1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "absl/synchronization/mutex.h"
16
17 #ifdef _WIN32
18 #include <windows.h>
19 #ifdef ERROR
20 #undef ERROR
21 #endif
22 #else
23 #include <fcntl.h>
24 #include <pthread.h>
25 #include <sched.h>
26 #include <sys/time.h>
27 #endif
28
29 #include <assert.h>
30 #include <errno.h>
31 #include <stdio.h>
32 #include <stdlib.h>
33 #include <string.h>
34 #include <time.h>
35
36 #include <algorithm>
37 #include <atomic>
38 #include <cinttypes>
39 #include <thread> // NOLINT(build/c++11)
40
41 #include "absl/base/attributes.h"
42 #include "absl/base/call_once.h"
43 #include "absl/base/config.h"
44 #include "absl/base/dynamic_annotations.h"
45 #include "absl/base/internal/atomic_hook.h"
46 #include "absl/base/internal/cycleclock.h"
47 #include "absl/base/internal/hide_ptr.h"
48 #include "absl/base/internal/low_level_alloc.h"
49 #include "absl/base/internal/raw_logging.h"
50 #include "absl/base/internal/spinlock.h"
51 #include "absl/base/internal/sysinfo.h"
52 #include "absl/base/internal/thread_identity.h"
53 #include "absl/base/internal/tsan_mutex_interface.h"
54 #include "absl/base/port.h"
55 #include "absl/debugging/stacktrace.h"
56 #include "absl/debugging/symbolize.h"
57 #include "absl/synchronization/internal/graphcycles.h"
58 #include "absl/synchronization/internal/per_thread_sem.h"
59 #include "absl/time/time.h"
60
61 using absl::base_internal::CurrentThreadIdentityIfPresent;
62 using absl::base_internal::PerThreadSynch;
63 using absl::base_internal::SchedulingGuard;
64 using absl::base_internal::ThreadIdentity;
65 using absl::synchronization_internal::GetOrCreateCurrentThreadIdentity;
66 using absl::synchronization_internal::GraphCycles;
67 using absl::synchronization_internal::GraphId;
68 using absl::synchronization_internal::InvalidGraphId;
69 using absl::synchronization_internal::KernelTimeout;
70 using absl::synchronization_internal::PerThreadSem;
71
72 extern "C" {
ABSL_INTERNAL_C_SYMBOL(AbslInternalMutexYield)73 ABSL_ATTRIBUTE_WEAK void ABSL_INTERNAL_C_SYMBOL(AbslInternalMutexYield)() {
74 std::this_thread::yield();
75 }
76 } // extern "C"
77
78 namespace absl {
79 ABSL_NAMESPACE_BEGIN
80
81 namespace {
82
83 #if defined(ABSL_HAVE_THREAD_SANITIZER)
84 constexpr OnDeadlockCycle kDeadlockDetectionDefault = OnDeadlockCycle::kIgnore;
85 #else
86 constexpr OnDeadlockCycle kDeadlockDetectionDefault = OnDeadlockCycle::kAbort;
87 #endif
88
89 ABSL_CONST_INIT std::atomic<OnDeadlockCycle> synch_deadlock_detection(
90 kDeadlockDetectionDefault);
91 ABSL_CONST_INIT std::atomic<bool> synch_check_invariants(false);
92
93 ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES
94 absl::base_internal::AtomicHook<void (*)(int64_t wait_cycles)>
95 submit_profile_data;
96 ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES absl::base_internal::AtomicHook<void (*)(
97 const char *msg, const void *obj, int64_t wait_cycles)>
98 mutex_tracer;
99 ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES
100 absl::base_internal::AtomicHook<void (*)(const char *msg, const void *cv)>
101 cond_var_tracer;
102 ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES absl::base_internal::AtomicHook<
103 bool (*)(const void *pc, char *out, int out_size)>
104 symbolizer(absl::Symbolize);
105
106 } // namespace
107
108 static inline bool EvalConditionAnnotated(const Condition *cond, Mutex *mu,
109 bool locking, bool trylock,
110 bool read_lock);
111
RegisterMutexProfiler(void (* fn)(int64_t wait_cycles))112 void RegisterMutexProfiler(void (*fn)(int64_t wait_cycles)) {
113 submit_profile_data.Store(fn);
114 }
115
RegisterMutexTracer(void (* fn)(const char * msg,const void * obj,int64_t wait_cycles))116 void RegisterMutexTracer(void (*fn)(const char *msg, const void *obj,
117 int64_t wait_cycles)) {
118 mutex_tracer.Store(fn);
119 }
120
RegisterCondVarTracer(void (* fn)(const char * msg,const void * cv))121 void RegisterCondVarTracer(void (*fn)(const char *msg, const void *cv)) {
122 cond_var_tracer.Store(fn);
123 }
124
RegisterSymbolizer(bool (* fn)(const void * pc,char * out,int out_size))125 void RegisterSymbolizer(bool (*fn)(const void *pc, char *out, int out_size)) {
126 symbolizer.Store(fn);
127 }
128
129 namespace {
130 // Represents the strategy for spin and yield.
131 // See the comment in GetMutexGlobals() for more information.
132 enum DelayMode { AGGRESSIVE, GENTLE };
133
134 struct ABSL_CACHELINE_ALIGNED MutexGlobals {
135 absl::once_flag once;
136 int spinloop_iterations = 0;
137 int32_t mutex_sleep_limit[2] = {};
138 };
139
GetMutexGlobals()140 const MutexGlobals &GetMutexGlobals() {
141 ABSL_CONST_INIT static MutexGlobals data;
142 absl::base_internal::LowLevelCallOnce(&data.once, [&]() {
143 const int num_cpus = absl::base_internal::NumCPUs();
144 data.spinloop_iterations = num_cpus > 1 ? 1500 : 0;
145 // If this a uniprocessor, only yield/sleep. Otherwise, if the mode is
146 // aggressive then spin many times before yielding. If the mode is
147 // gentle then spin only a few times before yielding. Aggressive spinning
148 // is used to ensure that an Unlock() call, which must get the spin lock
149 // for any thread to make progress gets it without undue delay.
150 if (num_cpus > 1) {
151 data.mutex_sleep_limit[AGGRESSIVE] = 5000;
152 data.mutex_sleep_limit[GENTLE] = 250;
153 } else {
154 data.mutex_sleep_limit[AGGRESSIVE] = 0;
155 data.mutex_sleep_limit[GENTLE] = 0;
156 }
157 });
158 return data;
159 }
160 } // namespace
161
162 namespace synchronization_internal {
163 // Returns the Mutex delay on iteration `c` depending on the given `mode`.
164 // The returned value should be used as `c` for the next call to `MutexDelay`.
MutexDelay(int32_t c,int mode)165 int MutexDelay(int32_t c, int mode) {
166 const int32_t limit = GetMutexGlobals().mutex_sleep_limit[mode];
167 if (c < limit) {
168 // Spin.
169 c++;
170 } else {
171 SchedulingGuard::ScopedEnable enable_rescheduling;
172 ABSL_TSAN_MUTEX_PRE_DIVERT(nullptr, 0);
173 if (c == limit) {
174 // Yield once.
175 ABSL_INTERNAL_C_SYMBOL(AbslInternalMutexYield)();
176 c++;
177 } else {
178 // Then wait.
179 absl::SleepFor(absl::Microseconds(10));
180 c = 0;
181 }
182 ABSL_TSAN_MUTEX_POST_DIVERT(nullptr, 0);
183 }
184 return c;
185 }
186 } // namespace synchronization_internal
187
188 // --------------------------Generic atomic ops
189 // Ensure that "(*pv & bits) == bits" by doing an atomic update of "*pv" to
190 // "*pv | bits" if necessary. Wait until (*pv & wait_until_clear)==0
191 // before making any change.
192 // This is used to set flags in mutex and condition variable words.
AtomicSetBits(std::atomic<intptr_t> * pv,intptr_t bits,intptr_t wait_until_clear)193 static void AtomicSetBits(std::atomic<intptr_t>* pv, intptr_t bits,
194 intptr_t wait_until_clear) {
195 intptr_t v;
196 do {
197 v = pv->load(std::memory_order_relaxed);
198 } while ((v & bits) != bits &&
199 ((v & wait_until_clear) != 0 ||
200 !pv->compare_exchange_weak(v, v | bits,
201 std::memory_order_release,
202 std::memory_order_relaxed)));
203 }
204
205 // Ensure that "(*pv & bits) == 0" by doing an atomic update of "*pv" to
206 // "*pv & ~bits" if necessary. Wait until (*pv & wait_until_clear)==0
207 // before making any change.
208 // This is used to unset flags in mutex and condition variable words.
AtomicClearBits(std::atomic<intptr_t> * pv,intptr_t bits,intptr_t wait_until_clear)209 static void AtomicClearBits(std::atomic<intptr_t>* pv, intptr_t bits,
210 intptr_t wait_until_clear) {
211 intptr_t v;
212 do {
213 v = pv->load(std::memory_order_relaxed);
214 } while ((v & bits) != 0 &&
215 ((v & wait_until_clear) != 0 ||
216 !pv->compare_exchange_weak(v, v & ~bits,
217 std::memory_order_release,
218 std::memory_order_relaxed)));
219 }
220
221 //------------------------------------------------------------------
222
223 // Data for doing deadlock detection.
224 ABSL_CONST_INIT static absl::base_internal::SpinLock deadlock_graph_mu(
225 absl::kConstInit, base_internal::SCHEDULE_KERNEL_ONLY);
226
227 // Graph used to detect deadlocks.
228 ABSL_CONST_INIT static GraphCycles *deadlock_graph
229 ABSL_GUARDED_BY(deadlock_graph_mu) ABSL_PT_GUARDED_BY(deadlock_graph_mu);
230
231 //------------------------------------------------------------------
232 // An event mechanism for debugging mutex use.
233 // It also allows mutexes to be given names for those who can't handle
234 // addresses, and instead like to give their data structures names like
235 // "Henry", "Fido", or "Rupert IV, King of Yondavia".
236
237 namespace { // to prevent name pollution
238 enum { // Mutex and CondVar events passed as "ev" to PostSynchEvent
239 // Mutex events
240 SYNCH_EV_TRYLOCK_SUCCESS,
241 SYNCH_EV_TRYLOCK_FAILED,
242 SYNCH_EV_READERTRYLOCK_SUCCESS,
243 SYNCH_EV_READERTRYLOCK_FAILED,
244 SYNCH_EV_LOCK,
245 SYNCH_EV_LOCK_RETURNING,
246 SYNCH_EV_READERLOCK,
247 SYNCH_EV_READERLOCK_RETURNING,
248 SYNCH_EV_UNLOCK,
249 SYNCH_EV_READERUNLOCK,
250
251 // CondVar events
252 SYNCH_EV_WAIT,
253 SYNCH_EV_WAIT_RETURNING,
254 SYNCH_EV_SIGNAL,
255 SYNCH_EV_SIGNALALL,
256 };
257
258 enum { // Event flags
259 SYNCH_F_R = 0x01, // reader event
260 SYNCH_F_LCK = 0x02, // PostSynchEvent called with mutex held
261 SYNCH_F_TRY = 0x04, // TryLock or ReaderTryLock
262 SYNCH_F_UNLOCK = 0x08, // Unlock or ReaderUnlock
263
264 SYNCH_F_LCK_W = SYNCH_F_LCK,
265 SYNCH_F_LCK_R = SYNCH_F_LCK | SYNCH_F_R,
266 };
267 } // anonymous namespace
268
269 // Properties of the events.
270 static const struct {
271 int flags;
272 const char *msg;
273 } event_properties[] = {
274 {SYNCH_F_LCK_W | SYNCH_F_TRY, "TryLock succeeded "},
275 {0, "TryLock failed "},
276 {SYNCH_F_LCK_R | SYNCH_F_TRY, "ReaderTryLock succeeded "},
277 {0, "ReaderTryLock failed "},
278 {0, "Lock blocking "},
279 {SYNCH_F_LCK_W, "Lock returning "},
280 {0, "ReaderLock blocking "},
281 {SYNCH_F_LCK_R, "ReaderLock returning "},
282 {SYNCH_F_LCK_W | SYNCH_F_UNLOCK, "Unlock "},
283 {SYNCH_F_LCK_R | SYNCH_F_UNLOCK, "ReaderUnlock "},
284 {0, "Wait on "},
285 {0, "Wait unblocked "},
286 {0, "Signal on "},
287 {0, "SignalAll on "},
288 };
289
290 ABSL_CONST_INIT static absl::base_internal::SpinLock synch_event_mu(
291 absl::kConstInit, base_internal::SCHEDULE_KERNEL_ONLY);
292
293 // Hash table size; should be prime > 2.
294 // Can't be too small, as it's used for deadlock detection information.
295 static constexpr uint32_t kNSynchEvent = 1031;
296
297 static struct SynchEvent { // this is a trivial hash table for the events
298 // struct is freed when refcount reaches 0
299 int refcount ABSL_GUARDED_BY(synch_event_mu);
300
301 // buckets have linear, 0-terminated chains
302 SynchEvent *next ABSL_GUARDED_BY(synch_event_mu);
303
304 // Constant after initialization
305 uintptr_t masked_addr; // object at this address is called "name"
306
307 // No explicit synchronization used. Instead we assume that the
308 // client who enables/disables invariants/logging on a Mutex does so
309 // while the Mutex is not being concurrently accessed by others.
310 void (*invariant)(void *arg); // called on each event
311 void *arg; // first arg to (*invariant)()
312 bool log; // logging turned on
313
314 // Constant after initialization
315 char name[1]; // actually longer---NUL-terminated string
316 } * synch_event[kNSynchEvent] ABSL_GUARDED_BY(synch_event_mu);
317
318 // Ensure that the object at "addr" has a SynchEvent struct associated with it,
319 // set "bits" in the word there (waiting until lockbit is clear before doing
320 // so), and return a refcounted reference that will remain valid until
321 // UnrefSynchEvent() is called. If a new SynchEvent is allocated,
322 // the string name is copied into it.
323 // When used with a mutex, the caller should also ensure that kMuEvent
324 // is set in the mutex word, and similarly for condition variables and kCVEvent.
EnsureSynchEvent(std::atomic<intptr_t> * addr,const char * name,intptr_t bits,intptr_t lockbit)325 static SynchEvent *EnsureSynchEvent(std::atomic<intptr_t> *addr,
326 const char *name, intptr_t bits,
327 intptr_t lockbit) {
328 uint32_t h = reinterpret_cast<intptr_t>(addr) % kNSynchEvent;
329 SynchEvent *e;
330 // first look for existing SynchEvent struct..
331 synch_event_mu.Lock();
332 for (e = synch_event[h];
333 e != nullptr && e->masked_addr != base_internal::HidePtr(addr);
334 e = e->next) {
335 }
336 if (e == nullptr) { // no SynchEvent struct found; make one.
337 if (name == nullptr) {
338 name = "";
339 }
340 size_t l = strlen(name);
341 e = reinterpret_cast<SynchEvent *>(
342 base_internal::LowLevelAlloc::Alloc(sizeof(*e) + l));
343 e->refcount = 2; // one for return value, one for linked list
344 e->masked_addr = base_internal::HidePtr(addr);
345 e->invariant = nullptr;
346 e->arg = nullptr;
347 e->log = false;
348 strcpy(e->name, name); // NOLINT(runtime/printf)
349 e->next = synch_event[h];
350 AtomicSetBits(addr, bits, lockbit);
351 synch_event[h] = e;
352 } else {
353 e->refcount++; // for return value
354 }
355 synch_event_mu.Unlock();
356 return e;
357 }
358
359 // Deallocate the SynchEvent *e, whose refcount has fallen to zero.
DeleteSynchEvent(SynchEvent * e)360 static void DeleteSynchEvent(SynchEvent *e) {
361 base_internal::LowLevelAlloc::Free(e);
362 }
363
364 // Decrement the reference count of *e, or do nothing if e==null.
UnrefSynchEvent(SynchEvent * e)365 static void UnrefSynchEvent(SynchEvent *e) {
366 if (e != nullptr) {
367 synch_event_mu.Lock();
368 bool del = (--(e->refcount) == 0);
369 synch_event_mu.Unlock();
370 if (del) {
371 DeleteSynchEvent(e);
372 }
373 }
374 }
375
376 // Forget the mapping from the object (Mutex or CondVar) at address addr
377 // to SynchEvent object, and clear "bits" in its word (waiting until lockbit
378 // is clear before doing so).
ForgetSynchEvent(std::atomic<intptr_t> * addr,intptr_t bits,intptr_t lockbit)379 static void ForgetSynchEvent(std::atomic<intptr_t> *addr, intptr_t bits,
380 intptr_t lockbit) {
381 uint32_t h = reinterpret_cast<intptr_t>(addr) % kNSynchEvent;
382 SynchEvent **pe;
383 SynchEvent *e;
384 synch_event_mu.Lock();
385 for (pe = &synch_event[h];
386 (e = *pe) != nullptr && e->masked_addr != base_internal::HidePtr(addr);
387 pe = &e->next) {
388 }
389 bool del = false;
390 if (e != nullptr) {
391 *pe = e->next;
392 del = (--(e->refcount) == 0);
393 }
394 AtomicClearBits(addr, bits, lockbit);
395 synch_event_mu.Unlock();
396 if (del) {
397 DeleteSynchEvent(e);
398 }
399 }
400
401 // Return a refcounted reference to the SynchEvent of the object at address
402 // "addr", if any. The pointer returned is valid until the UnrefSynchEvent() is
403 // called.
GetSynchEvent(const void * addr)404 static SynchEvent *GetSynchEvent(const void *addr) {
405 uint32_t h = reinterpret_cast<intptr_t>(addr) % kNSynchEvent;
406 SynchEvent *e;
407 synch_event_mu.Lock();
408 for (e = synch_event[h];
409 e != nullptr && e->masked_addr != base_internal::HidePtr(addr);
410 e = e->next) {
411 }
412 if (e != nullptr) {
413 e->refcount++;
414 }
415 synch_event_mu.Unlock();
416 return e;
417 }
418
419 // Called when an event "ev" occurs on a Mutex of CondVar "obj"
420 // if event recording is on
PostSynchEvent(void * obj,int ev)421 static void PostSynchEvent(void *obj, int ev) {
422 SynchEvent *e = GetSynchEvent(obj);
423 // logging is on if event recording is on and either there's no event struct,
424 // or it explicitly says to log
425 if (e == nullptr || e->log) {
426 void *pcs[40];
427 int n = absl::GetStackTrace(pcs, ABSL_ARRAYSIZE(pcs), 1);
428 // A buffer with enough space for the ASCII for all the PCs, even on a
429 // 64-bit machine.
430 char buffer[ABSL_ARRAYSIZE(pcs) * 24];
431 int pos = snprintf(buffer, sizeof (buffer), " @");
432 for (int i = 0; i != n; i++) {
433 pos += snprintf(&buffer[pos], sizeof (buffer) - pos, " %p", pcs[i]);
434 }
435 ABSL_RAW_LOG(INFO, "%s%p %s %s", event_properties[ev].msg, obj,
436 (e == nullptr ? "" : e->name), buffer);
437 }
438 const int flags = event_properties[ev].flags;
439 if ((flags & SYNCH_F_LCK) != 0 && e != nullptr && e->invariant != nullptr) {
440 // Calling the invariant as is causes problems under ThreadSanitizer.
441 // We are currently inside of Mutex Lock/Unlock and are ignoring all
442 // memory accesses and synchronization. If the invariant transitively
443 // synchronizes something else and we ignore the synchronization, we will
444 // get false positive race reports later.
445 // Reuse EvalConditionAnnotated to properly call into user code.
446 struct local {
447 static bool pred(SynchEvent *ev) {
448 (*ev->invariant)(ev->arg);
449 return false;
450 }
451 };
452 Condition cond(&local::pred, e);
453 Mutex *mu = static_cast<Mutex *>(obj);
454 const bool locking = (flags & SYNCH_F_UNLOCK) == 0;
455 const bool trylock = (flags & SYNCH_F_TRY) != 0;
456 const bool read_lock = (flags & SYNCH_F_R) != 0;
457 EvalConditionAnnotated(&cond, mu, locking, trylock, read_lock);
458 }
459 UnrefSynchEvent(e);
460 }
461
462 //------------------------------------------------------------------
463
464 // The SynchWaitParams struct encapsulates the way in which a thread is waiting:
465 // whether it has a timeout, the condition, exclusive/shared, and whether a
466 // condition variable wait has an associated Mutex (as opposed to another
467 // type of lock). It also points to the PerThreadSynch struct of its thread.
468 // cv_word tells Enqueue() to enqueue on a CondVar using CondVarEnqueue().
469 //
470 // This structure is held on the stack rather than directly in
471 // PerThreadSynch because a thread can be waiting on multiple Mutexes if,
472 // while waiting on one Mutex, the implementation calls a client callback
473 // (such as a Condition function) that acquires another Mutex. We don't
474 // strictly need to allow this, but programmers become confused if we do not
475 // allow them to use functions such a LOG() within Condition functions. The
476 // PerThreadSynch struct points at the most recent SynchWaitParams struct when
477 // the thread is on a Mutex's waiter queue.
478 struct SynchWaitParams {
SynchWaitParamsabsl::SynchWaitParams479 SynchWaitParams(Mutex::MuHow how_arg, const Condition *cond_arg,
480 KernelTimeout timeout_arg, Mutex *cvmu_arg,
481 PerThreadSynch *thread_arg,
482 std::atomic<intptr_t> *cv_word_arg)
483 : how(how_arg),
484 cond(cond_arg),
485 timeout(timeout_arg),
486 cvmu(cvmu_arg),
487 thread(thread_arg),
488 cv_word(cv_word_arg),
489 contention_start_cycles(base_internal::CycleClock::Now()) {}
490
491 const Mutex::MuHow how; // How this thread needs to wait.
492 const Condition *cond; // The condition that this thread is waiting for.
493 // In Mutex, this field is set to zero if a timeout
494 // expires.
495 KernelTimeout timeout; // timeout expiry---absolute time
496 // In Mutex, this field is set to zero if a timeout
497 // expires.
498 Mutex *const cvmu; // used for transfer from cond var to mutex
499 PerThreadSynch *const thread; // thread that is waiting
500
501 // If not null, thread should be enqueued on the CondVar whose state
502 // word is cv_word instead of queueing normally on the Mutex.
503 std::atomic<intptr_t> *cv_word;
504
505 int64_t contention_start_cycles; // Time (in cycles) when this thread started
506 // to contend for the mutex.
507 };
508
509 struct SynchLocksHeld {
510 int n; // number of valid entries in locks[]
511 bool overflow; // true iff we overflowed the array at some point
512 struct {
513 Mutex *mu; // lock acquired
514 int32_t count; // times acquired
515 GraphId id; // deadlock_graph id of acquired lock
516 } locks[40];
517 // If a thread overfills the array during deadlock detection, we
518 // continue, discarding information as needed. If no overflow has
519 // taken place, we can provide more error checking, such as
520 // detecting when a thread releases a lock it does not hold.
521 };
522
523 // A sentinel value in lists that is not 0.
524 // A 0 value is used to mean "not on a list".
525 static PerThreadSynch *const kPerThreadSynchNull =
526 reinterpret_cast<PerThreadSynch *>(1);
527
LocksHeldAlloc()528 static SynchLocksHeld *LocksHeldAlloc() {
529 SynchLocksHeld *ret = reinterpret_cast<SynchLocksHeld *>(
530 base_internal::LowLevelAlloc::Alloc(sizeof(SynchLocksHeld)));
531 ret->n = 0;
532 ret->overflow = false;
533 return ret;
534 }
535
536 // Return the PerThreadSynch-struct for this thread.
Synch_GetPerThread()537 static PerThreadSynch *Synch_GetPerThread() {
538 ThreadIdentity *identity = GetOrCreateCurrentThreadIdentity();
539 return &identity->per_thread_synch;
540 }
541
Synch_GetPerThreadAnnotated(Mutex * mu)542 static PerThreadSynch *Synch_GetPerThreadAnnotated(Mutex *mu) {
543 if (mu) {
544 ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
545 }
546 PerThreadSynch *w = Synch_GetPerThread();
547 if (mu) {
548 ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
549 }
550 return w;
551 }
552
Synch_GetAllLocks()553 static SynchLocksHeld *Synch_GetAllLocks() {
554 PerThreadSynch *s = Synch_GetPerThread();
555 if (s->all_locks == nullptr) {
556 s->all_locks = LocksHeldAlloc(); // Freed by ReclaimThreadIdentity.
557 }
558 return s->all_locks;
559 }
560
561 // Post on "w"'s associated PerThreadSem.
IncrementSynchSem(Mutex * mu,PerThreadSynch * w)562 void Mutex::IncrementSynchSem(Mutex *mu, PerThreadSynch *w) {
563 if (mu) {
564 ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
565 }
566 PerThreadSem::Post(w->thread_identity());
567 if (mu) {
568 ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
569 }
570 }
571
572 // Wait on "w"'s associated PerThreadSem; returns false if timeout expired.
DecrementSynchSem(Mutex * mu,PerThreadSynch * w,KernelTimeout t)573 bool Mutex::DecrementSynchSem(Mutex *mu, PerThreadSynch *w, KernelTimeout t) {
574 if (mu) {
575 ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
576 }
577 assert(w == Synch_GetPerThread());
578 static_cast<void>(w);
579 bool res = PerThreadSem::Wait(t);
580 if (mu) {
581 ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
582 }
583 return res;
584 }
585
586 // We're in a fatal signal handler that hopes to use Mutex and to get
587 // lucky by not deadlocking. We try to improve its chances of success
588 // by effectively disabling some of the consistency checks. This will
589 // prevent certain ABSL_RAW_CHECK() statements from being triggered when
590 // re-rentry is detected. The ABSL_RAW_CHECK() statements are those in the
591 // Mutex code checking that the "waitp" field has not been reused.
InternalAttemptToUseMutexInFatalSignalHandler()592 void Mutex::InternalAttemptToUseMutexInFatalSignalHandler() {
593 // Fix the per-thread state only if it exists.
594 ThreadIdentity *identity = CurrentThreadIdentityIfPresent();
595 if (identity != nullptr) {
596 identity->per_thread_synch.suppress_fatal_errors = true;
597 }
598 // Don't do deadlock detection when we are already failing.
599 synch_deadlock_detection.store(OnDeadlockCycle::kIgnore,
600 std::memory_order_release);
601 }
602
603 // --------------------------time support
604
605 // Return the current time plus the timeout. Use the same clock as
606 // PerThreadSem::Wait() for consistency. Unfortunately, we don't have
607 // such a choice when a deadline is given directly.
DeadlineFromTimeout(absl::Duration timeout)608 static absl::Time DeadlineFromTimeout(absl::Duration timeout) {
609 #ifndef _WIN32
610 struct timeval tv;
611 gettimeofday(&tv, nullptr);
612 return absl::TimeFromTimeval(tv) + timeout;
613 #else
614 return absl::Now() + timeout;
615 #endif
616 }
617
618 // --------------------------Mutexes
619
620 // In the layout below, the msb of the bottom byte is currently unused. Also,
621 // the following constraints were considered in choosing the layout:
622 // o Both the debug allocator's "uninitialized" and "freed" patterns (0xab and
623 // 0xcd) are illegal: reader and writer lock both held.
624 // o kMuWriter and kMuEvent should exceed kMuDesig and kMuWait, to enable the
625 // bit-twiddling trick in Mutex::Unlock().
626 // o kMuWriter / kMuReader == kMuWrWait / kMuWait,
627 // to enable the bit-twiddling trick in CheckForMutexCorruption().
628 static const intptr_t kMuReader = 0x0001L; // a reader holds the lock
629 static const intptr_t kMuDesig = 0x0002L; // there's a designated waker
630 static const intptr_t kMuWait = 0x0004L; // threads are waiting
631 static const intptr_t kMuWriter = 0x0008L; // a writer holds the lock
632 static const intptr_t kMuEvent = 0x0010L; // record this mutex's events
633 // INVARIANT1: there's a thread that was blocked on the mutex, is
634 // no longer, yet has not yet acquired the mutex. If there's a
635 // designated waker, all threads can avoid taking the slow path in
636 // unlock because the designated waker will subsequently acquire
637 // the lock and wake someone. To maintain INVARIANT1 the bit is
638 // set when a thread is unblocked(INV1a), and threads that were
639 // unblocked reset the bit when they either acquire or re-block
640 // (INV1b).
641 static const intptr_t kMuWrWait = 0x0020L; // runnable writer is waiting
642 // for a reader
643 static const intptr_t kMuSpin = 0x0040L; // spinlock protects wait list
644 static const intptr_t kMuLow = 0x00ffL; // mask all mutex bits
645 static const intptr_t kMuHigh = ~kMuLow; // mask pointer/reader count
646
647 // Hack to make constant values available to gdb pretty printer
648 enum {
649 kGdbMuSpin = kMuSpin,
650 kGdbMuEvent = kMuEvent,
651 kGdbMuWait = kMuWait,
652 kGdbMuWriter = kMuWriter,
653 kGdbMuDesig = kMuDesig,
654 kGdbMuWrWait = kMuWrWait,
655 kGdbMuReader = kMuReader,
656 kGdbMuLow = kMuLow,
657 };
658
659 // kMuWrWait implies kMuWait.
660 // kMuReader and kMuWriter are mutually exclusive.
661 // If kMuReader is zero, there are no readers.
662 // Otherwise, if kMuWait is zero, the high order bits contain a count of the
663 // number of readers. Otherwise, the reader count is held in
664 // PerThreadSynch::readers of the most recently queued waiter, again in the
665 // bits above kMuLow.
666 static const intptr_t kMuOne = 0x0100; // a count of one reader
667
668 // flags passed to Enqueue and LockSlow{,WithTimeout,Loop}
669 static const int kMuHasBlocked = 0x01; // already blocked (MUST == 1)
670 static const int kMuIsCond = 0x02; // conditional waiter (CV or Condition)
671
672 static_assert(PerThreadSynch::kAlignment > kMuLow,
673 "PerThreadSynch::kAlignment must be greater than kMuLow");
674
675 // This struct contains various bitmasks to be used in
676 // acquiring and releasing a mutex in a particular mode.
677 struct MuHowS {
678 // if all the bits in fast_need_zero are zero, the lock can be acquired by
679 // adding fast_add and oring fast_or. The bit kMuDesig should be reset iff
680 // this is the designated waker.
681 intptr_t fast_need_zero;
682 intptr_t fast_or;
683 intptr_t fast_add;
684
685 intptr_t slow_need_zero; // fast_need_zero with events (e.g. logging)
686
687 intptr_t slow_inc_need_zero; // if all the bits in slow_inc_need_zero are
688 // zero a reader can acquire a read share by
689 // setting the reader bit and incrementing
690 // the reader count (in last waiter since
691 // we're now slow-path). kMuWrWait be may
692 // be ignored if we already waited once.
693 };
694
695 static const MuHowS kSharedS = {
696 // shared or read lock
697 kMuWriter | kMuWait | kMuEvent, // fast_need_zero
698 kMuReader, // fast_or
699 kMuOne, // fast_add
700 kMuWriter | kMuWait, // slow_need_zero
701 kMuSpin | kMuWriter | kMuWrWait, // slow_inc_need_zero
702 };
703 static const MuHowS kExclusiveS = {
704 // exclusive or write lock
705 kMuWriter | kMuReader | kMuEvent, // fast_need_zero
706 kMuWriter, // fast_or
707 0, // fast_add
708 kMuWriter | kMuReader, // slow_need_zero
709 ~static_cast<intptr_t>(0), // slow_inc_need_zero
710 };
711 static const Mutex::MuHow kShared = &kSharedS; // shared lock
712 static const Mutex::MuHow kExclusive = &kExclusiveS; // exclusive lock
713
714 #ifdef NDEBUG
715 static constexpr bool kDebugMode = false;
716 #else
717 static constexpr bool kDebugMode = true;
718 #endif
719
720 #ifdef ABSL_INTERNAL_HAVE_TSAN_INTERFACE
TsanFlags(Mutex::MuHow how)721 static unsigned TsanFlags(Mutex::MuHow how) {
722 return how == kShared ? __tsan_mutex_read_lock : 0;
723 }
724 #endif
725
DebugOnlyIsExiting()726 static bool DebugOnlyIsExiting() {
727 return false;
728 }
729
~Mutex()730 Mutex::~Mutex() {
731 intptr_t v = mu_.load(std::memory_order_relaxed);
732 if ((v & kMuEvent) != 0 && !DebugOnlyIsExiting()) {
733 ForgetSynchEvent(&this->mu_, kMuEvent, kMuSpin);
734 }
735 if (kDebugMode) {
736 this->ForgetDeadlockInfo();
737 }
738 ABSL_TSAN_MUTEX_DESTROY(this, __tsan_mutex_not_static);
739 }
740
EnableDebugLog(const char * name)741 void Mutex::EnableDebugLog(const char *name) {
742 SynchEvent *e = EnsureSynchEvent(&this->mu_, name, kMuEvent, kMuSpin);
743 e->log = true;
744 UnrefSynchEvent(e);
745 }
746
EnableMutexInvariantDebugging(bool enabled)747 void EnableMutexInvariantDebugging(bool enabled) {
748 synch_check_invariants.store(enabled, std::memory_order_release);
749 }
750
EnableInvariantDebugging(void (* invariant)(void *),void * arg)751 void Mutex::EnableInvariantDebugging(void (*invariant)(void *),
752 void *arg) {
753 if (synch_check_invariants.load(std::memory_order_acquire) &&
754 invariant != nullptr) {
755 SynchEvent *e = EnsureSynchEvent(&this->mu_, nullptr, kMuEvent, kMuSpin);
756 e->invariant = invariant;
757 e->arg = arg;
758 UnrefSynchEvent(e);
759 }
760 }
761
SetMutexDeadlockDetectionMode(OnDeadlockCycle mode)762 void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode) {
763 synch_deadlock_detection.store(mode, std::memory_order_release);
764 }
765
766 // Return true iff threads x and y are part of the same equivalence
767 // class of waiters. An equivalence class is defined as the set of
768 // waiters with the same condition, type of lock, and thread priority.
769 //
770 // Requires that x and y be waiting on the same Mutex queue.
MuEquivalentWaiter(PerThreadSynch * x,PerThreadSynch * y)771 static bool MuEquivalentWaiter(PerThreadSynch *x, PerThreadSynch *y) {
772 return x->waitp->how == y->waitp->how && x->priority == y->priority &&
773 Condition::GuaranteedEqual(x->waitp->cond, y->waitp->cond);
774 }
775
776 // Given the contents of a mutex word containing a PerThreadSynch pointer,
777 // return the pointer.
GetPerThreadSynch(intptr_t v)778 static inline PerThreadSynch *GetPerThreadSynch(intptr_t v) {
779 return reinterpret_cast<PerThreadSynch *>(v & kMuHigh);
780 }
781
782 // The next several routines maintain the per-thread next and skip fields
783 // used in the Mutex waiter queue.
784 // The queue is a circular singly-linked list, of which the "head" is the
785 // last element, and head->next if the first element.
786 // The skip field has the invariant:
787 // For thread x, x->skip is one of:
788 // - invalid (iff x is not in a Mutex wait queue),
789 // - null, or
790 // - a pointer to a distinct thread waiting later in the same Mutex queue
791 // such that all threads in [x, x->skip] have the same condition, priority
792 // and lock type (MuEquivalentWaiter() is true for all pairs in [x,
793 // x->skip]).
794 // In addition, if x->skip is valid, (x->may_skip || x->skip == null)
795 //
796 // By the spec of MuEquivalentWaiter(), it is not necessary when removing the
797 // first runnable thread y from the front a Mutex queue to adjust the skip
798 // field of another thread x because if x->skip==y, x->skip must (have) become
799 // invalid before y is removed. The function TryRemove can remove a specified
800 // thread from an arbitrary position in the queue whether runnable or not, so
801 // it fixes up skip fields that would otherwise be left dangling.
802 // The statement
803 // if (x->may_skip && MuEquivalentWaiter(x, x->next)) { x->skip = x->next; }
804 // maintains the invariant provided x is not the last waiter in a Mutex queue
805 // The statement
806 // if (x->skip != null) { x->skip = x->skip->skip; }
807 // maintains the invariant.
808
809 // Returns the last thread y in a mutex waiter queue such that all threads in
810 // [x, y] inclusive share the same condition. Sets skip fields of some threads
811 // in that range to optimize future evaluation of Skip() on x values in
812 // the range. Requires thread x is in a mutex waiter queue.
813 // The locking is unusual. Skip() is called under these conditions:
814 // - spinlock is held in call from Enqueue(), with maybe_unlocking == false
815 // - Mutex is held in call from UnlockSlow() by last unlocker, with
816 // maybe_unlocking == true
817 // - both Mutex and spinlock are held in call from DequeueAllWakeable() (from
818 // UnlockSlow()) and TryRemove()
819 // These cases are mutually exclusive, so Skip() never runs concurrently
820 // with itself on the same Mutex. The skip chain is used in these other places
821 // that cannot occur concurrently:
822 // - FixSkip() (from TryRemove()) - spinlock and Mutex are held)
823 // - Dequeue() (with spinlock and Mutex held)
824 // - UnlockSlow() (with spinlock and Mutex held)
825 // A more complex case is Enqueue()
826 // - Enqueue() (with spinlock held and maybe_unlocking == false)
827 // This is the first case in which Skip is called, above.
828 // - Enqueue() (without spinlock held; but queue is empty and being freshly
829 // formed)
830 // - Enqueue() (with spinlock held and maybe_unlocking == true)
831 // The first case has mutual exclusion, and the second isolation through
832 // working on an otherwise unreachable data structure.
833 // In the last case, Enqueue() is required to change no skip/next pointers
834 // except those in the added node and the former "head" node. This implies
835 // that the new node is added after head, and so must be the new head or the
836 // new front of the queue.
Skip(PerThreadSynch * x)837 static PerThreadSynch *Skip(PerThreadSynch *x) {
838 PerThreadSynch *x0 = nullptr;
839 PerThreadSynch *x1 = x;
840 PerThreadSynch *x2 = x->skip;
841 if (x2 != nullptr) {
842 // Each iteration attempts to advance sequence (x0,x1,x2) to next sequence
843 // such that x1 == x0->skip && x2 == x1->skip
844 while ((x0 = x1, x1 = x2, x2 = x2->skip) != nullptr) {
845 x0->skip = x2; // short-circuit skip from x0 to x2
846 }
847 x->skip = x1; // short-circuit skip from x to result
848 }
849 return x1;
850 }
851
852 // "ancestor" appears before "to_be_removed" in the same Mutex waiter queue.
853 // The latter is going to be removed out of order, because of a timeout.
854 // Check whether "ancestor" has a skip field pointing to "to_be_removed",
855 // and fix it if it does.
FixSkip(PerThreadSynch * ancestor,PerThreadSynch * to_be_removed)856 static void FixSkip(PerThreadSynch *ancestor, PerThreadSynch *to_be_removed) {
857 if (ancestor->skip == to_be_removed) { // ancestor->skip left dangling
858 if (to_be_removed->skip != nullptr) {
859 ancestor->skip = to_be_removed->skip; // can skip past to_be_removed
860 } else if (ancestor->next != to_be_removed) { // they are not adjacent
861 ancestor->skip = ancestor->next; // can skip one past ancestor
862 } else {
863 ancestor->skip = nullptr; // can't skip at all
864 }
865 }
866 }
867
868 static void CondVarEnqueue(SynchWaitParams *waitp);
869
870 // Enqueue thread "waitp->thread" on a waiter queue.
871 // Called with mutex spinlock held if head != nullptr
872 // If head==nullptr and waitp->cv_word==nullptr, then Enqueue() is
873 // idempotent; it alters no state associated with the existing (empty)
874 // queue.
875 //
876 // If waitp->cv_word == nullptr, queue the thread at either the front or
877 // the end (according to its priority) of the circular mutex waiter queue whose
878 // head is "head", and return the new head. mu is the previous mutex state,
879 // which contains the reader count (perhaps adjusted for the operation in
880 // progress) if the list was empty and a read lock held, and the holder hint if
881 // the list was empty and a write lock held. (flags & kMuIsCond) indicates
882 // whether this thread was transferred from a CondVar or is waiting for a
883 // non-trivial condition. In this case, Enqueue() never returns nullptr
884 //
885 // If waitp->cv_word != nullptr, CondVarEnqueue() is called, and "head" is
886 // returned. This mechanism is used by CondVar to queue a thread on the
887 // condition variable queue instead of the mutex queue in implementing Wait().
888 // In this case, Enqueue() can return nullptr (if head==nullptr).
Enqueue(PerThreadSynch * head,SynchWaitParams * waitp,intptr_t mu,int flags)889 static PerThreadSynch *Enqueue(PerThreadSynch *head,
890 SynchWaitParams *waitp, intptr_t mu, int flags) {
891 // If we have been given a cv_word, call CondVarEnqueue() and return
892 // the previous head of the Mutex waiter queue.
893 if (waitp->cv_word != nullptr) {
894 CondVarEnqueue(waitp);
895 return head;
896 }
897
898 PerThreadSynch *s = waitp->thread;
899 ABSL_RAW_CHECK(
900 s->waitp == nullptr || // normal case
901 s->waitp == waitp || // Fer()---transfer from condition variable
902 s->suppress_fatal_errors,
903 "detected illegal recursion into Mutex code");
904 s->waitp = waitp;
905 s->skip = nullptr; // maintain skip invariant (see above)
906 s->may_skip = true; // always true on entering queue
907 s->wake = false; // not being woken
908 s->cond_waiter = ((flags & kMuIsCond) != 0);
909 if (head == nullptr) { // s is the only waiter
910 s->next = s; // it's the only entry in the cycle
911 s->readers = mu; // reader count is from mu word
912 s->maybe_unlocking = false; // no one is searching an empty list
913 head = s; // s is new head
914 } else {
915 PerThreadSynch *enqueue_after = nullptr; // we'll put s after this element
916 #ifdef ABSL_HAVE_PTHREAD_GETSCHEDPARAM
917 int64_t now_cycles = base_internal::CycleClock::Now();
918 if (s->next_priority_read_cycles < now_cycles) {
919 // Every so often, update our idea of the thread's priority.
920 // pthread_getschedparam() is 5% of the block/wakeup time;
921 // base_internal::CycleClock::Now() is 0.5%.
922 int policy;
923 struct sched_param param;
924 const int err = pthread_getschedparam(pthread_self(), &policy, ¶m);
925 if (err != 0) {
926 ABSL_RAW_LOG(ERROR, "pthread_getschedparam failed: %d", err);
927 } else {
928 s->priority = param.sched_priority;
929 s->next_priority_read_cycles =
930 now_cycles +
931 static_cast<int64_t>(base_internal::CycleClock::Frequency());
932 }
933 }
934 if (s->priority > head->priority) { // s's priority is above head's
935 // try to put s in priority-fifo order, or failing that at the front.
936 if (!head->maybe_unlocking) {
937 // No unlocker can be scanning the queue, so we can insert into the
938 // middle of the queue.
939 //
940 // Within a skip chain, all waiters have the same priority, so we can
941 // skip forward through the chains until we find one with a lower
942 // priority than the waiter to be enqueued.
943 PerThreadSynch *advance_to = head; // next value of enqueue_after
944 do {
945 enqueue_after = advance_to;
946 // (side-effect: optimizes skip chain)
947 advance_to = Skip(enqueue_after->next);
948 } while (s->priority <= advance_to->priority);
949 // termination guaranteed because s->priority > head->priority
950 // and head is the end of a skip chain
951 } else if (waitp->how == kExclusive &&
952 Condition::GuaranteedEqual(waitp->cond, nullptr)) {
953 // An unlocker could be scanning the queue, but we know it will recheck
954 // the queue front for writers that have no condition, which is what s
955 // is, so an insert at front is safe.
956 enqueue_after = head; // add after head, at front
957 }
958 }
959 #endif
960 if (enqueue_after != nullptr) {
961 s->next = enqueue_after->next;
962 enqueue_after->next = s;
963
964 // enqueue_after can be: head, Skip(...), or cur.
965 // The first two imply enqueue_after->skip == nullptr, and
966 // the last is used only if MuEquivalentWaiter(s, cur).
967 // We require this because clearing enqueue_after->skip
968 // is impossible; enqueue_after's predecessors might also
969 // incorrectly skip over s if we were to allow other
970 // insertion points.
971 ABSL_RAW_CHECK(enqueue_after->skip == nullptr ||
972 MuEquivalentWaiter(enqueue_after, s),
973 "Mutex Enqueue failure");
974
975 if (enqueue_after != head && enqueue_after->may_skip &&
976 MuEquivalentWaiter(enqueue_after, enqueue_after->next)) {
977 // enqueue_after can skip to its new successor, s
978 enqueue_after->skip = enqueue_after->next;
979 }
980 if (MuEquivalentWaiter(s, s->next)) { // s->may_skip is known to be true
981 s->skip = s->next; // s may skip to its successor
982 }
983 } else { // enqueue not done any other way, so
984 // we're inserting s at the back
985 // s will become new head; copy data from head into it
986 s->next = head->next; // add s after head
987 head->next = s;
988 s->readers = head->readers; // reader count is from previous head
989 s->maybe_unlocking = head->maybe_unlocking; // same for unlock hint
990 if (head->may_skip && MuEquivalentWaiter(head, s)) {
991 // head now has successor; may skip
992 head->skip = s;
993 }
994 head = s; // s is new head
995 }
996 }
997 s->state.store(PerThreadSynch::kQueued, std::memory_order_relaxed);
998 return head;
999 }
1000
1001 // Dequeue the successor pw->next of thread pw from the Mutex waiter queue
1002 // whose last element is head. The new head element is returned, or null
1003 // if the list is made empty.
1004 // Dequeue is called with both spinlock and Mutex held.
Dequeue(PerThreadSynch * head,PerThreadSynch * pw)1005 static PerThreadSynch *Dequeue(PerThreadSynch *head, PerThreadSynch *pw) {
1006 PerThreadSynch *w = pw->next;
1007 pw->next = w->next; // snip w out of list
1008 if (head == w) { // we removed the head
1009 head = (pw == w) ? nullptr : pw; // either emptied list, or pw is new head
1010 } else if (pw != head && MuEquivalentWaiter(pw, pw->next)) {
1011 // pw can skip to its new successor
1012 if (pw->next->skip !=
1013 nullptr) { // either skip to its successors skip target
1014 pw->skip = pw->next->skip;
1015 } else { // or to pw's successor
1016 pw->skip = pw->next;
1017 }
1018 }
1019 return head;
1020 }
1021
1022 // Traverse the elements [ pw->next, h] of the circular list whose last element
1023 // is head.
1024 // Remove all elements with wake==true and place them in the
1025 // singly-linked list wake_list in the order found. Assumes that
1026 // there is only one such element if the element has how == kExclusive.
1027 // Return the new head.
DequeueAllWakeable(PerThreadSynch * head,PerThreadSynch * pw,PerThreadSynch ** wake_tail)1028 static PerThreadSynch *DequeueAllWakeable(PerThreadSynch *head,
1029 PerThreadSynch *pw,
1030 PerThreadSynch **wake_tail) {
1031 PerThreadSynch *orig_h = head;
1032 PerThreadSynch *w = pw->next;
1033 bool skipped = false;
1034 do {
1035 if (w->wake) { // remove this element
1036 ABSL_RAW_CHECK(pw->skip == nullptr, "bad skip in DequeueAllWakeable");
1037 // we're removing pw's successor so either pw->skip is zero or we should
1038 // already have removed pw since if pw->skip!=null, pw has the same
1039 // condition as w.
1040 head = Dequeue(head, pw);
1041 w->next = *wake_tail; // keep list terminated
1042 *wake_tail = w; // add w to wake_list;
1043 wake_tail = &w->next; // next addition to end
1044 if (w->waitp->how == kExclusive) { // wake at most 1 writer
1045 break;
1046 }
1047 } else { // not waking this one; skip
1048 pw = Skip(w); // skip as much as possible
1049 skipped = true;
1050 }
1051 w = pw->next;
1052 // We want to stop processing after we've considered the original head,
1053 // orig_h. We can't test for w==orig_h in the loop because w may skip over
1054 // it; we are guaranteed only that w's predecessor will not skip over
1055 // orig_h. When we've considered orig_h, either we've processed it and
1056 // removed it (so orig_h != head), or we considered it and skipped it (so
1057 // skipped==true && pw == head because skipping from head always skips by
1058 // just one, leaving pw pointing at head). So we want to
1059 // continue the loop with the negation of that expression.
1060 } while (orig_h == head && (pw != head || !skipped));
1061 return head;
1062 }
1063
1064 // Try to remove thread s from the list of waiters on this mutex.
1065 // Does nothing if s is not on the waiter list.
TryRemove(PerThreadSynch * s)1066 void Mutex::TryRemove(PerThreadSynch *s) {
1067 SchedulingGuard::ScopedDisable disable_rescheduling;
1068 intptr_t v = mu_.load(std::memory_order_relaxed);
1069 // acquire spinlock & lock
1070 if ((v & (kMuWait | kMuSpin | kMuWriter | kMuReader)) == kMuWait &&
1071 mu_.compare_exchange_strong(v, v | kMuSpin | kMuWriter,
1072 std::memory_order_acquire,
1073 std::memory_order_relaxed)) {
1074 PerThreadSynch *h = GetPerThreadSynch(v);
1075 if (h != nullptr) {
1076 PerThreadSynch *pw = h; // pw is w's predecessor
1077 PerThreadSynch *w;
1078 if ((w = pw->next) != s) { // search for thread,
1079 do { // processing at least one element
1080 // If the current element isn't equivalent to the waiter to be
1081 // removed, we can skip the entire chain.
1082 if (!MuEquivalentWaiter(s, w)) {
1083 pw = Skip(w); // so skip all that won't match
1084 // we don't have to worry about dangling skip fields
1085 // in the threads we skipped; none can point to s
1086 // because they are in a different equivalence class.
1087 } else { // seeking same condition
1088 FixSkip(w, s); // fix up any skip pointer from w to s
1089 pw = w;
1090 }
1091 // don't search further if we found the thread, or we're about to
1092 // process the first thread again.
1093 } while ((w = pw->next) != s && pw != h);
1094 }
1095 if (w == s) { // found thread; remove it
1096 // pw->skip may be non-zero here; the loop above ensured that
1097 // no ancestor of s can skip to s, so removal is safe anyway.
1098 h = Dequeue(h, pw);
1099 s->next = nullptr;
1100 s->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
1101 }
1102 }
1103 intptr_t nv;
1104 do { // release spinlock and lock
1105 v = mu_.load(std::memory_order_relaxed);
1106 nv = v & (kMuDesig | kMuEvent);
1107 if (h != nullptr) {
1108 nv |= kMuWait | reinterpret_cast<intptr_t>(h);
1109 h->readers = 0; // we hold writer lock
1110 h->maybe_unlocking = false; // finished unlocking
1111 }
1112 } while (!mu_.compare_exchange_weak(v, nv,
1113 std::memory_order_release,
1114 std::memory_order_relaxed));
1115 }
1116 }
1117
1118 // Wait until thread "s", which must be the current thread, is removed from the
1119 // this mutex's waiter queue. If "s->waitp->timeout" has a timeout, wake up
1120 // if the wait extends past the absolute time specified, even if "s" is still
1121 // on the mutex queue. In this case, remove "s" from the queue and return
1122 // true, otherwise return false.
Block(PerThreadSynch * s)1123 ABSL_XRAY_LOG_ARGS(1) void Mutex::Block(PerThreadSynch *s) {
1124 while (s->state.load(std::memory_order_acquire) == PerThreadSynch::kQueued) {
1125 if (!DecrementSynchSem(this, s, s->waitp->timeout)) {
1126 // After a timeout, we go into a spin loop until we remove ourselves
1127 // from the queue, or someone else removes us. We can't be sure to be
1128 // able to remove ourselves in a single lock acquisition because this
1129 // mutex may be held, and the holder has the right to read the centre
1130 // of the waiter queue without holding the spinlock.
1131 this->TryRemove(s);
1132 int c = 0;
1133 while (s->next != nullptr) {
1134 c = synchronization_internal::MutexDelay(c, GENTLE);
1135 this->TryRemove(s);
1136 }
1137 if (kDebugMode) {
1138 // This ensures that we test the case that TryRemove() is called when s
1139 // is not on the queue.
1140 this->TryRemove(s);
1141 }
1142 s->waitp->timeout = KernelTimeout::Never(); // timeout is satisfied
1143 s->waitp->cond = nullptr; // condition no longer relevant for wakeups
1144 }
1145 }
1146 ABSL_RAW_CHECK(s->waitp != nullptr || s->suppress_fatal_errors,
1147 "detected illegal recursion in Mutex code");
1148 s->waitp = nullptr;
1149 }
1150
1151 // Wake thread w, and return the next thread in the list.
Wakeup(PerThreadSynch * w)1152 PerThreadSynch *Mutex::Wakeup(PerThreadSynch *w) {
1153 PerThreadSynch *next = w->next;
1154 w->next = nullptr;
1155 w->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
1156 IncrementSynchSem(this, w);
1157
1158 return next;
1159 }
1160
GetGraphIdLocked(Mutex * mu)1161 static GraphId GetGraphIdLocked(Mutex *mu)
1162 ABSL_EXCLUSIVE_LOCKS_REQUIRED(deadlock_graph_mu) {
1163 if (!deadlock_graph) { // (re)create the deadlock graph.
1164 deadlock_graph =
1165 new (base_internal::LowLevelAlloc::Alloc(sizeof(*deadlock_graph)))
1166 GraphCycles;
1167 }
1168 return deadlock_graph->GetId(mu);
1169 }
1170
GetGraphId(Mutex * mu)1171 static GraphId GetGraphId(Mutex *mu) ABSL_LOCKS_EXCLUDED(deadlock_graph_mu) {
1172 deadlock_graph_mu.Lock();
1173 GraphId id = GetGraphIdLocked(mu);
1174 deadlock_graph_mu.Unlock();
1175 return id;
1176 }
1177
1178 // Record a lock acquisition. This is used in debug mode for deadlock
1179 // detection. The held_locks pointer points to the relevant data
1180 // structure for each case.
LockEnter(Mutex * mu,GraphId id,SynchLocksHeld * held_locks)1181 static void LockEnter(Mutex* mu, GraphId id, SynchLocksHeld *held_locks) {
1182 int n = held_locks->n;
1183 int i = 0;
1184 while (i != n && held_locks->locks[i].id != id) {
1185 i++;
1186 }
1187 if (i == n) {
1188 if (n == ABSL_ARRAYSIZE(held_locks->locks)) {
1189 held_locks->overflow = true; // lost some data
1190 } else { // we have room for lock
1191 held_locks->locks[i].mu = mu;
1192 held_locks->locks[i].count = 1;
1193 held_locks->locks[i].id = id;
1194 held_locks->n = n + 1;
1195 }
1196 } else {
1197 held_locks->locks[i].count++;
1198 }
1199 }
1200
1201 // Record a lock release. Each call to LockEnter(mu, id, x) should be
1202 // eventually followed by a call to LockLeave(mu, id, x) by the same thread.
1203 // It does not process the event if is not needed when deadlock detection is
1204 // disabled.
LockLeave(Mutex * mu,GraphId id,SynchLocksHeld * held_locks)1205 static void LockLeave(Mutex* mu, GraphId id, SynchLocksHeld *held_locks) {
1206 int n = held_locks->n;
1207 int i = 0;
1208 while (i != n && held_locks->locks[i].id != id) {
1209 i++;
1210 }
1211 if (i == n) {
1212 if (!held_locks->overflow) {
1213 // The deadlock id may have been reassigned after ForgetDeadlockInfo,
1214 // but in that case mu should still be present.
1215 i = 0;
1216 while (i != n && held_locks->locks[i].mu != mu) {
1217 i++;
1218 }
1219 if (i == n) { // mu missing means releasing unheld lock
1220 SynchEvent *mu_events = GetSynchEvent(mu);
1221 ABSL_RAW_LOG(FATAL,
1222 "thread releasing lock it does not hold: %p %s; "
1223 ,
1224 static_cast<void *>(mu),
1225 mu_events == nullptr ? "" : mu_events->name);
1226 }
1227 }
1228 } else if (held_locks->locks[i].count == 1) {
1229 held_locks->n = n - 1;
1230 held_locks->locks[i] = held_locks->locks[n - 1];
1231 held_locks->locks[n - 1].id = InvalidGraphId();
1232 held_locks->locks[n - 1].mu =
1233 nullptr; // clear mu to please the leak detector.
1234 } else {
1235 assert(held_locks->locks[i].count > 0);
1236 held_locks->locks[i].count--;
1237 }
1238 }
1239
1240 // Call LockEnter() if in debug mode and deadlock detection is enabled.
DebugOnlyLockEnter(Mutex * mu)1241 static inline void DebugOnlyLockEnter(Mutex *mu) {
1242 if (kDebugMode) {
1243 if (synch_deadlock_detection.load(std::memory_order_acquire) !=
1244 OnDeadlockCycle::kIgnore) {
1245 LockEnter(mu, GetGraphId(mu), Synch_GetAllLocks());
1246 }
1247 }
1248 }
1249
1250 // Call LockEnter() if in debug mode and deadlock detection is enabled.
DebugOnlyLockEnter(Mutex * mu,GraphId id)1251 static inline void DebugOnlyLockEnter(Mutex *mu, GraphId id) {
1252 if (kDebugMode) {
1253 if (synch_deadlock_detection.load(std::memory_order_acquire) !=
1254 OnDeadlockCycle::kIgnore) {
1255 LockEnter(mu, id, Synch_GetAllLocks());
1256 }
1257 }
1258 }
1259
1260 // Call LockLeave() if in debug mode and deadlock detection is enabled.
DebugOnlyLockLeave(Mutex * mu)1261 static inline void DebugOnlyLockLeave(Mutex *mu) {
1262 if (kDebugMode) {
1263 if (synch_deadlock_detection.load(std::memory_order_acquire) !=
1264 OnDeadlockCycle::kIgnore) {
1265 LockLeave(mu, GetGraphId(mu), Synch_GetAllLocks());
1266 }
1267 }
1268 }
1269
StackString(void ** pcs,int n,char * buf,int maxlen,bool symbolize)1270 static char *StackString(void **pcs, int n, char *buf, int maxlen,
1271 bool symbolize) {
1272 static const int kSymLen = 200;
1273 char sym[kSymLen];
1274 int len = 0;
1275 for (int i = 0; i != n; i++) {
1276 if (symbolize) {
1277 if (!symbolizer(pcs[i], sym, kSymLen)) {
1278 sym[0] = '\0';
1279 }
1280 snprintf(buf + len, maxlen - len, "%s\t@ %p %s\n",
1281 (i == 0 ? "\n" : ""),
1282 pcs[i], sym);
1283 } else {
1284 snprintf(buf + len, maxlen - len, " %p", pcs[i]);
1285 }
1286 len += strlen(&buf[len]);
1287 }
1288 return buf;
1289 }
1290
CurrentStackString(char * buf,int maxlen,bool symbolize)1291 static char *CurrentStackString(char *buf, int maxlen, bool symbolize) {
1292 void *pcs[40];
1293 return StackString(pcs, absl::GetStackTrace(pcs, ABSL_ARRAYSIZE(pcs), 2), buf,
1294 maxlen, symbolize);
1295 }
1296
1297 namespace {
1298 enum { kMaxDeadlockPathLen = 10 }; // maximum length of a deadlock cycle;
1299 // a path this long would be remarkable
1300 // Buffers required to report a deadlock.
1301 // We do not allocate them on stack to avoid large stack frame.
1302 struct DeadlockReportBuffers {
1303 char buf[6100];
1304 GraphId path[kMaxDeadlockPathLen];
1305 };
1306
1307 struct ScopedDeadlockReportBuffers {
ScopedDeadlockReportBuffersabsl::__anon7bd8141e0a11::ScopedDeadlockReportBuffers1308 ScopedDeadlockReportBuffers() {
1309 b = reinterpret_cast<DeadlockReportBuffers *>(
1310 base_internal::LowLevelAlloc::Alloc(sizeof(*b)));
1311 }
~ScopedDeadlockReportBuffersabsl::__anon7bd8141e0a11::ScopedDeadlockReportBuffers1312 ~ScopedDeadlockReportBuffers() { base_internal::LowLevelAlloc::Free(b); }
1313 DeadlockReportBuffers *b;
1314 };
1315
1316 // Helper to pass to GraphCycles::UpdateStackTrace.
GetStack(void ** stack,int max_depth)1317 int GetStack(void** stack, int max_depth) {
1318 return absl::GetStackTrace(stack, max_depth, 3);
1319 }
1320 } // anonymous namespace
1321
1322 // Called in debug mode when a thread is about to acquire a lock in a way that
1323 // may block.
DeadlockCheck(Mutex * mu)1324 static GraphId DeadlockCheck(Mutex *mu) {
1325 if (synch_deadlock_detection.load(std::memory_order_acquire) ==
1326 OnDeadlockCycle::kIgnore) {
1327 return InvalidGraphId();
1328 }
1329
1330 SynchLocksHeld *all_locks = Synch_GetAllLocks();
1331
1332 absl::base_internal::SpinLockHolder lock(&deadlock_graph_mu);
1333 const GraphId mu_id = GetGraphIdLocked(mu);
1334
1335 if (all_locks->n == 0) {
1336 // There are no other locks held. Return now so that we don't need to
1337 // call GetSynchEvent(). This way we do not record the stack trace
1338 // for this Mutex. It's ok, since if this Mutex is involved in a deadlock,
1339 // it can't always be the first lock acquired by a thread.
1340 return mu_id;
1341 }
1342
1343 // We prefer to keep stack traces that show a thread holding and acquiring
1344 // as many locks as possible. This increases the chances that a given edge
1345 // in the acquires-before graph will be represented in the stack traces
1346 // recorded for the locks.
1347 deadlock_graph->UpdateStackTrace(mu_id, all_locks->n + 1, GetStack);
1348
1349 // For each other mutex already held by this thread:
1350 for (int i = 0; i != all_locks->n; i++) {
1351 const GraphId other_node_id = all_locks->locks[i].id;
1352 const Mutex *other =
1353 static_cast<const Mutex *>(deadlock_graph->Ptr(other_node_id));
1354 if (other == nullptr) {
1355 // Ignore stale lock
1356 continue;
1357 }
1358
1359 // Add the acquired-before edge to the graph.
1360 if (!deadlock_graph->InsertEdge(other_node_id, mu_id)) {
1361 ScopedDeadlockReportBuffers scoped_buffers;
1362 DeadlockReportBuffers *b = scoped_buffers.b;
1363 static int number_of_reported_deadlocks = 0;
1364 number_of_reported_deadlocks++;
1365 // Symbolize only 2 first deadlock report to avoid huge slowdowns.
1366 bool symbolize = number_of_reported_deadlocks <= 2;
1367 ABSL_RAW_LOG(ERROR, "Potential Mutex deadlock: %s",
1368 CurrentStackString(b->buf, sizeof (b->buf), symbolize));
1369 int len = 0;
1370 for (int j = 0; j != all_locks->n; j++) {
1371 void* pr = deadlock_graph->Ptr(all_locks->locks[j].id);
1372 if (pr != nullptr) {
1373 snprintf(b->buf + len, sizeof (b->buf) - len, " %p", pr);
1374 len += static_cast<int>(strlen(&b->buf[len]));
1375 }
1376 }
1377 ABSL_RAW_LOG(ERROR,
1378 "Acquiring absl::Mutex %p while holding %s; a cycle in the "
1379 "historical lock ordering graph has been observed",
1380 static_cast<void *>(mu), b->buf);
1381 ABSL_RAW_LOG(ERROR, "Cycle: ");
1382 int path_len = deadlock_graph->FindPath(
1383 mu_id, other_node_id, ABSL_ARRAYSIZE(b->path), b->path);
1384 for (int j = 0; j != path_len; j++) {
1385 GraphId id = b->path[j];
1386 Mutex *path_mu = static_cast<Mutex *>(deadlock_graph->Ptr(id));
1387 if (path_mu == nullptr) continue;
1388 void** stack;
1389 int depth = deadlock_graph->GetStackTrace(id, &stack);
1390 snprintf(b->buf, sizeof(b->buf),
1391 "mutex@%p stack: ", static_cast<void *>(path_mu));
1392 StackString(stack, depth, b->buf + strlen(b->buf),
1393 static_cast<int>(sizeof(b->buf) - strlen(b->buf)),
1394 symbolize);
1395 ABSL_RAW_LOG(ERROR, "%s", b->buf);
1396 }
1397 if (synch_deadlock_detection.load(std::memory_order_acquire) ==
1398 OnDeadlockCycle::kAbort) {
1399 deadlock_graph_mu.Unlock(); // avoid deadlock in fatal sighandler
1400 ABSL_RAW_LOG(FATAL, "dying due to potential deadlock");
1401 return mu_id;
1402 }
1403 break; // report at most one potential deadlock per acquisition
1404 }
1405 }
1406
1407 return mu_id;
1408 }
1409
1410 // Invoke DeadlockCheck() iff we're in debug mode and
1411 // deadlock checking has been enabled.
DebugOnlyDeadlockCheck(Mutex * mu)1412 static inline GraphId DebugOnlyDeadlockCheck(Mutex *mu) {
1413 if (kDebugMode && synch_deadlock_detection.load(std::memory_order_acquire) !=
1414 OnDeadlockCycle::kIgnore) {
1415 return DeadlockCheck(mu);
1416 } else {
1417 return InvalidGraphId();
1418 }
1419 }
1420
ForgetDeadlockInfo()1421 void Mutex::ForgetDeadlockInfo() {
1422 if (kDebugMode && synch_deadlock_detection.load(std::memory_order_acquire) !=
1423 OnDeadlockCycle::kIgnore) {
1424 deadlock_graph_mu.Lock();
1425 if (deadlock_graph != nullptr) {
1426 deadlock_graph->RemoveNode(this);
1427 }
1428 deadlock_graph_mu.Unlock();
1429 }
1430 }
1431
AssertNotHeld() const1432 void Mutex::AssertNotHeld() const {
1433 // We have the data to allow this check only if in debug mode and deadlock
1434 // detection is enabled.
1435 if (kDebugMode &&
1436 (mu_.load(std::memory_order_relaxed) & (kMuWriter | kMuReader)) != 0 &&
1437 synch_deadlock_detection.load(std::memory_order_acquire) !=
1438 OnDeadlockCycle::kIgnore) {
1439 GraphId id = GetGraphId(const_cast<Mutex *>(this));
1440 SynchLocksHeld *locks = Synch_GetAllLocks();
1441 for (int i = 0; i != locks->n; i++) {
1442 if (locks->locks[i].id == id) {
1443 SynchEvent *mu_events = GetSynchEvent(this);
1444 ABSL_RAW_LOG(FATAL, "thread should not hold mutex %p %s",
1445 static_cast<const void *>(this),
1446 (mu_events == nullptr ? "" : mu_events->name));
1447 }
1448 }
1449 }
1450 }
1451
1452 // Attempt to acquire *mu, and return whether successful. The implementation
1453 // may spin for a short while if the lock cannot be acquired immediately.
TryAcquireWithSpinning(std::atomic<intptr_t> * mu)1454 static bool TryAcquireWithSpinning(std::atomic<intptr_t>* mu) {
1455 int c = GetMutexGlobals().spinloop_iterations;
1456 do { // do/while somewhat faster on AMD
1457 intptr_t v = mu->load(std::memory_order_relaxed);
1458 if ((v & (kMuReader|kMuEvent)) != 0) {
1459 return false; // a reader or tracing -> give up
1460 } else if (((v & kMuWriter) == 0) && // no holder -> try to acquire
1461 mu->compare_exchange_strong(v, kMuWriter | v,
1462 std::memory_order_acquire,
1463 std::memory_order_relaxed)) {
1464 return true;
1465 }
1466 } while (--c > 0);
1467 return false;
1468 }
1469
Lock()1470 ABSL_XRAY_LOG_ARGS(1) void Mutex::Lock() {
1471 ABSL_TSAN_MUTEX_PRE_LOCK(this, 0);
1472 GraphId id = DebugOnlyDeadlockCheck(this);
1473 intptr_t v = mu_.load(std::memory_order_relaxed);
1474 // try fast acquire, then spin loop
1475 if ((v & (kMuWriter | kMuReader | kMuEvent)) != 0 ||
1476 !mu_.compare_exchange_strong(v, kMuWriter | v,
1477 std::memory_order_acquire,
1478 std::memory_order_relaxed)) {
1479 // try spin acquire, then slow loop
1480 if (!TryAcquireWithSpinning(&this->mu_)) {
1481 this->LockSlow(kExclusive, nullptr, 0);
1482 }
1483 }
1484 DebugOnlyLockEnter(this, id);
1485 ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0);
1486 }
1487
ReaderLock()1488 ABSL_XRAY_LOG_ARGS(1) void Mutex::ReaderLock() {
1489 ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock);
1490 GraphId id = DebugOnlyDeadlockCheck(this);
1491 intptr_t v = mu_.load(std::memory_order_relaxed);
1492 // try fast acquire, then slow loop
1493 if ((v & (kMuWriter | kMuWait | kMuEvent)) != 0 ||
1494 !mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne,
1495 std::memory_order_acquire,
1496 std::memory_order_relaxed)) {
1497 this->LockSlow(kShared, nullptr, 0);
1498 }
1499 DebugOnlyLockEnter(this, id);
1500 ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0);
1501 }
1502
LockWhen(const Condition & cond)1503 void Mutex::LockWhen(const Condition &cond) {
1504 ABSL_TSAN_MUTEX_PRE_LOCK(this, 0);
1505 GraphId id = DebugOnlyDeadlockCheck(this);
1506 this->LockSlow(kExclusive, &cond, 0);
1507 DebugOnlyLockEnter(this, id);
1508 ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0);
1509 }
1510
LockWhenWithTimeout(const Condition & cond,absl::Duration timeout)1511 bool Mutex::LockWhenWithTimeout(const Condition &cond, absl::Duration timeout) {
1512 return LockWhenWithDeadline(cond, DeadlineFromTimeout(timeout));
1513 }
1514
LockWhenWithDeadline(const Condition & cond,absl::Time deadline)1515 bool Mutex::LockWhenWithDeadline(const Condition &cond, absl::Time deadline) {
1516 ABSL_TSAN_MUTEX_PRE_LOCK(this, 0);
1517 GraphId id = DebugOnlyDeadlockCheck(this);
1518 bool res = LockSlowWithDeadline(kExclusive, &cond,
1519 KernelTimeout(deadline), 0);
1520 DebugOnlyLockEnter(this, id);
1521 ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0);
1522 return res;
1523 }
1524
ReaderLockWhen(const Condition & cond)1525 void Mutex::ReaderLockWhen(const Condition &cond) {
1526 ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock);
1527 GraphId id = DebugOnlyDeadlockCheck(this);
1528 this->LockSlow(kShared, &cond, 0);
1529 DebugOnlyLockEnter(this, id);
1530 ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0);
1531 }
1532
ReaderLockWhenWithTimeout(const Condition & cond,absl::Duration timeout)1533 bool Mutex::ReaderLockWhenWithTimeout(const Condition &cond,
1534 absl::Duration timeout) {
1535 return ReaderLockWhenWithDeadline(cond, DeadlineFromTimeout(timeout));
1536 }
1537
ReaderLockWhenWithDeadline(const Condition & cond,absl::Time deadline)1538 bool Mutex::ReaderLockWhenWithDeadline(const Condition &cond,
1539 absl::Time deadline) {
1540 ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock);
1541 GraphId id = DebugOnlyDeadlockCheck(this);
1542 bool res = LockSlowWithDeadline(kShared, &cond, KernelTimeout(deadline), 0);
1543 DebugOnlyLockEnter(this, id);
1544 ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0);
1545 return res;
1546 }
1547
Await(const Condition & cond)1548 void Mutex::Await(const Condition &cond) {
1549 if (cond.Eval()) { // condition already true; nothing to do
1550 if (kDebugMode) {
1551 this->AssertReaderHeld();
1552 }
1553 } else { // normal case
1554 ABSL_RAW_CHECK(this->AwaitCommon(cond, KernelTimeout::Never()),
1555 "condition untrue on return from Await");
1556 }
1557 }
1558
AwaitWithTimeout(const Condition & cond,absl::Duration timeout)1559 bool Mutex::AwaitWithTimeout(const Condition &cond, absl::Duration timeout) {
1560 return AwaitWithDeadline(cond, DeadlineFromTimeout(timeout));
1561 }
1562
AwaitWithDeadline(const Condition & cond,absl::Time deadline)1563 bool Mutex::AwaitWithDeadline(const Condition &cond, absl::Time deadline) {
1564 if (cond.Eval()) { // condition already true; nothing to do
1565 if (kDebugMode) {
1566 this->AssertReaderHeld();
1567 }
1568 return true;
1569 }
1570
1571 KernelTimeout t{deadline};
1572 bool res = this->AwaitCommon(cond, t);
1573 ABSL_RAW_CHECK(res || t.has_timeout(),
1574 "condition untrue on return from Await");
1575 return res;
1576 }
1577
AwaitCommon(const Condition & cond,KernelTimeout t)1578 bool Mutex::AwaitCommon(const Condition &cond, KernelTimeout t) {
1579 this->AssertReaderHeld();
1580 MuHow how =
1581 (mu_.load(std::memory_order_relaxed) & kMuWriter) ? kExclusive : kShared;
1582 ABSL_TSAN_MUTEX_PRE_UNLOCK(this, TsanFlags(how));
1583 SynchWaitParams waitp(
1584 how, &cond, t, nullptr /*no cvmu*/, Synch_GetPerThreadAnnotated(this),
1585 nullptr /*no cv_word*/);
1586 int flags = kMuHasBlocked;
1587 if (!Condition::GuaranteedEqual(&cond, nullptr)) {
1588 flags |= kMuIsCond;
1589 }
1590 this->UnlockSlow(&waitp);
1591 this->Block(waitp.thread);
1592 ABSL_TSAN_MUTEX_POST_UNLOCK(this, TsanFlags(how));
1593 ABSL_TSAN_MUTEX_PRE_LOCK(this, TsanFlags(how));
1594 this->LockSlowLoop(&waitp, flags);
1595 bool res = waitp.cond != nullptr || // => cond known true from LockSlowLoop
1596 EvalConditionAnnotated(&cond, this, true, false, how == kShared);
1597 ABSL_TSAN_MUTEX_POST_LOCK(this, TsanFlags(how), 0);
1598 return res;
1599 }
1600
TryLock()1601 ABSL_XRAY_LOG_ARGS(1) bool Mutex::TryLock() {
1602 ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_try_lock);
1603 intptr_t v = mu_.load(std::memory_order_relaxed);
1604 if ((v & (kMuWriter | kMuReader | kMuEvent)) == 0 && // try fast acquire
1605 mu_.compare_exchange_strong(v, kMuWriter | v,
1606 std::memory_order_acquire,
1607 std::memory_order_relaxed)) {
1608 DebugOnlyLockEnter(this);
1609 ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_try_lock, 0);
1610 return true;
1611 }
1612 if ((v & kMuEvent) != 0) { // we're recording events
1613 if ((v & kExclusive->slow_need_zero) == 0 && // try fast acquire
1614 mu_.compare_exchange_strong(
1615 v, (kExclusive->fast_or | v) + kExclusive->fast_add,
1616 std::memory_order_acquire, std::memory_order_relaxed)) {
1617 DebugOnlyLockEnter(this);
1618 PostSynchEvent(this, SYNCH_EV_TRYLOCK_SUCCESS);
1619 ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_try_lock, 0);
1620 return true;
1621 } else {
1622 PostSynchEvent(this, SYNCH_EV_TRYLOCK_FAILED);
1623 }
1624 }
1625 ABSL_TSAN_MUTEX_POST_LOCK(
1626 this, __tsan_mutex_try_lock | __tsan_mutex_try_lock_failed, 0);
1627 return false;
1628 }
1629
ReaderTryLock()1630 ABSL_XRAY_LOG_ARGS(1) bool Mutex::ReaderTryLock() {
1631 ABSL_TSAN_MUTEX_PRE_LOCK(this,
1632 __tsan_mutex_read_lock | __tsan_mutex_try_lock);
1633 intptr_t v = mu_.load(std::memory_order_relaxed);
1634 // The while-loops (here and below) iterate only if the mutex word keeps
1635 // changing (typically because the reader count changes) under the CAS. We
1636 // limit the number of attempts to avoid having to think about livelock.
1637 int loop_limit = 5;
1638 while ((v & (kMuWriter|kMuWait|kMuEvent)) == 0 && loop_limit != 0) {
1639 if (mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne,
1640 std::memory_order_acquire,
1641 std::memory_order_relaxed)) {
1642 DebugOnlyLockEnter(this);
1643 ABSL_TSAN_MUTEX_POST_LOCK(
1644 this, __tsan_mutex_read_lock | __tsan_mutex_try_lock, 0);
1645 return true;
1646 }
1647 loop_limit--;
1648 v = mu_.load(std::memory_order_relaxed);
1649 }
1650 if ((v & kMuEvent) != 0) { // we're recording events
1651 loop_limit = 5;
1652 while ((v & kShared->slow_need_zero) == 0 && loop_limit != 0) {
1653 if (mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne,
1654 std::memory_order_acquire,
1655 std::memory_order_relaxed)) {
1656 DebugOnlyLockEnter(this);
1657 PostSynchEvent(this, SYNCH_EV_READERTRYLOCK_SUCCESS);
1658 ABSL_TSAN_MUTEX_POST_LOCK(
1659 this, __tsan_mutex_read_lock | __tsan_mutex_try_lock, 0);
1660 return true;
1661 }
1662 loop_limit--;
1663 v = mu_.load(std::memory_order_relaxed);
1664 }
1665 if ((v & kMuEvent) != 0) {
1666 PostSynchEvent(this, SYNCH_EV_READERTRYLOCK_FAILED);
1667 }
1668 }
1669 ABSL_TSAN_MUTEX_POST_LOCK(this,
1670 __tsan_mutex_read_lock | __tsan_mutex_try_lock |
1671 __tsan_mutex_try_lock_failed,
1672 0);
1673 return false;
1674 }
1675
Unlock()1676 ABSL_XRAY_LOG_ARGS(1) void Mutex::Unlock() {
1677 ABSL_TSAN_MUTEX_PRE_UNLOCK(this, 0);
1678 DebugOnlyLockLeave(this);
1679 intptr_t v = mu_.load(std::memory_order_relaxed);
1680
1681 if (kDebugMode && ((v & (kMuWriter | kMuReader)) != kMuWriter)) {
1682 ABSL_RAW_LOG(FATAL, "Mutex unlocked when destroyed or not locked: v=0x%x",
1683 static_cast<unsigned>(v));
1684 }
1685
1686 // should_try_cas is whether we'll try a compare-and-swap immediately.
1687 // NOTE: optimized out when kDebugMode is false.
1688 bool should_try_cas = ((v & (kMuEvent | kMuWriter)) == kMuWriter &&
1689 (v & (kMuWait | kMuDesig)) != kMuWait);
1690 // But, we can use an alternate computation of it, that compilers
1691 // currently don't find on their own. When that changes, this function
1692 // can be simplified.
1693 intptr_t x = (v ^ (kMuWriter | kMuWait)) & (kMuWriter | kMuEvent);
1694 intptr_t y = (v ^ (kMuWriter | kMuWait)) & (kMuWait | kMuDesig);
1695 // Claim: "x == 0 && y > 0" is equal to should_try_cas.
1696 // Also, because kMuWriter and kMuEvent exceed kMuDesig and kMuWait,
1697 // all possible non-zero values for x exceed all possible values for y.
1698 // Therefore, (x == 0 && y > 0) == (x < y).
1699 if (kDebugMode && should_try_cas != (x < y)) {
1700 // We would usually use PRIdPTR here, but is not correctly implemented
1701 // within the android toolchain.
1702 ABSL_RAW_LOG(FATAL, "internal logic error %llx %llx %llx\n",
1703 static_cast<long long>(v), static_cast<long long>(x),
1704 static_cast<long long>(y));
1705 }
1706 if (x < y &&
1707 mu_.compare_exchange_strong(v, v & ~(kMuWrWait | kMuWriter),
1708 std::memory_order_release,
1709 std::memory_order_relaxed)) {
1710 // fast writer release (writer with no waiters or with designated waker)
1711 } else {
1712 this->UnlockSlow(nullptr /*no waitp*/); // take slow path
1713 }
1714 ABSL_TSAN_MUTEX_POST_UNLOCK(this, 0);
1715 }
1716
1717 // Requires v to represent a reader-locked state.
ExactlyOneReader(intptr_t v)1718 static bool ExactlyOneReader(intptr_t v) {
1719 assert((v & (kMuWriter|kMuReader)) == kMuReader);
1720 assert((v & kMuHigh) != 0);
1721 // The more straightforward "(v & kMuHigh) == kMuOne" also works, but
1722 // on some architectures the following generates slightly smaller code.
1723 // It may be faster too.
1724 constexpr intptr_t kMuMultipleWaitersMask = kMuHigh ^ kMuOne;
1725 return (v & kMuMultipleWaitersMask) == 0;
1726 }
1727
ReaderUnlock()1728 ABSL_XRAY_LOG_ARGS(1) void Mutex::ReaderUnlock() {
1729 ABSL_TSAN_MUTEX_PRE_UNLOCK(this, __tsan_mutex_read_lock);
1730 DebugOnlyLockLeave(this);
1731 intptr_t v = mu_.load(std::memory_order_relaxed);
1732 assert((v & (kMuWriter|kMuReader)) == kMuReader);
1733 if ((v & (kMuReader|kMuWait|kMuEvent)) == kMuReader) {
1734 // fast reader release (reader with no waiters)
1735 intptr_t clear = ExactlyOneReader(v) ? kMuReader|kMuOne : kMuOne;
1736 if (mu_.compare_exchange_strong(v, v - clear,
1737 std::memory_order_release,
1738 std::memory_order_relaxed)) {
1739 ABSL_TSAN_MUTEX_POST_UNLOCK(this, __tsan_mutex_read_lock);
1740 return;
1741 }
1742 }
1743 this->UnlockSlow(nullptr /*no waitp*/); // take slow path
1744 ABSL_TSAN_MUTEX_POST_UNLOCK(this, __tsan_mutex_read_lock);
1745 }
1746
1747 // Clears the designated waker flag in the mutex if this thread has blocked, and
1748 // therefore may be the designated waker.
ClearDesignatedWakerMask(int flag)1749 static intptr_t ClearDesignatedWakerMask(int flag) {
1750 assert(flag >= 0);
1751 assert(flag <= 1);
1752 switch (flag) {
1753 case 0: // not blocked
1754 return ~static_cast<intptr_t>(0);
1755 case 1: // blocked; turn off the designated waker bit
1756 return ~static_cast<intptr_t>(kMuDesig);
1757 }
1758 ABSL_INTERNAL_UNREACHABLE;
1759 }
1760
1761 // Conditionally ignores the existence of waiting writers if a reader that has
1762 // already blocked once wakes up.
IgnoreWaitingWritersMask(int flag)1763 static intptr_t IgnoreWaitingWritersMask(int flag) {
1764 assert(flag >= 0);
1765 assert(flag <= 1);
1766 switch (flag) {
1767 case 0: // not blocked
1768 return ~static_cast<intptr_t>(0);
1769 case 1: // blocked; pretend there are no waiting writers
1770 return ~static_cast<intptr_t>(kMuWrWait);
1771 }
1772 ABSL_INTERNAL_UNREACHABLE;
1773 }
1774
1775 // Internal version of LockWhen(). See LockSlowWithDeadline()
LockSlow(MuHow how,const Condition * cond,int flags)1776 ABSL_ATTRIBUTE_NOINLINE void Mutex::LockSlow(MuHow how, const Condition *cond,
1777 int flags) {
1778 ABSL_RAW_CHECK(
1779 this->LockSlowWithDeadline(how, cond, KernelTimeout::Never(), flags),
1780 "condition untrue on return from LockSlow");
1781 }
1782
1783 // Compute cond->Eval() and tell race detectors that we do it under mutex mu.
EvalConditionAnnotated(const Condition * cond,Mutex * mu,bool locking,bool trylock,bool read_lock)1784 static inline bool EvalConditionAnnotated(const Condition *cond, Mutex *mu,
1785 bool locking, bool trylock,
1786 bool read_lock) {
1787 // Delicate annotation dance.
1788 // We are currently inside of read/write lock/unlock operation.
1789 // All memory accesses are ignored inside of mutex operations + for unlock
1790 // operation tsan considers that we've already released the mutex.
1791 bool res = false;
1792 #ifdef ABSL_INTERNAL_HAVE_TSAN_INTERFACE
1793 const int flags = read_lock ? __tsan_mutex_read_lock : 0;
1794 const int tryflags = flags | (trylock ? __tsan_mutex_try_lock : 0);
1795 #endif
1796 if (locking) {
1797 // For lock we pretend that we have finished the operation,
1798 // evaluate the predicate, then unlock the mutex and start locking it again
1799 // to match the annotation at the end of outer lock operation.
1800 // Note: we can't simply do POST_LOCK, Eval, PRE_LOCK, because then tsan
1801 // will think the lock acquisition is recursive which will trigger
1802 // deadlock detector.
1803 ABSL_TSAN_MUTEX_POST_LOCK(mu, tryflags, 0);
1804 res = cond->Eval();
1805 // There is no "try" version of Unlock, so use flags instead of tryflags.
1806 ABSL_TSAN_MUTEX_PRE_UNLOCK(mu, flags);
1807 ABSL_TSAN_MUTEX_POST_UNLOCK(mu, flags);
1808 ABSL_TSAN_MUTEX_PRE_LOCK(mu, tryflags);
1809 } else {
1810 // Similarly, for unlock we pretend that we have unlocked the mutex,
1811 // lock the mutex, evaluate the predicate, and start unlocking it again
1812 // to match the annotation at the end of outer unlock operation.
1813 ABSL_TSAN_MUTEX_POST_UNLOCK(mu, flags);
1814 ABSL_TSAN_MUTEX_PRE_LOCK(mu, flags);
1815 ABSL_TSAN_MUTEX_POST_LOCK(mu, flags, 0);
1816 res = cond->Eval();
1817 ABSL_TSAN_MUTEX_PRE_UNLOCK(mu, flags);
1818 }
1819 // Prevent unused param warnings in non-TSAN builds.
1820 static_cast<void>(mu);
1821 static_cast<void>(trylock);
1822 static_cast<void>(read_lock);
1823 return res;
1824 }
1825
1826 // Compute cond->Eval() hiding it from race detectors.
1827 // We are hiding it because inside of UnlockSlow we can evaluate a predicate
1828 // that was just added by a concurrent Lock operation; Lock adds the predicate
1829 // to the internal Mutex list without actually acquiring the Mutex
1830 // (it only acquires the internal spinlock, which is rightfully invisible for
1831 // tsan). As the result there is no tsan-visible synchronization between the
1832 // addition and this thread. So if we would enable race detection here,
1833 // it would race with the predicate initialization.
EvalConditionIgnored(Mutex * mu,const Condition * cond)1834 static inline bool EvalConditionIgnored(Mutex *mu, const Condition *cond) {
1835 // Memory accesses are already ignored inside of lock/unlock operations,
1836 // but synchronization operations are also ignored. When we evaluate the
1837 // predicate we must ignore only memory accesses but not synchronization,
1838 // because missed synchronization can lead to false reports later.
1839 // So we "divert" (which un-ignores both memory accesses and synchronization)
1840 // and then separately turn on ignores of memory accesses.
1841 ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
1842 ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN();
1843 bool res = cond->Eval();
1844 ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_END();
1845 ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
1846 static_cast<void>(mu); // Prevent unused param warning in non-TSAN builds.
1847 return res;
1848 }
1849
1850 // Internal equivalent of *LockWhenWithDeadline(), where
1851 // "t" represents the absolute timeout; !t.has_timeout() means "forever".
1852 // "how" is "kShared" (for ReaderLockWhen) or "kExclusive" (for LockWhen)
1853 // In flags, bits are ored together:
1854 // - kMuHasBlocked indicates that the client has already blocked on the call so
1855 // the designated waker bit must be cleared and waiting writers should not
1856 // obstruct this call
1857 // - kMuIsCond indicates that this is a conditional acquire (condition variable,
1858 // Await, LockWhen) so contention profiling should be suppressed.
LockSlowWithDeadline(MuHow how,const Condition * cond,KernelTimeout t,int flags)1859 bool Mutex::LockSlowWithDeadline(MuHow how, const Condition *cond,
1860 KernelTimeout t, int flags) {
1861 intptr_t v = mu_.load(std::memory_order_relaxed);
1862 bool unlock = false;
1863 if ((v & how->fast_need_zero) == 0 && // try fast acquire
1864 mu_.compare_exchange_strong(
1865 v,
1866 (how->fast_or |
1867 (v & ClearDesignatedWakerMask(flags & kMuHasBlocked))) +
1868 how->fast_add,
1869 std::memory_order_acquire, std::memory_order_relaxed)) {
1870 if (cond == nullptr ||
1871 EvalConditionAnnotated(cond, this, true, false, how == kShared)) {
1872 return true;
1873 }
1874 unlock = true;
1875 }
1876 SynchWaitParams waitp(
1877 how, cond, t, nullptr /*no cvmu*/, Synch_GetPerThreadAnnotated(this),
1878 nullptr /*no cv_word*/);
1879 if (!Condition::GuaranteedEqual(cond, nullptr)) {
1880 flags |= kMuIsCond;
1881 }
1882 if (unlock) {
1883 this->UnlockSlow(&waitp);
1884 this->Block(waitp.thread);
1885 flags |= kMuHasBlocked;
1886 }
1887 this->LockSlowLoop(&waitp, flags);
1888 return waitp.cond != nullptr || // => cond known true from LockSlowLoop
1889 cond == nullptr ||
1890 EvalConditionAnnotated(cond, this, true, false, how == kShared);
1891 }
1892
1893 // RAW_CHECK_FMT() takes a condition, a printf-style format string, and
1894 // the printf-style argument list. The format string must be a literal.
1895 // Arguments after the first are not evaluated unless the condition is true.
1896 #define RAW_CHECK_FMT(cond, ...) \
1897 do { \
1898 if (ABSL_PREDICT_FALSE(!(cond))) { \
1899 ABSL_RAW_LOG(FATAL, "Check " #cond " failed: " __VA_ARGS__); \
1900 } \
1901 } while (0)
1902
CheckForMutexCorruption(intptr_t v,const char * label)1903 static void CheckForMutexCorruption(intptr_t v, const char* label) {
1904 // Test for either of two situations that should not occur in v:
1905 // kMuWriter and kMuReader
1906 // kMuWrWait and !kMuWait
1907 const uintptr_t w = v ^ kMuWait;
1908 // By flipping that bit, we can now test for:
1909 // kMuWriter and kMuReader in w
1910 // kMuWrWait and kMuWait in w
1911 // We've chosen these two pairs of values to be so that they will overlap,
1912 // respectively, when the word is left shifted by three. This allows us to
1913 // save a branch in the common (correct) case of them not being coincident.
1914 static_assert(kMuReader << 3 == kMuWriter, "must match");
1915 static_assert(kMuWait << 3 == kMuWrWait, "must match");
1916 if (ABSL_PREDICT_TRUE((w & (w << 3) & (kMuWriter | kMuWrWait)) == 0)) return;
1917 RAW_CHECK_FMT((v & (kMuWriter | kMuReader)) != (kMuWriter | kMuReader),
1918 "%s: Mutex corrupt: both reader and writer lock held: %p",
1919 label, reinterpret_cast<void *>(v));
1920 RAW_CHECK_FMT((v & (kMuWait | kMuWrWait)) != kMuWrWait,
1921 "%s: Mutex corrupt: waiting writer with no waiters: %p",
1922 label, reinterpret_cast<void *>(v));
1923 assert(false);
1924 }
1925
LockSlowLoop(SynchWaitParams * waitp,int flags)1926 void Mutex::LockSlowLoop(SynchWaitParams *waitp, int flags) {
1927 SchedulingGuard::ScopedDisable disable_rescheduling;
1928 int c = 0;
1929 intptr_t v = mu_.load(std::memory_order_relaxed);
1930 if ((v & kMuEvent) != 0) {
1931 PostSynchEvent(this,
1932 waitp->how == kExclusive? SYNCH_EV_LOCK: SYNCH_EV_READERLOCK);
1933 }
1934 ABSL_RAW_CHECK(
1935 waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors,
1936 "detected illegal recursion into Mutex code");
1937 for (;;) {
1938 v = mu_.load(std::memory_order_relaxed);
1939 CheckForMutexCorruption(v, "Lock");
1940 if ((v & waitp->how->slow_need_zero) == 0) {
1941 if (mu_.compare_exchange_strong(
1942 v,
1943 (waitp->how->fast_or |
1944 (v & ClearDesignatedWakerMask(flags & kMuHasBlocked))) +
1945 waitp->how->fast_add,
1946 std::memory_order_acquire, std::memory_order_relaxed)) {
1947 if (waitp->cond == nullptr ||
1948 EvalConditionAnnotated(waitp->cond, this, true, false,
1949 waitp->how == kShared)) {
1950 break; // we timed out, or condition true, so return
1951 }
1952 this->UnlockSlow(waitp); // got lock but condition false
1953 this->Block(waitp->thread);
1954 flags |= kMuHasBlocked;
1955 c = 0;
1956 }
1957 } else { // need to access waiter list
1958 bool dowait = false;
1959 if ((v & (kMuSpin|kMuWait)) == 0) { // no waiters
1960 // This thread tries to become the one and only waiter.
1961 PerThreadSynch *new_h = Enqueue(nullptr, waitp, v, flags);
1962 intptr_t nv =
1963 (v & ClearDesignatedWakerMask(flags & kMuHasBlocked) & kMuLow) |
1964 kMuWait;
1965 ABSL_RAW_CHECK(new_h != nullptr, "Enqueue to empty list failed");
1966 if (waitp->how == kExclusive && (v & kMuReader) != 0) {
1967 nv |= kMuWrWait;
1968 }
1969 if (mu_.compare_exchange_strong(
1970 v, reinterpret_cast<intptr_t>(new_h) | nv,
1971 std::memory_order_release, std::memory_order_relaxed)) {
1972 dowait = true;
1973 } else { // attempted Enqueue() failed
1974 // zero out the waitp field set by Enqueue()
1975 waitp->thread->waitp = nullptr;
1976 }
1977 } else if ((v & waitp->how->slow_inc_need_zero &
1978 IgnoreWaitingWritersMask(flags & kMuHasBlocked)) == 0) {
1979 // This is a reader that needs to increment the reader count,
1980 // but the count is currently held in the last waiter.
1981 if (mu_.compare_exchange_strong(
1982 v,
1983 (v & ClearDesignatedWakerMask(flags & kMuHasBlocked)) |
1984 kMuSpin | kMuReader,
1985 std::memory_order_acquire, std::memory_order_relaxed)) {
1986 PerThreadSynch *h = GetPerThreadSynch(v);
1987 h->readers += kMuOne; // inc reader count in waiter
1988 do { // release spinlock
1989 v = mu_.load(std::memory_order_relaxed);
1990 } while (!mu_.compare_exchange_weak(v, (v & ~kMuSpin) | kMuReader,
1991 std::memory_order_release,
1992 std::memory_order_relaxed));
1993 if (waitp->cond == nullptr ||
1994 EvalConditionAnnotated(waitp->cond, this, true, false,
1995 waitp->how == kShared)) {
1996 break; // we timed out, or condition true, so return
1997 }
1998 this->UnlockSlow(waitp); // got lock but condition false
1999 this->Block(waitp->thread);
2000 flags |= kMuHasBlocked;
2001 c = 0;
2002 }
2003 } else if ((v & kMuSpin) == 0 && // attempt to queue ourselves
2004 mu_.compare_exchange_strong(
2005 v,
2006 (v & ClearDesignatedWakerMask(flags & kMuHasBlocked)) |
2007 kMuSpin | kMuWait,
2008 std::memory_order_acquire, std::memory_order_relaxed)) {
2009 PerThreadSynch *h = GetPerThreadSynch(v);
2010 PerThreadSynch *new_h = Enqueue(h, waitp, v, flags);
2011 intptr_t wr_wait = 0;
2012 ABSL_RAW_CHECK(new_h != nullptr, "Enqueue to list failed");
2013 if (waitp->how == kExclusive && (v & kMuReader) != 0) {
2014 wr_wait = kMuWrWait; // give priority to a waiting writer
2015 }
2016 do { // release spinlock
2017 v = mu_.load(std::memory_order_relaxed);
2018 } while (!mu_.compare_exchange_weak(
2019 v, (v & (kMuLow & ~kMuSpin)) | kMuWait | wr_wait |
2020 reinterpret_cast<intptr_t>(new_h),
2021 std::memory_order_release, std::memory_order_relaxed));
2022 dowait = true;
2023 }
2024 if (dowait) {
2025 this->Block(waitp->thread); // wait until removed from list or timeout
2026 flags |= kMuHasBlocked;
2027 c = 0;
2028 }
2029 }
2030 ABSL_RAW_CHECK(
2031 waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors,
2032 "detected illegal recursion into Mutex code");
2033 // delay, then try again
2034 c = synchronization_internal::MutexDelay(c, GENTLE);
2035 }
2036 ABSL_RAW_CHECK(
2037 waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors,
2038 "detected illegal recursion into Mutex code");
2039 if ((v & kMuEvent) != 0) {
2040 PostSynchEvent(this,
2041 waitp->how == kExclusive? SYNCH_EV_LOCK_RETURNING :
2042 SYNCH_EV_READERLOCK_RETURNING);
2043 }
2044 }
2045
2046 // Unlock this mutex, which is held by the current thread.
2047 // If waitp is non-zero, it must be the wait parameters for the current thread
2048 // which holds the lock but is not runnable because its condition is false
2049 // or it is in the process of blocking on a condition variable; it must requeue
2050 // itself on the mutex/condvar to wait for its condition to become true.
UnlockSlow(SynchWaitParams * waitp)2051 ABSL_ATTRIBUTE_NOINLINE void Mutex::UnlockSlow(SynchWaitParams *waitp) {
2052 SchedulingGuard::ScopedDisable disable_rescheduling;
2053 intptr_t v = mu_.load(std::memory_order_relaxed);
2054 this->AssertReaderHeld();
2055 CheckForMutexCorruption(v, "Unlock");
2056 if ((v & kMuEvent) != 0) {
2057 PostSynchEvent(this,
2058 (v & kMuWriter) != 0? SYNCH_EV_UNLOCK: SYNCH_EV_READERUNLOCK);
2059 }
2060 int c = 0;
2061 // the waiter under consideration to wake, or zero
2062 PerThreadSynch *w = nullptr;
2063 // the predecessor to w or zero
2064 PerThreadSynch *pw = nullptr;
2065 // head of the list searched previously, or zero
2066 PerThreadSynch *old_h = nullptr;
2067 // a condition that's known to be false.
2068 const Condition *known_false = nullptr;
2069 PerThreadSynch *wake_list = kPerThreadSynchNull; // list of threads to wake
2070 intptr_t wr_wait = 0; // set to kMuWrWait if we wake a reader and a
2071 // later writer could have acquired the lock
2072 // (starvation avoidance)
2073 ABSL_RAW_CHECK(waitp == nullptr || waitp->thread->waitp == nullptr ||
2074 waitp->thread->suppress_fatal_errors,
2075 "detected illegal recursion into Mutex code");
2076 // This loop finds threads wake_list to wakeup if any, and removes them from
2077 // the list of waiters. In addition, it places waitp.thread on the queue of
2078 // waiters if waitp is non-zero.
2079 for (;;) {
2080 v = mu_.load(std::memory_order_relaxed);
2081 if ((v & kMuWriter) != 0 && (v & (kMuWait | kMuDesig)) != kMuWait &&
2082 waitp == nullptr) {
2083 // fast writer release (writer with no waiters or with designated waker)
2084 if (mu_.compare_exchange_strong(v, v & ~(kMuWrWait | kMuWriter),
2085 std::memory_order_release,
2086 std::memory_order_relaxed)) {
2087 return;
2088 }
2089 } else if ((v & (kMuReader | kMuWait)) == kMuReader && waitp == nullptr) {
2090 // fast reader release (reader with no waiters)
2091 intptr_t clear = ExactlyOneReader(v) ? kMuReader | kMuOne : kMuOne;
2092 if (mu_.compare_exchange_strong(v, v - clear,
2093 std::memory_order_release,
2094 std::memory_order_relaxed)) {
2095 return;
2096 }
2097 } else if ((v & kMuSpin) == 0 && // attempt to get spinlock
2098 mu_.compare_exchange_strong(v, v | kMuSpin,
2099 std::memory_order_acquire,
2100 std::memory_order_relaxed)) {
2101 if ((v & kMuWait) == 0) { // no one to wake
2102 intptr_t nv;
2103 bool do_enqueue = true; // always Enqueue() the first time
2104 ABSL_RAW_CHECK(waitp != nullptr,
2105 "UnlockSlow is confused"); // about to sleep
2106 do { // must loop to release spinlock as reader count may change
2107 v = mu_.load(std::memory_order_relaxed);
2108 // decrement reader count if there are readers
2109 intptr_t new_readers = (v >= kMuOne)? v - kMuOne : v;
2110 PerThreadSynch *new_h = nullptr;
2111 if (do_enqueue) {
2112 // If we are enqueuing on a CondVar (waitp->cv_word != nullptr) then
2113 // we must not retry here. The initial attempt will always have
2114 // succeeded, further attempts would enqueue us against *this due to
2115 // Fer() handling.
2116 do_enqueue = (waitp->cv_word == nullptr);
2117 new_h = Enqueue(nullptr, waitp, new_readers, kMuIsCond);
2118 }
2119 intptr_t clear = kMuWrWait | kMuWriter; // by default clear write bit
2120 if ((v & kMuWriter) == 0 && ExactlyOneReader(v)) { // last reader
2121 clear = kMuWrWait | kMuReader; // clear read bit
2122 }
2123 nv = (v & kMuLow & ~clear & ~kMuSpin);
2124 if (new_h != nullptr) {
2125 nv |= kMuWait | reinterpret_cast<intptr_t>(new_h);
2126 } else { // new_h could be nullptr if we queued ourselves on a
2127 // CondVar
2128 // In that case, we must place the reader count back in the mutex
2129 // word, as Enqueue() did not store it in the new waiter.
2130 nv |= new_readers & kMuHigh;
2131 }
2132 // release spinlock & our lock; retry if reader-count changed
2133 // (writer count cannot change since we hold lock)
2134 } while (!mu_.compare_exchange_weak(v, nv,
2135 std::memory_order_release,
2136 std::memory_order_relaxed));
2137 break;
2138 }
2139
2140 // There are waiters.
2141 // Set h to the head of the circular waiter list.
2142 PerThreadSynch *h = GetPerThreadSynch(v);
2143 if ((v & kMuReader) != 0 && (h->readers & kMuHigh) > kMuOne) {
2144 // a reader but not the last
2145 h->readers -= kMuOne; // release our lock
2146 intptr_t nv = v; // normally just release spinlock
2147 if (waitp != nullptr) { // but waitp!=nullptr => must queue ourselves
2148 PerThreadSynch *new_h = Enqueue(h, waitp, v, kMuIsCond);
2149 ABSL_RAW_CHECK(new_h != nullptr,
2150 "waiters disappeared during Enqueue()!");
2151 nv &= kMuLow;
2152 nv |= kMuWait | reinterpret_cast<intptr_t>(new_h);
2153 }
2154 mu_.store(nv, std::memory_order_release); // release spinlock
2155 // can release with a store because there were waiters
2156 break;
2157 }
2158
2159 // Either we didn't search before, or we marked the queue
2160 // as "maybe_unlocking" and no one else should have changed it.
2161 ABSL_RAW_CHECK(old_h == nullptr || h->maybe_unlocking,
2162 "Mutex queue changed beneath us");
2163
2164 // The lock is becoming free, and there's a waiter
2165 if (old_h != nullptr &&
2166 !old_h->may_skip) { // we used old_h as a terminator
2167 old_h->may_skip = true; // allow old_h to skip once more
2168 ABSL_RAW_CHECK(old_h->skip == nullptr, "illegal skip from head");
2169 if (h != old_h && MuEquivalentWaiter(old_h, old_h->next)) {
2170 old_h->skip = old_h->next; // old_h not head & can skip to successor
2171 }
2172 }
2173 if (h->next->waitp->how == kExclusive &&
2174 Condition::GuaranteedEqual(h->next->waitp->cond, nullptr)) {
2175 // easy case: writer with no condition; no need to search
2176 pw = h; // wake w, the successor of h (=pw)
2177 w = h->next;
2178 w->wake = true;
2179 // We are waking up a writer. This writer may be racing against
2180 // an already awake reader for the lock. We want the
2181 // writer to usually win this race,
2182 // because if it doesn't, we can potentially keep taking a reader
2183 // perpetually and writers will starve. Worse than
2184 // that, this can also starve other readers if kMuWrWait gets set
2185 // later.
2186 wr_wait = kMuWrWait;
2187 } else if (w != nullptr && (w->waitp->how == kExclusive || h == old_h)) {
2188 // we found a waiter w to wake on a previous iteration and either it's
2189 // a writer, or we've searched the entire list so we have all the
2190 // readers.
2191 if (pw == nullptr) { // if w's predecessor is unknown, it must be h
2192 pw = h;
2193 }
2194 } else {
2195 // At this point we don't know all the waiters to wake, and the first
2196 // waiter has a condition or is a reader. We avoid searching over
2197 // waiters we've searched on previous iterations by starting at
2198 // old_h if it's set. If old_h==h, there's no one to wakeup at all.
2199 if (old_h == h) { // we've searched before, and nothing's new
2200 // so there's no one to wake.
2201 intptr_t nv = (v & ~(kMuReader|kMuWriter|kMuWrWait));
2202 h->readers = 0;
2203 h->maybe_unlocking = false; // finished unlocking
2204 if (waitp != nullptr) { // we must queue ourselves and sleep
2205 PerThreadSynch *new_h = Enqueue(h, waitp, v, kMuIsCond);
2206 nv &= kMuLow;
2207 if (new_h != nullptr) {
2208 nv |= kMuWait | reinterpret_cast<intptr_t>(new_h);
2209 } // else new_h could be nullptr if we queued ourselves on a
2210 // CondVar
2211 }
2212 // release spinlock & lock
2213 // can release with a store because there were waiters
2214 mu_.store(nv, std::memory_order_release);
2215 break;
2216 }
2217
2218 // set up to walk the list
2219 PerThreadSynch *w_walk; // current waiter during list walk
2220 PerThreadSynch *pw_walk; // previous waiter during list walk
2221 if (old_h != nullptr) { // we've searched up to old_h before
2222 pw_walk = old_h;
2223 w_walk = old_h->next;
2224 } else { // no prior search, start at beginning
2225 pw_walk =
2226 nullptr; // h->next's predecessor may change; don't record it
2227 w_walk = h->next;
2228 }
2229
2230 h->may_skip = false; // ensure we never skip past h in future searches
2231 // even if other waiters are queued after it.
2232 ABSL_RAW_CHECK(h->skip == nullptr, "illegal skip from head");
2233
2234 h->maybe_unlocking = true; // we're about to scan the waiter list
2235 // without the spinlock held.
2236 // Enqueue must be conservative about
2237 // priority queuing.
2238
2239 // We must release the spinlock to evaluate the conditions.
2240 mu_.store(v, std::memory_order_release); // release just spinlock
2241 // can release with a store because there were waiters
2242
2243 // h is the last waiter queued, and w_walk the first unsearched waiter.
2244 // Without the spinlock, the locations mu_ and h->next may now change
2245 // underneath us, but since we hold the lock itself, the only legal
2246 // change is to add waiters between h and w_walk. Therefore, it's safe
2247 // to walk the path from w_walk to h inclusive. (TryRemove() can remove
2248 // a waiter anywhere, but it acquires both the spinlock and the Mutex)
2249
2250 old_h = h; // remember we searched to here
2251
2252 // Walk the path upto and including h looking for waiters we can wake.
2253 while (pw_walk != h) {
2254 w_walk->wake = false;
2255 if (w_walk->waitp->cond ==
2256 nullptr || // no condition => vacuously true OR
2257 (w_walk->waitp->cond != known_false &&
2258 // this thread's condition is not known false, AND
2259 // is in fact true
2260 EvalConditionIgnored(this, w_walk->waitp->cond))) {
2261 if (w == nullptr) {
2262 w_walk->wake = true; // can wake this waiter
2263 w = w_walk;
2264 pw = pw_walk;
2265 if (w_walk->waitp->how == kExclusive) {
2266 wr_wait = kMuWrWait;
2267 break; // bail if waking this writer
2268 }
2269 } else if (w_walk->waitp->how == kShared) { // wake if a reader
2270 w_walk->wake = true;
2271 } else { // writer with true condition
2272 wr_wait = kMuWrWait;
2273 }
2274 } else { // can't wake; condition false
2275 known_false = w_walk->waitp->cond; // remember last false condition
2276 }
2277 if (w_walk->wake) { // we're waking reader w_walk
2278 pw_walk = w_walk; // don't skip similar waiters
2279 } else { // not waking; skip as much as possible
2280 pw_walk = Skip(w_walk);
2281 }
2282 // If pw_walk == h, then load of pw_walk->next can race with
2283 // concurrent write in Enqueue(). However, at the same time
2284 // we do not need to do the load, because we will bail out
2285 // from the loop anyway.
2286 if (pw_walk != h) {
2287 w_walk = pw_walk->next;
2288 }
2289 }
2290
2291 continue; // restart for(;;)-loop to wakeup w or to find more waiters
2292 }
2293 ABSL_RAW_CHECK(pw->next == w, "pw not w's predecessor");
2294 // The first (and perhaps only) waiter we've chosen to wake is w, whose
2295 // predecessor is pw. If w is a reader, we must wake all the other
2296 // waiters with wake==true as well. We may also need to queue
2297 // ourselves if waitp != null. The spinlock and the lock are still
2298 // held.
2299
2300 // This traverses the list in [ pw->next, h ], where h is the head,
2301 // removing all elements with wake==true and placing them in the
2302 // singly-linked list wake_list. Returns the new head.
2303 h = DequeueAllWakeable(h, pw, &wake_list);
2304
2305 intptr_t nv = (v & kMuEvent) | kMuDesig;
2306 // assume no waiters left,
2307 // set kMuDesig for INV1a
2308
2309 if (waitp != nullptr) { // we must queue ourselves and sleep
2310 h = Enqueue(h, waitp, v, kMuIsCond);
2311 // h is new last waiter; could be null if we queued ourselves on a
2312 // CondVar
2313 }
2314
2315 ABSL_RAW_CHECK(wake_list != kPerThreadSynchNull,
2316 "unexpected empty wake list");
2317
2318 if (h != nullptr) { // there are waiters left
2319 h->readers = 0;
2320 h->maybe_unlocking = false; // finished unlocking
2321 nv |= wr_wait | kMuWait | reinterpret_cast<intptr_t>(h);
2322 }
2323
2324 // release both spinlock & lock
2325 // can release with a store because there were waiters
2326 mu_.store(nv, std::memory_order_release);
2327 break; // out of for(;;)-loop
2328 }
2329 // aggressive here; no one can proceed till we do
2330 c = synchronization_internal::MutexDelay(c, AGGRESSIVE);
2331 } // end of for(;;)-loop
2332
2333 if (wake_list != kPerThreadSynchNull) {
2334 int64_t wait_cycles = 0;
2335 int64_t now = base_internal::CycleClock::Now();
2336 do {
2337 // Sample lock contention events only if the waiter was trying to acquire
2338 // the lock, not waiting on a condition variable or Condition.
2339 if (!wake_list->cond_waiter) {
2340 wait_cycles += (now - wake_list->waitp->contention_start_cycles);
2341 wake_list->waitp->contention_start_cycles = now;
2342 }
2343 wake_list = Wakeup(wake_list); // wake waiters
2344 } while (wake_list != kPerThreadSynchNull);
2345 if (wait_cycles > 0) {
2346 mutex_tracer("slow release", this, wait_cycles);
2347 ABSL_TSAN_MUTEX_PRE_DIVERT(this, 0);
2348 submit_profile_data(wait_cycles);
2349 ABSL_TSAN_MUTEX_POST_DIVERT(this, 0);
2350 }
2351 }
2352 }
2353
2354 // Used by CondVar implementation to reacquire mutex after waking from
2355 // condition variable. This routine is used instead of Lock() because the
2356 // waiting thread may have been moved from the condition variable queue to the
2357 // mutex queue without a wakeup, by Trans(). In that case, when the thread is
2358 // finally woken, the woken thread will believe it has been woken from the
2359 // condition variable (i.e. its PC will be in when in the CondVar code), when
2360 // in fact it has just been woken from the mutex. Thus, it must enter the slow
2361 // path of the mutex in the same state as if it had just woken from the mutex.
2362 // That is, it must ensure to clear kMuDesig (INV1b).
Trans(MuHow how)2363 void Mutex::Trans(MuHow how) {
2364 this->LockSlow(how, nullptr, kMuHasBlocked | kMuIsCond);
2365 }
2366
2367 // Used by CondVar implementation to effectively wake thread w from the
2368 // condition variable. If this mutex is free, we simply wake the thread.
2369 // It will later acquire the mutex with high probability. Otherwise, we
2370 // enqueue thread w on this mutex.
Fer(PerThreadSynch * w)2371 void Mutex::Fer(PerThreadSynch *w) {
2372 SchedulingGuard::ScopedDisable disable_rescheduling;
2373 int c = 0;
2374 ABSL_RAW_CHECK(w->waitp->cond == nullptr,
2375 "Mutex::Fer while waiting on Condition");
2376 ABSL_RAW_CHECK(!w->waitp->timeout.has_timeout(),
2377 "Mutex::Fer while in timed wait");
2378 ABSL_RAW_CHECK(w->waitp->cv_word == nullptr,
2379 "Mutex::Fer with pending CondVar queueing");
2380 for (;;) {
2381 intptr_t v = mu_.load(std::memory_order_relaxed);
2382 // Note: must not queue if the mutex is unlocked (nobody will wake it).
2383 // For example, we can have only kMuWait (conditional) or maybe
2384 // kMuWait|kMuWrWait.
2385 // conflicting != 0 implies that the waking thread cannot currently take
2386 // the mutex, which in turn implies that someone else has it and can wake
2387 // us if we queue.
2388 const intptr_t conflicting =
2389 kMuWriter | (w->waitp->how == kShared ? 0 : kMuReader);
2390 if ((v & conflicting) == 0) {
2391 w->next = nullptr;
2392 w->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
2393 IncrementSynchSem(this, w);
2394 return;
2395 } else {
2396 if ((v & (kMuSpin|kMuWait)) == 0) { // no waiters
2397 // This thread tries to become the one and only waiter.
2398 PerThreadSynch *new_h = Enqueue(nullptr, w->waitp, v, kMuIsCond);
2399 ABSL_RAW_CHECK(new_h != nullptr,
2400 "Enqueue failed"); // we must queue ourselves
2401 if (mu_.compare_exchange_strong(
2402 v, reinterpret_cast<intptr_t>(new_h) | (v & kMuLow) | kMuWait,
2403 std::memory_order_release, std::memory_order_relaxed)) {
2404 return;
2405 }
2406 } else if ((v & kMuSpin) == 0 &&
2407 mu_.compare_exchange_strong(v, v | kMuSpin | kMuWait)) {
2408 PerThreadSynch *h = GetPerThreadSynch(v);
2409 PerThreadSynch *new_h = Enqueue(h, w->waitp, v, kMuIsCond);
2410 ABSL_RAW_CHECK(new_h != nullptr,
2411 "Enqueue failed"); // we must queue ourselves
2412 do {
2413 v = mu_.load(std::memory_order_relaxed);
2414 } while (!mu_.compare_exchange_weak(
2415 v,
2416 (v & kMuLow & ~kMuSpin) | kMuWait |
2417 reinterpret_cast<intptr_t>(new_h),
2418 std::memory_order_release, std::memory_order_relaxed));
2419 return;
2420 }
2421 }
2422 c = synchronization_internal::MutexDelay(c, GENTLE);
2423 }
2424 }
2425
AssertHeld() const2426 void Mutex::AssertHeld() const {
2427 if ((mu_.load(std::memory_order_relaxed) & kMuWriter) == 0) {
2428 SynchEvent *e = GetSynchEvent(this);
2429 ABSL_RAW_LOG(FATAL, "thread should hold write lock on Mutex %p %s",
2430 static_cast<const void *>(this),
2431 (e == nullptr ? "" : e->name));
2432 }
2433 }
2434
AssertReaderHeld() const2435 void Mutex::AssertReaderHeld() const {
2436 if ((mu_.load(std::memory_order_relaxed) & (kMuReader | kMuWriter)) == 0) {
2437 SynchEvent *e = GetSynchEvent(this);
2438 ABSL_RAW_LOG(
2439 FATAL, "thread should hold at least a read lock on Mutex %p %s",
2440 static_cast<const void *>(this), (e == nullptr ? "" : e->name));
2441 }
2442 }
2443
2444 // -------------------------------- condition variables
2445 static const intptr_t kCvSpin = 0x0001L; // spinlock protects waiter list
2446 static const intptr_t kCvEvent = 0x0002L; // record events
2447
2448 static const intptr_t kCvLow = 0x0003L; // low order bits of CV
2449
2450 // Hack to make constant values available to gdb pretty printer
2451 enum { kGdbCvSpin = kCvSpin, kGdbCvEvent = kCvEvent, kGdbCvLow = kCvLow, };
2452
2453 static_assert(PerThreadSynch::kAlignment > kCvLow,
2454 "PerThreadSynch::kAlignment must be greater than kCvLow");
2455
EnableDebugLog(const char * name)2456 void CondVar::EnableDebugLog(const char *name) {
2457 SynchEvent *e = EnsureSynchEvent(&this->cv_, name, kCvEvent, kCvSpin);
2458 e->log = true;
2459 UnrefSynchEvent(e);
2460 }
2461
~CondVar()2462 CondVar::~CondVar() {
2463 if ((cv_.load(std::memory_order_relaxed) & kCvEvent) != 0) {
2464 ForgetSynchEvent(&this->cv_, kCvEvent, kCvSpin);
2465 }
2466 }
2467
2468
2469 // Remove thread s from the list of waiters on this condition variable.
Remove(PerThreadSynch * s)2470 void CondVar::Remove(PerThreadSynch *s) {
2471 SchedulingGuard::ScopedDisable disable_rescheduling;
2472 intptr_t v;
2473 int c = 0;
2474 for (v = cv_.load(std::memory_order_relaxed);;
2475 v = cv_.load(std::memory_order_relaxed)) {
2476 if ((v & kCvSpin) == 0 && // attempt to acquire spinlock
2477 cv_.compare_exchange_strong(v, v | kCvSpin,
2478 std::memory_order_acquire,
2479 std::memory_order_relaxed)) {
2480 PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
2481 if (h != nullptr) {
2482 PerThreadSynch *w = h;
2483 while (w->next != s && w->next != h) { // search for thread
2484 w = w->next;
2485 }
2486 if (w->next == s) { // found thread; remove it
2487 w->next = s->next;
2488 if (h == s) {
2489 h = (w == s) ? nullptr : w;
2490 }
2491 s->next = nullptr;
2492 s->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
2493 }
2494 }
2495 // release spinlock
2496 cv_.store((v & kCvEvent) | reinterpret_cast<intptr_t>(h),
2497 std::memory_order_release);
2498 return;
2499 } else {
2500 // try again after a delay
2501 c = synchronization_internal::MutexDelay(c, GENTLE);
2502 }
2503 }
2504 }
2505
2506 // Queue thread waitp->thread on condition variable word cv_word using
2507 // wait parameters waitp.
2508 // We split this into a separate routine, rather than simply doing it as part
2509 // of WaitCommon(). If we were to queue ourselves on the condition variable
2510 // before calling Mutex::UnlockSlow(), the Mutex code might be re-entered (via
2511 // the logging code, or via a Condition function) and might potentially attempt
2512 // to block this thread. That would be a problem if the thread were already on
2513 // a condition variable waiter queue. Thus, we use the waitp->cv_word to tell
2514 // the unlock code to call CondVarEnqueue() to queue the thread on the condition
2515 // variable queue just before the mutex is to be unlocked, and (most
2516 // importantly) after any call to an external routine that might re-enter the
2517 // mutex code.
CondVarEnqueue(SynchWaitParams * waitp)2518 static void CondVarEnqueue(SynchWaitParams *waitp) {
2519 // This thread might be transferred to the Mutex queue by Fer() when
2520 // we are woken. To make sure that is what happens, Enqueue() doesn't
2521 // call CondVarEnqueue() again but instead uses its normal code. We
2522 // must do this before we queue ourselves so that cv_word will be null
2523 // when seen by the dequeuer, who may wish immediately to requeue
2524 // this thread on another queue.
2525 std::atomic<intptr_t> *cv_word = waitp->cv_word;
2526 waitp->cv_word = nullptr;
2527
2528 intptr_t v = cv_word->load(std::memory_order_relaxed);
2529 int c = 0;
2530 while ((v & kCvSpin) != 0 || // acquire spinlock
2531 !cv_word->compare_exchange_weak(v, v | kCvSpin,
2532 std::memory_order_acquire,
2533 std::memory_order_relaxed)) {
2534 c = synchronization_internal::MutexDelay(c, GENTLE);
2535 v = cv_word->load(std::memory_order_relaxed);
2536 }
2537 ABSL_RAW_CHECK(waitp->thread->waitp == nullptr, "waiting when shouldn't be");
2538 waitp->thread->waitp = waitp; // prepare ourselves for waiting
2539 PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
2540 if (h == nullptr) { // add this thread to waiter list
2541 waitp->thread->next = waitp->thread;
2542 } else {
2543 waitp->thread->next = h->next;
2544 h->next = waitp->thread;
2545 }
2546 waitp->thread->state.store(PerThreadSynch::kQueued,
2547 std::memory_order_relaxed);
2548 cv_word->store((v & kCvEvent) | reinterpret_cast<intptr_t>(waitp->thread),
2549 std::memory_order_release);
2550 }
2551
WaitCommon(Mutex * mutex,KernelTimeout t)2552 bool CondVar::WaitCommon(Mutex *mutex, KernelTimeout t) {
2553 bool rc = false; // return value; true iff we timed-out
2554
2555 intptr_t mutex_v = mutex->mu_.load(std::memory_order_relaxed);
2556 Mutex::MuHow mutex_how = ((mutex_v & kMuWriter) != 0) ? kExclusive : kShared;
2557 ABSL_TSAN_MUTEX_PRE_UNLOCK(mutex, TsanFlags(mutex_how));
2558
2559 // maybe trace this call
2560 intptr_t v = cv_.load(std::memory_order_relaxed);
2561 cond_var_tracer("Wait", this);
2562 if ((v & kCvEvent) != 0) {
2563 PostSynchEvent(this, SYNCH_EV_WAIT);
2564 }
2565
2566 // Release mu and wait on condition variable.
2567 SynchWaitParams waitp(mutex_how, nullptr, t, mutex,
2568 Synch_GetPerThreadAnnotated(mutex), &cv_);
2569 // UnlockSlow() will call CondVarEnqueue() just before releasing the
2570 // Mutex, thus queuing this thread on the condition variable. See
2571 // CondVarEnqueue() for the reasons.
2572 mutex->UnlockSlow(&waitp);
2573
2574 // wait for signal
2575 while (waitp.thread->state.load(std::memory_order_acquire) ==
2576 PerThreadSynch::kQueued) {
2577 if (!Mutex::DecrementSynchSem(mutex, waitp.thread, t)) {
2578 // DecrementSynchSem returned due to timeout.
2579 // Now we will either (1) remove ourselves from the wait list in Remove
2580 // below, in which case Remove will set thread.state = kAvailable and
2581 // we will not call DecrementSynchSem again; or (2) Signal/SignalAll
2582 // has removed us concurrently and is calling Wakeup, which will set
2583 // thread.state = kAvailable and post to the semaphore.
2584 // It's important to reset the timeout for the case (2) because otherwise
2585 // we can live-lock in this loop since DecrementSynchSem will always
2586 // return immediately due to timeout, but Signal/SignalAll is not
2587 // necessary set thread.state = kAvailable yet (and is not scheduled
2588 // due to thread priorities or other scheduler artifacts).
2589 // Note this could also be resolved if Signal/SignalAll would set
2590 // thread.state = kAvailable while holding the wait list spin lock.
2591 // But this can't be easily done for SignalAll since it grabs the whole
2592 // wait list with a single compare-exchange and does not really grab
2593 // the spin lock.
2594 t = KernelTimeout::Never();
2595 this->Remove(waitp.thread);
2596 rc = true;
2597 }
2598 }
2599
2600 ABSL_RAW_CHECK(waitp.thread->waitp != nullptr, "not waiting when should be");
2601 waitp.thread->waitp = nullptr; // cleanup
2602
2603 // maybe trace this call
2604 cond_var_tracer("Unwait", this);
2605 if ((v & kCvEvent) != 0) {
2606 PostSynchEvent(this, SYNCH_EV_WAIT_RETURNING);
2607 }
2608
2609 // From synchronization point of view Wait is unlock of the mutex followed
2610 // by lock of the mutex. We've annotated start of unlock in the beginning
2611 // of the function. Now, finish unlock and annotate lock of the mutex.
2612 // (Trans is effectively lock).
2613 ABSL_TSAN_MUTEX_POST_UNLOCK(mutex, TsanFlags(mutex_how));
2614 ABSL_TSAN_MUTEX_PRE_LOCK(mutex, TsanFlags(mutex_how));
2615 mutex->Trans(mutex_how); // Reacquire mutex
2616 ABSL_TSAN_MUTEX_POST_LOCK(mutex, TsanFlags(mutex_how), 0);
2617 return rc;
2618 }
2619
WaitWithTimeout(Mutex * mu,absl::Duration timeout)2620 bool CondVar::WaitWithTimeout(Mutex *mu, absl::Duration timeout) {
2621 return WaitWithDeadline(mu, DeadlineFromTimeout(timeout));
2622 }
2623
WaitWithDeadline(Mutex * mu,absl::Time deadline)2624 bool CondVar::WaitWithDeadline(Mutex *mu, absl::Time deadline) {
2625 return WaitCommon(mu, KernelTimeout(deadline));
2626 }
2627
Wait(Mutex * mu)2628 void CondVar::Wait(Mutex *mu) {
2629 WaitCommon(mu, KernelTimeout::Never());
2630 }
2631
2632 // Wake thread w
2633 // If it was a timed wait, w will be waiting on w->cv
2634 // Otherwise, if it was not a Mutex mutex, w will be waiting on w->sem
2635 // Otherwise, w is transferred to the Mutex mutex via Mutex::Fer().
Wakeup(PerThreadSynch * w)2636 void CondVar::Wakeup(PerThreadSynch *w) {
2637 if (w->waitp->timeout.has_timeout() || w->waitp->cvmu == nullptr) {
2638 // The waiting thread only needs to observe "w->state == kAvailable" to be
2639 // released, we must cache "cvmu" before clearing "next".
2640 Mutex *mu = w->waitp->cvmu;
2641 w->next = nullptr;
2642 w->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
2643 Mutex::IncrementSynchSem(mu, w);
2644 } else {
2645 w->waitp->cvmu->Fer(w);
2646 }
2647 }
2648
Signal()2649 void CondVar::Signal() {
2650 SchedulingGuard::ScopedDisable disable_rescheduling;
2651 ABSL_TSAN_MUTEX_PRE_SIGNAL(nullptr, 0);
2652 intptr_t v;
2653 int c = 0;
2654 for (v = cv_.load(std::memory_order_relaxed); v != 0;
2655 v = cv_.load(std::memory_order_relaxed)) {
2656 if ((v & kCvSpin) == 0 && // attempt to acquire spinlock
2657 cv_.compare_exchange_strong(v, v | kCvSpin,
2658 std::memory_order_acquire,
2659 std::memory_order_relaxed)) {
2660 PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
2661 PerThreadSynch *w = nullptr;
2662 if (h != nullptr) { // remove first waiter
2663 w = h->next;
2664 if (w == h) {
2665 h = nullptr;
2666 } else {
2667 h->next = w->next;
2668 }
2669 }
2670 // release spinlock
2671 cv_.store((v & kCvEvent) | reinterpret_cast<intptr_t>(h),
2672 std::memory_order_release);
2673 if (w != nullptr) {
2674 CondVar::Wakeup(w); // wake waiter, if there was one
2675 cond_var_tracer("Signal wakeup", this);
2676 }
2677 if ((v & kCvEvent) != 0) {
2678 PostSynchEvent(this, SYNCH_EV_SIGNAL);
2679 }
2680 ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0);
2681 return;
2682 } else {
2683 c = synchronization_internal::MutexDelay(c, GENTLE);
2684 }
2685 }
2686 ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0);
2687 }
2688
SignalAll()2689 void CondVar::SignalAll () {
2690 ABSL_TSAN_MUTEX_PRE_SIGNAL(nullptr, 0);
2691 intptr_t v;
2692 int c = 0;
2693 for (v = cv_.load(std::memory_order_relaxed); v != 0;
2694 v = cv_.load(std::memory_order_relaxed)) {
2695 // empty the list if spinlock free
2696 // We do this by simply setting the list to empty using
2697 // compare and swap. We then have the entire list in our hands,
2698 // which cannot be changing since we grabbed it while no one
2699 // held the lock.
2700 if ((v & kCvSpin) == 0 &&
2701 cv_.compare_exchange_strong(v, v & kCvEvent, std::memory_order_acquire,
2702 std::memory_order_relaxed)) {
2703 PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
2704 if (h != nullptr) {
2705 PerThreadSynch *w;
2706 PerThreadSynch *n = h->next;
2707 do { // for every thread, wake it up
2708 w = n;
2709 n = n->next;
2710 CondVar::Wakeup(w);
2711 } while (w != h);
2712 cond_var_tracer("SignalAll wakeup", this);
2713 }
2714 if ((v & kCvEvent) != 0) {
2715 PostSynchEvent(this, SYNCH_EV_SIGNALALL);
2716 }
2717 ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0);
2718 return;
2719 } else {
2720 // try again after a delay
2721 c = synchronization_internal::MutexDelay(c, GENTLE);
2722 }
2723 }
2724 ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0);
2725 }
2726
Release()2727 void ReleasableMutexLock::Release() {
2728 ABSL_RAW_CHECK(this->mu_ != nullptr,
2729 "ReleasableMutexLock::Release may only be called once");
2730 this->mu_->Unlock();
2731 this->mu_ = nullptr;
2732 }
2733
2734 #ifdef ABSL_HAVE_THREAD_SANITIZER
2735 extern "C" void __tsan_read1(void *addr);
2736 #else
2737 #define __tsan_read1(addr) // do nothing if TSan not enabled
2738 #endif
2739
2740 // A function that just returns its argument, dereferenced
Dereference(void * arg)2741 static bool Dereference(void *arg) {
2742 // ThreadSanitizer does not instrument this file for memory accesses.
2743 // This function dereferences a user variable that can participate
2744 // in a data race, so we need to manually tell TSan about this memory access.
2745 __tsan_read1(arg);
2746 return *(static_cast<bool *>(arg));
2747 }
2748
Condition()2749 Condition::Condition() {} // null constructor, used for kTrue only
2750 const Condition Condition::kTrue;
2751
Condition(bool (* func)(void *),void * arg)2752 Condition::Condition(bool (*func)(void *), void *arg)
2753 : eval_(&CallVoidPtrFunction),
2754 function_(func),
2755 method_(nullptr),
2756 arg_(arg) {}
2757
CallVoidPtrFunction(const Condition * c)2758 bool Condition::CallVoidPtrFunction(const Condition *c) {
2759 return (*c->function_)(c->arg_);
2760 }
2761
Condition(const bool * cond)2762 Condition::Condition(const bool *cond)
2763 : eval_(CallVoidPtrFunction),
2764 function_(Dereference),
2765 method_(nullptr),
2766 // const_cast is safe since Dereference does not modify arg
2767 arg_(const_cast<bool *>(cond)) {}
2768
Eval() const2769 bool Condition::Eval() const {
2770 // eval_ == null for kTrue
2771 return (this->eval_ == nullptr) || (*this->eval_)(this);
2772 }
2773
GuaranteedEqual(const Condition * a,const Condition * b)2774 bool Condition::GuaranteedEqual(const Condition *a, const Condition *b) {
2775 if (a == nullptr) {
2776 return b == nullptr || b->eval_ == nullptr;
2777 }
2778 if (b == nullptr || b->eval_ == nullptr) {
2779 return a->eval_ == nullptr;
2780 }
2781 return a->eval_ == b->eval_ && a->function_ == b->function_ &&
2782 a->arg_ == b->arg_ && a->method_ == b->method_;
2783 }
2784
2785 ABSL_NAMESPACE_END
2786 } // namespace absl
2787