• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/wasmsimd-rr2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <wasm_simd128.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16 
17 
xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_rr2_p5_x8_acc2(size_t elements,const float * input,const float * max,float * output,float * sum,const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS (1)])18 void xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_rr2_p5_x8_acc2(
19     size_t elements,
20     const float* input,
21     const float* max,
22     float* output,
23     float* sum,
24     const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
25 {
26   assert(elements % sizeof(float) == 0);
27 
28   const v128_t vi_max = wasm_v128_load32_splat(max);
29   const v128_t vlog2e = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.log2e);
30   const v128_t vmagic_bias = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.magic_bias);
31   const v128_t vminus_ln2_hi = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.minus_ln2_hi);
32   const v128_t vminus_ln2_lo = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.minus_ln2_lo);
33   const v128_t vc5 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c5);
34   const v128_t vc4 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c4);
35   const v128_t vc3 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c3);
36   const v128_t vc2 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c2);
37   const v128_t vc1 = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.c1);
38   const v128_t vdenorm_cutoff = wasm_v128_load64_splat(params->wasmsimd_rr2_p5.denorm_cutoff);
39 
40   v128_t vacc0 = wasm_f32x4_const_splat(0.0f);
41   v128_t vacc1 = vacc0;
42   for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) {
43     // Load 8 (2x4) inputs at a time.
44     const v128_t vi0123 = wasm_v128_load(input);
45     const v128_t vi4567 = wasm_v128_load(input + 4);
46     input += 8;
47 
48     // Subtract maximum input x := i - i_max. This implies x <= 0.
49     const v128_t vx0123 = wasm_f32x4_sub(vi0123, vi_max);
50     const v128_t vx4567 = wasm_f32x4_sub(vi4567, vi_max);
51 
52     // Compute reduced argument elements := round(x / log(2)).
53     v128_t vn0123 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx0123, vlog2e));
54     v128_t vn4567 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx4567, vlog2e));
55 
56     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
57     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
58     const v128_t vs0123 = wasm_i32x4_shl(vn0123, 23);
59     const v128_t vs4567 = wasm_i32x4_shl(vn4567, 23);
60 
61     // Subtract the large number back to get final elements := round(x / log(2)).
62     vn0123 = wasm_f32x4_sub(vn0123, vmagic_bias);
63     vn4567 = wasm_f32x4_sub(vn4567, vmagic_bias);
64 
65     // Compute reduced argument t := x - elements * log(2).
66     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
67     v128_t vt0123 = wasm_f32x4_add(vx0123, wasm_f32x4_mul(vn0123, vminus_ln2_hi));
68     v128_t vt4567 = wasm_f32x4_add(vx4567, wasm_f32x4_mul(vn4567, vminus_ln2_hi));
69 
70     vt0123 = wasm_f32x4_add(vt0123, wasm_f32x4_mul(vn0123, vminus_ln2_lo));
71     vt4567 = wasm_f32x4_add(vt4567, wasm_f32x4_mul(vn4567, vminus_ln2_lo));
72 
73     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
74     v128_t vp0123 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt0123));
75     v128_t vp4567 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt4567));
76 
77     vp0123 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp0123, vt0123));
78     vp4567 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp4567, vt4567));
79 
80     vp0123 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp0123, vt0123));
81     vp4567 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp4567, vt4567));
82 
83     vp0123 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp0123, vt0123));
84     vp4567 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp4567, vt4567));
85 
86     // Reconstruct the final f value:
87     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
88     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
89     //     = s + (t * s) * p
90     vt0123 = wasm_f32x4_mul(vt0123, vs0123);
91     vt4567 = wasm_f32x4_mul(vt4567, vs4567);
92 
93     v128_t vf0123 = wasm_f32x4_add(vs0123, wasm_f32x4_mul(vt0123, vp0123));
94     v128_t vf4567 = wasm_f32x4_add(vs4567, wasm_f32x4_mul(vt4567, vp4567));
95 
96     // For inputs below zero cutoff, replace output with +0.0f.
97     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
98     vf0123 = wasm_v128_andnot(vf0123, wasm_f32x4_lt(vx0123, vdenorm_cutoff));
99     vf4567 = wasm_v128_andnot(vf4567, wasm_f32x4_lt(vx4567, vdenorm_cutoff));
100 
101     // Store 8 (2x4) outputs at a time.
102     wasm_v128_store(output, vf0123);
103     wasm_v128_store(output + 4, vf4567);
104     output += 8;
105 
106     // Accumulate computed exponents.
107     vacc0 = wasm_f32x4_add(vacc0, vf0123);
108     vacc0 = wasm_f32x4_add(vacc0, vf4567);
109   }
110   // Add up all accumulators to vacc0
111   vacc0 = wasm_f32x4_add(vacc0, vacc1);
112 
113   v128_t vacc = vacc0;
114   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
115     // Load 4 inputs at a time.
116     const v128_t vi = wasm_v128_load(input);
117     input += 4;
118 
119     // Subtract maximum input x := i - i_max. This implies x <= 0.
120     const v128_t vx = wasm_f32x4_sub(vi, vi_max);
121 
122     // Compute reduced argument elements := round(x / log(2)).
123     v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
124 
125     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
126     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
127     const v128_t vs = wasm_i32x4_shl(vn, 23);
128 
129     // Subtract the large number back to get final elements := round(x / log(2)).
130     vn = wasm_f32x4_sub(vn, vmagic_bias);
131 
132     // Compute reduced argument t := x - elements * log(2).
133     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
134     v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
135     vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
136 
137     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
138     v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
139     vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
140     vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
141     vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
142 
143     // Reconstruct the final f value:
144     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
145     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
146     //     = s + (t * s) * p
147     vt = wasm_f32x4_mul(vt, vs);
148     v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
149 
150     // For inputs below zero cutoff, replace output with +0.0f.
151     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
152     vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
153 
154     // Store 4 outputs at a time.
155     wasm_v128_store(output, vf);
156     output += 4;
157 
158     // Accumulate computed exponents.
159     vacc = wasm_f32x4_add(vacc, vf);
160   }
161   vacc = wasm_f32x4_add(vacc, wasm_v32x4_shuffle(vacc, vacc, 2, 3, 2, 3));
162   float vsum = wasm_f32x4_extract_lane(vacc, 0) + wasm_f32x4_extract_lane(vacc, 1);
163   if (elements != 0) {
164     assert(elements >= 1 * sizeof(float));
165     assert(elements <= 3 * sizeof(float));
166     // Load 4 inputs at a time.
167     const v128_t vi = wasm_v128_load(input);
168 
169     // Subtract maximum input x := i - i_max. This implies x <= 0.
170     const v128_t vx = wasm_f32x4_sub(vi, vi_max);
171 
172     // Compute reduced argument elements := round(x / log(2)).
173     v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
174 
175     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
176     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
177     const v128_t vs = wasm_i32x4_shl(vn, 23);
178 
179     // Subtract the large number back to get final elements := round(x / log(2)).
180     vn = wasm_f32x4_sub(vn, vmagic_bias);
181 
182     // Compute reduced argument t := x - elements * log(2).
183     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
184     v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
185     vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
186 
187     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
188     v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
189     vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
190     vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
191     vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
192 
193     // Reconstruct the final f value:
194     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
195     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
196     //     = s + (t * s) * p
197     vt = wasm_f32x4_mul(vt, vs);
198     v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
199 
200     // For inputs below zero cutoff, replace output with +0.0f.
201     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
202     vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
203 
204     if (elements & (2 * sizeof(float))) {
205       // Store and accumulate 2 outputs at a time.
206       const float vf0 = wasm_f32x4_extract_lane(vf, 0);
207       output[0] = vf0;
208       vsum += vf0;
209 
210       const float vf1 = wasm_f32x4_extract_lane(vf, 1);
211       output[1] = vf1;
212       vsum += vf1;
213 
214       vf = wasm_v32x4_shuffle(vf, vf, 2, 3, 2, 3);
215       output += 2;
216     }
217     if (elements & (1 * sizeof(float))) {
218       // Store 1 output at a time.
219       const float vf0 = wasm_f32x4_extract_lane(vf, 0);
220       *output = vf0;
221       vsum += vf0;
222     }
223   }
224   // Reduce 4 elements in the SIMD register
225   *sum = vsum;
226 }
227