• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/wasmsimd-rr2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <wasm_simd128.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16 
17 
xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_rr2_p5_x20(size_t elements,const float * input,const float * max,float * output,float * sum,const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS (1)])18 void xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_rr2_p5_x20(
19     size_t elements,
20     const float* input,
21     const float* max,
22     float* output,
23     float* sum,
24     const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
25 {
26   assert(elements % sizeof(float) == 0);
27 
28   const v128_t vi_max = wasm_v128_load32_splat(max);
29   const v128_t vlog2e = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.log2e);
30   const v128_t vmagic_bias = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.magic_bias);
31   const v128_t vminus_ln2_hi = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.minus_ln2_hi);
32   const v128_t vminus_ln2_lo = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.minus_ln2_lo);
33   const v128_t vc5 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c5);
34   const v128_t vc4 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c4);
35   const v128_t vc3 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c3);
36   const v128_t vc2 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c2);
37   const v128_t vc1 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c1);
38   const v128_t vdenorm_cutoff = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.denorm_cutoff);
39 
40   v128_t vacc0 = wasm_f32x4_const_splat(0.0f);
41   for (; elements >= 20 * sizeof(float); elements -= 20 * sizeof(float)) {
42     // Load 20 (5x4) inputs at a time.
43     const v128_t vi0123 = wasm_v128_load(input);
44     const v128_t vi4567 = wasm_v128_load(input + 4);
45     const v128_t vi89AB = wasm_v128_load(input + 8);
46     const v128_t viCDEF = wasm_v128_load(input + 12);
47     const v128_t viGHIJ = wasm_v128_load(input + 16);
48     input += 20;
49 
50     // Subtract maximum input x := i - i_max. This implies x <= 0.
51     const v128_t vx0123 = wasm_f32x4_sub(vi0123, vi_max);
52     const v128_t vx4567 = wasm_f32x4_sub(vi4567, vi_max);
53     const v128_t vx89AB = wasm_f32x4_sub(vi89AB, vi_max);
54     const v128_t vxCDEF = wasm_f32x4_sub(viCDEF, vi_max);
55     const v128_t vxGHIJ = wasm_f32x4_sub(viGHIJ, vi_max);
56 
57     // Compute reduced argument elements := round(x / log(2)).
58     v128_t vn0123 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx0123, vlog2e));
59     v128_t vn4567 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx4567, vlog2e));
60     v128_t vn89AB = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx89AB, vlog2e));
61     v128_t vnCDEF = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vxCDEF, vlog2e));
62     v128_t vnGHIJ = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vxGHIJ, vlog2e));
63 
64     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
65     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
66     const v128_t vs0123 = wasm_i32x4_shl(vn0123, 23);
67     const v128_t vs4567 = wasm_i32x4_shl(vn4567, 23);
68     const v128_t vs89AB = wasm_i32x4_shl(vn89AB, 23);
69     const v128_t vsCDEF = wasm_i32x4_shl(vnCDEF, 23);
70     const v128_t vsGHIJ = wasm_i32x4_shl(vnGHIJ, 23);
71 
72     // Subtract the large number back to get final elements := round(x / log(2)).
73     vn0123 = wasm_f32x4_sub(vn0123, vmagic_bias);
74     vn4567 = wasm_f32x4_sub(vn4567, vmagic_bias);
75     vn89AB = wasm_f32x4_sub(vn89AB, vmagic_bias);
76     vnCDEF = wasm_f32x4_sub(vnCDEF, vmagic_bias);
77     vnGHIJ = wasm_f32x4_sub(vnGHIJ, vmagic_bias);
78 
79     // Compute reduced argument t := x - elements * log(2).
80     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
81     v128_t vt0123 = wasm_f32x4_add(vx0123, wasm_f32x4_mul(vn0123, vminus_ln2_hi));
82     v128_t vt4567 = wasm_f32x4_add(vx4567, wasm_f32x4_mul(vn4567, vminus_ln2_hi));
83     v128_t vt89AB = wasm_f32x4_add(vx89AB, wasm_f32x4_mul(vn89AB, vminus_ln2_hi));
84     v128_t vtCDEF = wasm_f32x4_add(vxCDEF, wasm_f32x4_mul(vnCDEF, vminus_ln2_hi));
85     v128_t vtGHIJ = wasm_f32x4_add(vxGHIJ, wasm_f32x4_mul(vnGHIJ, vminus_ln2_hi));
86 
87     vt0123 = wasm_f32x4_add(vt0123, wasm_f32x4_mul(vn0123, vminus_ln2_lo));
88     vt4567 = wasm_f32x4_add(vt4567, wasm_f32x4_mul(vn4567, vminus_ln2_lo));
89     vt89AB = wasm_f32x4_add(vt89AB, wasm_f32x4_mul(vn89AB, vminus_ln2_lo));
90     vtCDEF = wasm_f32x4_add(vtCDEF, wasm_f32x4_mul(vnCDEF, vminus_ln2_lo));
91     vtGHIJ = wasm_f32x4_add(vtGHIJ, wasm_f32x4_mul(vnGHIJ, vminus_ln2_lo));
92 
93     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
94     v128_t vp0123 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt0123));
95     v128_t vp4567 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt4567));
96     v128_t vp89AB = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt89AB));
97     v128_t vpCDEF = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vtCDEF));
98     v128_t vpGHIJ = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vtGHIJ));
99 
100     vp0123 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp0123, vt0123));
101     vp4567 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp4567, vt4567));
102     vp89AB = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp89AB, vt89AB));
103     vpCDEF = wasm_f32x4_add(vc3, wasm_f32x4_mul(vpCDEF, vtCDEF));
104     vpGHIJ = wasm_f32x4_add(vc3, wasm_f32x4_mul(vpGHIJ, vtGHIJ));
105 
106     vp0123 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp0123, vt0123));
107     vp4567 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp4567, vt4567));
108     vp89AB = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp89AB, vt89AB));
109     vpCDEF = wasm_f32x4_add(vc2, wasm_f32x4_mul(vpCDEF, vtCDEF));
110     vpGHIJ = wasm_f32x4_add(vc2, wasm_f32x4_mul(vpGHIJ, vtGHIJ));
111 
112     vp0123 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp0123, vt0123));
113     vp4567 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp4567, vt4567));
114     vp89AB = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp89AB, vt89AB));
115     vpCDEF = wasm_f32x4_add(vc1, wasm_f32x4_mul(vpCDEF, vtCDEF));
116     vpGHIJ = wasm_f32x4_add(vc1, wasm_f32x4_mul(vpGHIJ, vtGHIJ));
117 
118     // Reconstruct the final f value:
119     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
120     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
121     //     = s + (t * s) * p
122     vt0123 = wasm_f32x4_mul(vt0123, vs0123);
123     vt4567 = wasm_f32x4_mul(vt4567, vs4567);
124     vt89AB = wasm_f32x4_mul(vt89AB, vs89AB);
125     vtCDEF = wasm_f32x4_mul(vtCDEF, vsCDEF);
126     vtGHIJ = wasm_f32x4_mul(vtGHIJ, vsGHIJ);
127 
128     v128_t vf0123 = wasm_f32x4_add(vs0123, wasm_f32x4_mul(vt0123, vp0123));
129     v128_t vf4567 = wasm_f32x4_add(vs4567, wasm_f32x4_mul(vt4567, vp4567));
130     v128_t vf89AB = wasm_f32x4_add(vs89AB, wasm_f32x4_mul(vt89AB, vp89AB));
131     v128_t vfCDEF = wasm_f32x4_add(vsCDEF, wasm_f32x4_mul(vtCDEF, vpCDEF));
132     v128_t vfGHIJ = wasm_f32x4_add(vsGHIJ, wasm_f32x4_mul(vtGHIJ, vpGHIJ));
133 
134     // For inputs below zero cutoff, replace output with +0.0f.
135     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
136     vf0123 = wasm_v128_andnot(vf0123, wasm_f32x4_lt(vx0123, vdenorm_cutoff));
137     vf4567 = wasm_v128_andnot(vf4567, wasm_f32x4_lt(vx4567, vdenorm_cutoff));
138     vf89AB = wasm_v128_andnot(vf89AB, wasm_f32x4_lt(vx89AB, vdenorm_cutoff));
139     vfCDEF = wasm_v128_andnot(vfCDEF, wasm_f32x4_lt(vxCDEF, vdenorm_cutoff));
140     vfGHIJ = wasm_v128_andnot(vfGHIJ, wasm_f32x4_lt(vxGHIJ, vdenorm_cutoff));
141 
142     // Store 20 (5x4) outputs at a time.
143     wasm_v128_store(output, vf0123);
144     wasm_v128_store(output + 4, vf4567);
145     wasm_v128_store(output + 8, vf89AB);
146     wasm_v128_store(output + 12, vfCDEF);
147     wasm_v128_store(output + 16, vfGHIJ);
148     output += 20;
149 
150     // Accumulate computed exponents.
151     vacc0 = wasm_f32x4_add(vacc0, vf0123);
152     vacc0 = wasm_f32x4_add(vacc0, vf4567);
153     vacc0 = wasm_f32x4_add(vacc0, vf89AB);
154     vacc0 = wasm_f32x4_add(vacc0, vfCDEF);
155     vacc0 = wasm_f32x4_add(vacc0, vfGHIJ);
156   }
157 
158   v128_t vacc = vacc0;
159   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
160     // Load 4 inputs at a time.
161     const v128_t vi = wasm_v128_load(input);
162     input += 4;
163 
164     // Subtract maximum input x := i - i_max. This implies x <= 0.
165     const v128_t vx = wasm_f32x4_sub(vi, vi_max);
166 
167     // Compute reduced argument elements := round(x / log(2)).
168     v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
169 
170     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
171     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
172     const v128_t vs = wasm_i32x4_shl(vn, 23);
173 
174     // Subtract the large number back to get final elements := round(x / log(2)).
175     vn = wasm_f32x4_sub(vn, vmagic_bias);
176 
177     // Compute reduced argument t := x - elements * log(2).
178     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
179     v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
180     vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
181 
182     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
183     v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
184     vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
185     vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
186     vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
187 
188     // Reconstruct the final f value:
189     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
190     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
191     //     = s + (t * s) * p
192     vt = wasm_f32x4_mul(vt, vs);
193     v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
194 
195     // For inputs below zero cutoff, replace output with +0.0f.
196     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
197     vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
198 
199     // Store 4 outputs at a time.
200     wasm_v128_store(output, vf);
201     output += 4;
202 
203     // Accumulate computed exponents.
204     vacc = wasm_f32x4_add(vacc, vf);
205   }
206   vacc = wasm_f32x4_add(vacc, wasm_v32x4_shuffle(vacc, vacc, 2, 3, 2, 3));
207   float vsum = wasm_f32x4_extract_lane(vacc, 0) + wasm_f32x4_extract_lane(vacc, 1);
208   if (elements != 0) {
209     assert(elements >= 1 * sizeof(float));
210     assert(elements <= 3 * sizeof(float));
211     // Load 4 inputs at a time.
212     const v128_t vi = wasm_v128_load(input);
213 
214     // Subtract maximum input x := i - i_max. This implies x <= 0.
215     const v128_t vx = wasm_f32x4_sub(vi, vi_max);
216 
217     // Compute reduced argument elements := round(x / log(2)).
218     v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
219 
220     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
221     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
222     const v128_t vs = wasm_i32x4_shl(vn, 23);
223 
224     // Subtract the large number back to get final elements := round(x / log(2)).
225     vn = wasm_f32x4_sub(vn, vmagic_bias);
226 
227     // Compute reduced argument t := x - elements * log(2).
228     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
229     v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
230     vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
231 
232     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
233     v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
234     vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
235     vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
236     vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
237 
238     // Reconstruct the final f value:
239     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
240     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
241     //     = s + (t * s) * p
242     vt = wasm_f32x4_mul(vt, vs);
243     v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
244 
245     // For inputs below zero cutoff, replace output with +0.0f.
246     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
247     vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
248 
249     if (elements & (2 * sizeof(float))) {
250       // Store and accumulate 2 outputs at a time.
251       const float vf0 = wasm_f32x4_extract_lane(vf, 0);
252       output[0] = vf0;
253       vsum += vf0;
254 
255       const float vf1 = wasm_f32x4_extract_lane(vf, 1);
256       output[1] = vf1;
257       vsum += vf1;
258 
259       vf = wasm_v32x4_shuffle(vf, vf, 2, 3, 2, 3);
260       output += 2;
261     }
262     if (elements & (1 * sizeof(float))) {
263       // Store 1 output at a time.
264       const float vf0 = wasm_f32x4_extract_lane(vf, 0);
265       *output = vf0;
266       vsum += vf0;
267     }
268   }
269   // Reduce 4 elements in the SIMD register
270   *sum = vsum;
271 }
272