_f32x4_add(vacc0, vf0123);
152 vacc0 = wasm_f32x4_add(vacc0, vf4567);
153 vacc0 = wasm_f32x4_add(vacc0, vf89AB);
154 vacc0 = wasm_f32x4_add(vacc0, vfCDEF);
155 vacc0 = wasm_f32x4_add(vacc0, vfGHIJ);
156 }
157
158 v128_t vacc = vacc0;
159 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
160 // Load 4 inputs at a time.
161 const v128_t vi = wasm_v128_load(input);
162 input += 4;
163
164 // Subtract maximum input x := i - i_max. This implies x <= 0.
165 const v128_t vx = wasm_f32x4_sub(vi, vi_max);
166
167 // Compute reduced argument elements := round(x / log(2)).
168 v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
169
170 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
171 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
172 const v128_t vs = wasm_i32x4_shl(vn, 23);
173
174 // Subtract the large number back to get final elements := round(x / log(2)).
175 vn = wasm_f32x4_sub(vn, vmagic_bias);
176
177 // Compute reduced argument t := x - elements * log(2).
178 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
179 v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
180 vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
181
182 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
183 v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
184 vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
185 vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
186 vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
187
188 // Reconstruct the final f value:
189 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
190 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
191 // = s + (t * s) * p
192 vt = wasm_f32x4_mul(vt, vs);
193 v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
194
195 // For inputs below zero cutoff, replace output with +0.0f.
196 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
197 vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
198
199 // Store 4 outputs at a time.
200 wasm_v128_store(output, vf);
201 output += 4;
202
203 // Accumulate computed exponents.
204 vacc = wasm_f32x4_add(vacc, vf);
205 }
206 vacc = wasm_f32x4_add(vacc, wasm_v32x4_shuffle(vacc, vacc, 2, 3, 2, 3));
207 float vsum = wasm_f32x4_extract_lane(vacc, 0) + wasm_f32x4_extract_lane(vacc, 1);
208 if (elements != 0) {
209 assert(elements >= 1 * sizeof(float));
210 assert(elements <= 3 * sizeof(float));
211 // Load 4 inputs at a time.
212 const v128_t vi = wasm_v128_load(input);
213
214 // Subtract maximum input x := i - i_max. This implies x <= 0.
215 const v128_t vx = wasm_f32x4_sub(vi, vi_max);
216
217 // Compute reduced argument elements := round(x / log(2)).
218 v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
219
220 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
221 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
222 const v128_t vs = wasm_i32x4_shl(vn, 23);
223
224 // Subtract the large number back to get final elements := round(x / log(2)).
225 vn = wasm_f32x4_sub(vn, vmagic_bias);
226
227 // Compute reduced argument t := x - elements * log(2).
228 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
229 v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
230 vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
231
232 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
233 v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
234 vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
235 vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
236 vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
237
238 // Reconstruct the final f value:
239 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
240 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
241 // = s + (t * s) * p
242 vt = wasm_f32x4_mul(vt, vs);
243 v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
244
245 // For inputs below zero cutoff, replace output with +0.0f.
246 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
247 vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
248
249 if (elements & (2 * sizeof(float))) {
250 // Store and accumulate 2 outputs at a time.
251 const float vf0 = wasm_f32x4_extract_lane(vf, 0);
252 output[0] = vf0;
253 vsum += vf0;
254
255 const float vf1 = wasm_f32x4_extract_lane(vf, 1);
256 output[1] = vf1;
257 vsum += vf1;
258
259 vf = wasm_v32x4_shuffle(vf, vf, 2, 3, 2, 3);
260 output += 2;
261 }
262 if (elements & (1 * sizeof(float))) {
263 // Store 1 output at a time.
264 const float vf0 = wasm_f32x4_extract_lane(vf, 0);
265 *output = vf0;
266 vsum += vf0;
267 }
268 }
269 // Reduce 4 elements in the SIMD register
270 *sum = vsum;
271 }
272