• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1// Copyright 2019 Google LLC
2//
3// This source code is licensed under the BSD-style license found in the
4// LICENSE file in the root directory of this source tree.
5
6$assert BATCH_TILE % 4 == 0
7$assert BATCH_TILE >= 4
8$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
9$assert OP in ["ADD", "DIV", "RDIV", "MAX", "MIN", "MUL", "SUB", "RSUB", "SQRDIFF"]
10$assert ACTIVATION in ["LINEAR", "MINMAX"]
11#include <assert.h>
12
13#include <xmmintrin.h>
14
15#include <xnnpack/common.h>
16#include <xnnpack/intrinsics-polyfill.h>
17#include <xnnpack/vbinary.h>
18
19
20$_MM_OP_PS = {
21$  "ADD": lambda x: "_mm_add_ps(%s, vb)" % x,
22$  "DIV": lambda x: "_mm_div_ps(%s, vb)" % x,
23$  "RDIV": lambda x: "_mm_div_ps(vb, %s)" % x,
24$  "MAX": lambda x: "_mm_max_ps(%s, vb)" % x,
25$  "MIN": lambda x: "_mm_min_ps(%s, vb)" % x,
26$  "MUL": lambda x: "_mm_mul_ps(%s, vb)" % x,
27$  "SUB": lambda x: "_mm_sub_ps(%s, vb)" % x,
28$  "RSUB": lambda x: "_mm_sub_ps(vb, %s)" % x,
29$  "SQRDIFF": lambda x: "_mm_sub_ps(%s, vb)" % x,
30$}[OP]
31$SUFFIX = {"LINEAR": "", "MINMAX": "_minmax"}[ACTIVATION]
32$PARAMS = {"LINEAR": "xnn_f32_default_params", "MINMAX": "xnn_f32_minmax_params"}[ACTIVATION]
33void xnn_f32_v${OP.lower()}c${SUFFIX}_ukernel__sse_x${BATCH_TILE}(
34    size_t n,
35    const float* a,
36    const float* b,
37    float* y,
38    const union ${PARAMS} params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
39{
40  assert(n != 0);
41  assert(n % sizeof(float) == 0);
42  assert(a != NULL);
43  assert(b != NULL);
44  assert(y != NULL);
45
46  $if ACTIVATION == "MINMAX":
47    const __m128 vy_min = _mm_load_ps(params->sse.min);
48    const __m128 vy_max = _mm_load_ps(params->sse.max);
49
50  const __m128 vb = _mm_load1_ps(b);
51  for (; n >= ${BATCH_TILE} * sizeof(float); n -= ${BATCH_TILE} * sizeof(float)) {
52    const __m128 va${ABC[0:4]} = _mm_loadu_ps(a);
53    $for N in range(4, BATCH_TILE, 4):
54      const __m128 va${ABC[N:N+4]} = _mm_loadu_ps(a + ${N});
55    a += ${BATCH_TILE};
56
57    $for N in range(0, BATCH_TILE, 4):
58      __m128 vy${ABC[N:N+4]} = ${_MM_OP_PS("va" + ABC[N:N+4])};
59
60    $if OP == "SQRDIFF":
61      $for N in range(0, BATCH_TILE, 4):
62        vy${ABC[N:N+4]} = _mm_mul_ps(vy${ABC[N:N+4]}, vy${ABC[N:N+4]});
63
64    $if ACTIVATION == "MINMAX":
65      $for N in range(0, BATCH_TILE, 4):
66        vy${ABC[N:N+4]} = _mm_max_ps(vy${ABC[N:N+4]}, vy_min);
67
68      $for N in range(0, BATCH_TILE, 4):
69        vy${ABC[N:N+4]} = _mm_min_ps(vy${ABC[N:N+4]}, vy_max);
70
71    _mm_storeu_ps(y, vy${ABC[0:4]});
72    $for N in range(4, BATCH_TILE, 4):
73      _mm_storeu_ps(y + ${N}, vy${ABC[N:N+4]});
74    y += ${BATCH_TILE};
75  }
76  $if BATCH_TILE > 4:
77    for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
78      const __m128 va0123 = _mm_loadu_ps(a);
79      a += 4;
80
81      __m128 vy0123 = ${_MM_OP_PS("va0123")};
82      $if OP == "SQRDIFF":
83        vy0123 = _mm_mul_ps(vy0123, vy0123);
84      $if ACTIVATION == "MINMAX":
85        vy0123 = _mm_max_ps(vy0123, vy_min);
86        vy0123 = _mm_min_ps(vy0123, vy_max);
87      _mm_storeu_ps(y, vy0123);
88      y += 4;
89    }
90  if XNN_UNLIKELY(n != 0) {
91    const __m128 va0123 = _mm_loadu_ps(a);
92
93    __m128 vy0123 = ${_MM_OP_PS("va0123")};
94    $if OP == "SQRDIFF":
95      vy0123 = _mm_mul_ps(vy0123, vy0123);
96    $if ACTIVATION == "MINMAX":
97      vy0123 = _mm_max_ps(vy0123, vy_min);
98      vy0123 = _mm_min_ps(vy0123, vy_max);
99    if (n & (2 * sizeof(float))) {
100      _mm_storel_pi((__m64*) y, vy0123);
101      vy0123 = _mm_movehl_ps(vy0123, vy0123);
102      y += 2;
103    }
104    if (n & (1 * sizeof(float))) {
105      _mm_store_ss(y, vy0123);
106    }
107  }
108}
109