• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-vscaleexpminusmax/avx2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <immintrin.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/vscaleexpminusmax.h>
16 
17 
18 static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
19 
xnn_f32_vscaleexpminusmax_ukernel__avx2_p5_x48(size_t elements,const float * input,float * output,float scale,float max)20 void xnn_f32_vscaleexpminusmax_ukernel__avx2_p5_x48(
21     size_t elements,
22     const float* input,
23     float* output,
24     float scale,
25     float max)
26 {
27   assert(elements % sizeof(float) == 0);
28 
29   const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
30   // The smallest x for which expf(x) is normalized.
31   const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f);
32   const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
33   const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f);
34   const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f);
35 
36   const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
37   const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
38   const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
39   const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
40   const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
41 
42   const __m256 vscale = _mm256_set1_ps(scale);
43   const __m256 vi_max = _mm256_set1_ps(max);
44 
45   for (; elements >= 48 * sizeof(float); elements -= 48 * sizeof(float)) {
46     // Load 48 (6x8) inputs at a time.
47     const __m256 vi0 = _mm256_loadu_ps(input);
48     const __m256 vi1 = _mm256_loadu_ps(input + 8);
49     const __m256 vi2 = _mm256_loadu_ps(input + 16);
50     const __m256 vi3 = _mm256_loadu_ps(input + 24);
51     const __m256 vi4 = _mm256_loadu_ps(input + 32);
52     const __m256 vi5 = _mm256_loadu_ps(input + 40);
53     input += 48;
54 
55     // Subtract maximum input x := i - i_max. This implies x <= 0.
56     const __m256 vx0 = _mm256_sub_ps(vi0, vi_max);
57     const __m256 vx1 = _mm256_sub_ps(vi1, vi_max);
58     const __m256 vx2 = _mm256_sub_ps(vi2, vi_max);
59     const __m256 vx3 = _mm256_sub_ps(vi3, vi_max);
60     const __m256 vx4 = _mm256_sub_ps(vi4, vi_max);
61     const __m256 vx5 = _mm256_sub_ps(vi5, vi_max);
62 
63     // Compute reduced argument elements := round(x / log(2)).
64     __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias);
65     __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias);
66     __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias);
67     __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias);
68     __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias);
69     __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias);
70 
71     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
72     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
73     const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
74     const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
75     const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
76     const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
77     const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23));
78     const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23));
79 
80     // Subtract the large number back to get final elements := round(x / log(2)).
81     vn0 = _mm256_sub_ps(vn0, vmagic_bias);
82     vn1 = _mm256_sub_ps(vn1, vmagic_bias);
83     vn2 = _mm256_sub_ps(vn2, vmagic_bias);
84     vn3 = _mm256_sub_ps(vn3, vmagic_bias);
85     vn4 = _mm256_sub_ps(vn4, vmagic_bias);
86     vn5 = _mm256_sub_ps(vn5, vmagic_bias);
87 
88     // Compute reduced argument t := x - elements * log(2).
89     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
90     __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0);
91     __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1);
92     __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2);
93     __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3);
94     __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4);
95     __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5);
96 
97     vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0);
98     vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1);
99     vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2);
100     vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3);
101     vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4);
102     vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5);
103 
104     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
105     __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
106     __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
107     __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
108     __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
109     __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4);
110     __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4);
111 
112     vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
113     vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
114     vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
115     vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
116     vp4 = _mm256_fmadd_ps(vp4, vt4, vc3);
117     vp5 = _mm256_fmadd_ps(vp5, vt5, vc3);
118 
119     vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
120     vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
121     vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
122     vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
123     vp4 = _mm256_fmadd_ps(vp4, vt4, vc2);
124     vp5 = _mm256_fmadd_ps(vp5, vt5, vc2);
125 
126     vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
127     vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
128     vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
129     vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
130     vp4 = _mm256_fmadd_ps(vp4, vt4, vc1);
131     vp5 = _mm256_fmadd_ps(vp5, vt5, vc1);
132 
133     // Reconstruct the final f value:
134     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
135     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
136     //     = s + (t * s) * p
137     vt0 = _mm256_mul_ps(vt0, vs0);
138     vt1 = _mm256_mul_ps(vt1, vs1);
139     vt2 = _mm256_mul_ps(vt2, vs2);
140     vt3 = _mm256_mul_ps(vt3, vs3);
141     vt4 = _mm256_mul_ps(vt4, vs4);
142     vt5 = _mm256_mul_ps(vt5, vs5);
143 
144     __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0);
145     __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1);
146     __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2);
147     __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3);
148     __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4);
149     __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5);
150 
151     // For inputs below zero cutoff, replace output with +0.0f.
152     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
153     vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0);
154     vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1);
155     vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2);
156     vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3);
157     vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4);
158     vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5);
159 
160     // Multiply by scale.
161     vf0 = _mm256_mul_ps(vf0, vscale);
162     vf1 = _mm256_mul_ps(vf1, vscale);
163     vf2 = _mm256_mul_ps(vf2, vscale);
164     vf3 = _mm256_mul_ps(vf3, vscale);
165     vf4 = _mm256_mul_ps(vf4, vscale);
166     vf5 = _mm256_mul_ps(vf5, vscale);
167 
168     // Store 48 (6x8) outputs at a time.
169     _mm256_storeu_ps(output, vf0);
170     _mm256_storeu_ps(output + 8, vf1);
171     _mm256_storeu_ps(output + 16, vf2);
172     _mm256_storeu_ps(output + 24, vf3);
173     _mm256_storeu_ps(output + 32, vf4);
174     _mm256_storeu_ps(output + 40, vf5);
175     output += 48;
176   }
177   for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) {
178     // Load 8 inputs at a time.
179     const __m256 vi = _mm256_loadu_ps(input);
180     input += 8;
181 
182     // Subtract maximum input x := i - i_max. This implies x <= 0.
183     const __m256 vx = _mm256_sub_ps(vi, vi_max);
184 
185     // Compute reduced argument elements := round(x / log(2)).
186     __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);
187 
188     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
189     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
190     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
191 
192     // Subtract the large number back to get final elements := round(x / log(2)).
193     vn = _mm256_sub_ps(vn, vmagic_bias);
194 
195     // Compute reduced argument t := x - elements * log(2).
196     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
197     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
198     vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
199 
200     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
201     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
202     vp = _mm256_fmadd_ps(vp, vt, vc3);
203     vp = _mm256_fmadd_ps(vp, vt, vc2);
204     vp = _mm256_fmadd_ps(vp, vt, vc1);
205 
206     // Reconstruct the final f value:
207     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
208     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
209     //     = s + (t * s) * p
210     vt = _mm256_mul_ps(vt, vs);
211     __m256 vf = _mm256_fmadd_ps(vt, vp, vs);
212 
213     // For inputs below zero cutoff, replace output with +0.0f.
214     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
215     vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf);
216 
217     // Multiply by scale.
218     vf = _mm256_mul_ps(vf, vscale);
219 
220     // Store 64 (8x8) outputs at a time.
221     _mm256_storeu_ps(output, vf);
222     output += 8;
223   }
224   if (elements != 0) {
225     assert(elements >= 1 * sizeof(float));
226     assert(elements <= 7 * sizeof(float));
227     const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - elements));
228 
229     // Load up to 7 inputs at a time.
230     const __m256 vi = _mm256_maskload_ps(input, vmask);
231 
232     // Subtract maximum input x := i - i_max. This implies x <= 0.
233     const __m256 vx = _mm256_sub_ps(vi, vi_max);
234 
235     // Compute reduced argument elements := round(x / log(2)).
236     __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);
237 
238     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
239     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
240     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
241 
242     // Subtract the large number back to get final elements := round(x / log(2)).
243     vn = _mm256_sub_ps(vn, vmagic_bias);
244 
245     // Compute reduced argument t := x - elements * log(2).
246     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
247     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
248     vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
249 
250     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
251     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
252     vp = _mm256_fmadd_ps(vp, vt, vc3);
253     vp = _mm256_fmadd_ps(vp, vt, vc2);
254     vp = _mm256_fmadd_ps(vp, vt, vc1);
255 
256     // Reconstruct the final f value:
257     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
258     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
259     //     = s + (t * s) * p
260     vt = _mm256_mul_ps(vt, vs);
261     __m256 vf = _mm256_fmadd_ps(vt, vp, vs);
262 
263     // For inputs below zero cutoff, replace output with +0.0f.
264     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
265     vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf);
266 
267     // Multiply by scale.
268     vf = _mm256_mul_ps(vf, vscale);
269 
270     // Store up to 7 outputs at a time.
271     _mm256_maskstore_ps(output, vmask, vf);
272   }
273 }
274