• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 //                           MOTIVATION AND TUTORIAL
16 //
17 // If you want to put in a single heap allocation N doubles followed by M ints,
18 // it's easy if N and M are known at compile time.
19 //
20 //   struct S {
21 //     double a[N];
22 //     int b[M];
23 //   };
24 //
25 //   S* p = new S;
26 //
27 // But what if N and M are known only in run time? Class template Layout to the
28 // rescue! It's a portable generalization of the technique known as struct hack.
29 //
30 //   // This object will tell us everything we need to know about the memory
31 //   // layout of double[N] followed by int[M]. It's structurally identical to
32 //   // size_t[2] that stores N and M. It's very cheap to create.
33 //   const Layout<double, int> layout(N, M);
34 //
35 //   // Allocate enough memory for both arrays. `AllocSize()` tells us how much
36 //   // memory is needed. We are free to use any allocation function we want as
37 //   // long as it returns aligned memory.
38 //   std::unique_ptr<unsigned char[]> p(new unsigned char[layout.AllocSize()]);
39 //
40 //   // Obtain the pointer to the array of doubles.
41 //   // Equivalent to `reinterpret_cast<double*>(p.get())`.
42 //   //
43 //   // We could have written layout.Pointer<0>(p) instead. If all the types are
44 //   // unique you can use either form, but if some types are repeated you must
45 //   // use the index form.
46 //   double* a = layout.Pointer<double>(p.get());
47 //
48 //   // Obtain the pointer to the array of ints.
49 //   // Equivalent to `reinterpret_cast<int*>(p.get() + N * 8)`.
50 //   int* b = layout.Pointer<int>(p);
51 //
52 // If we are unable to specify sizes of all fields, we can pass as many sizes as
53 // we can to `Partial()`. In return, it'll allow us to access the fields whose
54 // locations and sizes can be computed from the provided information.
55 // `Partial()` comes in handy when the array sizes are embedded into the
56 // allocation.
57 //
58 //   // size_t[1] containing N, size_t[1] containing M, double[N], int[M].
59 //   using L = Layout<size_t, size_t, double, int>;
60 //
61 //   unsigned char* Allocate(size_t n, size_t m) {
62 //     const L layout(1, 1, n, m);
63 //     unsigned char* p = new unsigned char[layout.AllocSize()];
64 //     *layout.Pointer<0>(p) = n;
65 //     *layout.Pointer<1>(p) = m;
66 //     return p;
67 //   }
68 //
69 //   void Use(unsigned char* p) {
70 //     // First, extract N and M.
71 //     // Specify that the first array has only one element. Using `prefix` we
72 //     // can access the first two arrays but not more.
73 //     constexpr auto prefix = L::Partial(1);
74 //     size_t n = *prefix.Pointer<0>(p);
75 //     size_t m = *prefix.Pointer<1>(p);
76 //
77 //     // Now we can get pointers to the payload.
78 //     const L layout(1, 1, n, m);
79 //     double* a = layout.Pointer<double>(p);
80 //     int* b = layout.Pointer<int>(p);
81 //   }
82 //
83 // The layout we used above combines fixed-size with dynamically-sized fields.
84 // This is quite common. Layout is optimized for this use case and generates
85 // optimal code. All computations that can be performed at compile time are
86 // indeed performed at compile time.
87 //
88 // Efficiency tip: The order of fields matters. In `Layout<T1, ..., TN>` try to
89 // ensure that `alignof(T1) >= ... >= alignof(TN)`. This way you'll have no
90 // padding in between arrays.
91 //
92 // You can manually override the alignment of an array by wrapping the type in
93 // `Aligned<T, N>`. `Layout<..., Aligned<T, N>, ...>` has exactly the same API
94 // and behavior as `Layout<..., T, ...>` except that the first element of the
95 // array of `T` is aligned to `N` (the rest of the elements follow without
96 // padding). `N` cannot be less than `alignof(T)`.
97 //
98 // `AllocSize()` and `Pointer()` are the most basic methods for dealing with
99 // memory layouts. Check out the reference or code below to discover more.
100 //
101 //                            EXAMPLE
102 //
103 //   // Immutable move-only string with sizeof equal to sizeof(void*). The
104 //   // string size and the characters are kept in the same heap allocation.
105 //   class CompactString {
106 //    public:
107 //     CompactString(const char* s = "") {
108 //       const size_t size = strlen(s);
109 //       // size_t[1] followed by char[size + 1].
110 //       const L layout(1, size + 1);
111 //       p_.reset(new unsigned char[layout.AllocSize()]);
112 //       // If running under ASAN, mark the padding bytes, if any, to catch
113 //       // memory errors.
114 //       layout.PoisonPadding(p_.get());
115 //       // Store the size in the allocation.
116 //       *layout.Pointer<size_t>(p_.get()) = size;
117 //       // Store the characters in the allocation.
118 //       memcpy(layout.Pointer<char>(p_.get()), s, size + 1);
119 //     }
120 //
121 //     size_t size() const {
122 //       // Equivalent to reinterpret_cast<size_t&>(*p).
123 //       return *L::Partial().Pointer<size_t>(p_.get());
124 //     }
125 //
126 //     const char* c_str() const {
127 //       // Equivalent to reinterpret_cast<char*>(p.get() + sizeof(size_t)).
128 //       // The argument in Partial(1) specifies that we have size_t[1] in front
129 //       // of the characters.
130 //       return L::Partial(1).Pointer<char>(p_.get());
131 //     }
132 //
133 //    private:
134 //     // Our heap allocation contains a size_t followed by an array of chars.
135 //     using L = Layout<size_t, char>;
136 //     std::unique_ptr<unsigned char[]> p_;
137 //   };
138 //
139 //   int main() {
140 //     CompactString s = "hello";
141 //     assert(s.size() == 5);
142 //     assert(strcmp(s.c_str(), "hello") == 0);
143 //   }
144 //
145 //                               DOCUMENTATION
146 //
147 // The interface exported by this file consists of:
148 // - class `Layout<>` and its public members.
149 // - The public members of class `internal_layout::LayoutImpl<>`. That class
150 //   isn't intended to be used directly, and its name and template parameter
151 //   list are internal implementation details, but the class itself provides
152 //   most of the functionality in this file. See comments on its members for
153 //   detailed documentation.
154 //
155 // `Layout<T1,... Tn>::Partial(count1,..., countm)` (where `m` <= `n`) returns a
156 // `LayoutImpl<>` object. `Layout<T1,..., Tn> layout(count1,..., countn)`
157 // creates a `Layout` object, which exposes the same functionality by inheriting
158 // from `LayoutImpl<>`.
159 
160 #ifndef ABSL_CONTAINER_INTERNAL_LAYOUT_H_
161 #define ABSL_CONTAINER_INTERNAL_LAYOUT_H_
162 
163 #include <assert.h>
164 #include <stddef.h>
165 #include <stdint.h>
166 
167 #include <ostream>
168 #include <string>
169 #include <tuple>
170 #include <type_traits>
171 #include <typeinfo>
172 #include <utility>
173 
174 #include "absl/base/config.h"
175 #include "absl/meta/type_traits.h"
176 #include "absl/strings/str_cat.h"
177 #include "absl/types/span.h"
178 #include "absl/utility/utility.h"
179 
180 #ifdef ABSL_HAVE_ADDRESS_SANITIZER
181 #include <sanitizer/asan_interface.h>
182 #endif
183 
184 #if defined(__GXX_RTTI)
185 #define ABSL_INTERNAL_HAS_CXA_DEMANGLE
186 #endif
187 
188 #ifdef ABSL_INTERNAL_HAS_CXA_DEMANGLE
189 #include <cxxabi.h>
190 #endif
191 
192 namespace absl {
193 ABSL_NAMESPACE_BEGIN
194 namespace container_internal {
195 
196 // A type wrapper that instructs `Layout` to use the specific alignment for the
197 // array. `Layout<..., Aligned<T, N>, ...>` has exactly the same API
198 // and behavior as `Layout<..., T, ...>` except that the first element of the
199 // array of `T` is aligned to `N` (the rest of the elements follow without
200 // padding).
201 //
202 // Requires: `N >= alignof(T)` and `N` is a power of 2.
203 template <class T, size_t N>
204 struct Aligned;
205 
206 namespace internal_layout {
207 
208 template <class T>
209 struct NotAligned {};
210 
211 template <class T, size_t N>
212 struct NotAligned<const Aligned<T, N>> {
213   static_assert(sizeof(T) == 0, "Aligned<T, N> cannot be const-qualified");
214 };
215 
216 template <size_t>
217 using IntToSize = size_t;
218 
219 template <class>
220 using TypeToSize = size_t;
221 
222 template <class T>
223 struct Type : NotAligned<T> {
224   using type = T;
225 };
226 
227 template <class T, size_t N>
228 struct Type<Aligned<T, N>> {
229   using type = T;
230 };
231 
232 template <class T>
233 struct SizeOf : NotAligned<T>, std::integral_constant<size_t, sizeof(T)> {};
234 
235 template <class T, size_t N>
236 struct SizeOf<Aligned<T, N>> : std::integral_constant<size_t, sizeof(T)> {};
237 
238 // Note: workaround for https://gcc.gnu.org/PR88115
239 template <class T>
240 struct AlignOf : NotAligned<T> {
241   static constexpr size_t value = alignof(T);
242 };
243 
244 template <class T, size_t N>
245 struct AlignOf<Aligned<T, N>> {
246   static_assert(N % alignof(T) == 0,
247                 "Custom alignment can't be lower than the type's alignment");
248   static constexpr size_t value = N;
249 };
250 
251 // Does `Ts...` contain `T`?
252 template <class T, class... Ts>
253 using Contains = absl::disjunction<std::is_same<T, Ts>...>;
254 
255 template <class From, class To>
256 using CopyConst =
257     typename std::conditional<std::is_const<From>::value, const To, To>::type;
258 
259 // Note: We're not qualifying this with absl:: because it doesn't compile under
260 // MSVC.
261 template <class T>
262 using SliceType = Span<T>;
263 
264 // This namespace contains no types. It prevents functions defined in it from
265 // being found by ADL.
266 namespace adl_barrier {
267 
268 template <class Needle, class... Ts>
269 constexpr size_t Find(Needle, Needle, Ts...) {
270   static_assert(!Contains<Needle, Ts...>(), "Duplicate element type");
271   return 0;
272 }
273 
274 template <class Needle, class T, class... Ts>
275 constexpr size_t Find(Needle, T, Ts...) {
276   return adl_barrier::Find(Needle(), Ts()...) + 1;
277 }
278 
279 constexpr bool IsPow2(size_t n) { return !(n & (n - 1)); }
280 
281 // Returns `q * m` for the smallest `q` such that `q * m >= n`.
282 // Requires: `m` is a power of two. It's enforced by IsLegalElementType below.
283 constexpr size_t Align(size_t n, size_t m) { return (n + m - 1) & ~(m - 1); }
284 
285 constexpr size_t Min(size_t a, size_t b) { return b < a ? b : a; }
286 
287 constexpr size_t Max(size_t a) { return a; }
288 
289 template <class... Ts>
290 constexpr size_t Max(size_t a, size_t b, Ts... rest) {
291   return adl_barrier::Max(b < a ? a : b, rest...);
292 }
293 
294 template <class T>
295 std::string TypeName() {
296   std::string out;
297   int status = 0;
298   char* demangled = nullptr;
299 #ifdef ABSL_INTERNAL_HAS_CXA_DEMANGLE
300   demangled = abi::__cxa_demangle(typeid(T).name(), nullptr, nullptr, &status);
301 #endif
302   if (status == 0 && demangled != nullptr) {  // Demangling succeeded.
303     absl::StrAppend(&out, "<", demangled, ">");
304     free(demangled);
305   } else {
306 #if defined(__GXX_RTTI) || defined(_CPPRTTI)
307     absl::StrAppend(&out, "<", typeid(T).name(), ">");
308 #endif
309   }
310   return out;
311 }
312 
313 }  // namespace adl_barrier
314 
315 template <bool C>
316 using EnableIf = typename std::enable_if<C, int>::type;
317 
318 // Can `T` be a template argument of `Layout`?
319 template <class T>
320 using IsLegalElementType = std::integral_constant<
321     bool, !std::is_reference<T>::value && !std::is_volatile<T>::value &&
322               !std::is_reference<typename Type<T>::type>::value &&
323               !std::is_volatile<typename Type<T>::type>::value &&
324               adl_barrier::IsPow2(AlignOf<T>::value)>;
325 
326 template <class Elements, class SizeSeq, class OffsetSeq>
327 class LayoutImpl;
328 
329 // Public base class of `Layout` and the result type of `Layout::Partial()`.
330 //
331 // `Elements...` contains all template arguments of `Layout` that created this
332 // instance.
333 //
334 // `SizeSeq...` is `[0, NumSizes)` where `NumSizes` is the number of arguments
335 // passed to `Layout::Partial()` or `Layout::Layout()`.
336 //
337 // `OffsetSeq...` is `[0, NumOffsets)` where `NumOffsets` is
338 // `Min(sizeof...(Elements), NumSizes + 1)` (the number of arrays for which we
339 // can compute offsets).
340 template <class... Elements, size_t... SizeSeq, size_t... OffsetSeq>
341 class LayoutImpl<std::tuple<Elements...>, absl::index_sequence<SizeSeq...>,
342                  absl::index_sequence<OffsetSeq...>> {
343  private:
344   static_assert(sizeof...(Elements) > 0, "At least one field is required");
345   static_assert(absl::conjunction<IsLegalElementType<Elements>...>::value,
346                 "Invalid element type (see IsLegalElementType)");
347 
348   enum {
349     NumTypes = sizeof...(Elements),
350     NumSizes = sizeof...(SizeSeq),
351     NumOffsets = sizeof...(OffsetSeq),
352   };
353 
354   // These are guaranteed by `Layout`.
355   static_assert(NumOffsets == adl_barrier::Min(NumTypes, NumSizes + 1),
356                 "Internal error");
357   static_assert(NumTypes > 0, "Internal error");
358 
359   // Returns the index of `T` in `Elements...`. Results in a compilation error
360   // if `Elements...` doesn't contain exactly one instance of `T`.
361   template <class T>
362   static constexpr size_t ElementIndex() {
363     static_assert(Contains<Type<T>, Type<typename Type<Elements>::type>...>(),
364                   "Type not found");
365     return adl_barrier::Find(Type<T>(),
366                              Type<typename Type<Elements>::type>()...);
367   }
368 
369   template <size_t N>
370   using ElementAlignment =
371       AlignOf<typename std::tuple_element<N, std::tuple<Elements...>>::type>;
372 
373  public:
374   // Element types of all arrays packed in a tuple.
375   using ElementTypes = std::tuple<typename Type<Elements>::type...>;
376 
377   // Element type of the Nth array.
378   template <size_t N>
379   using ElementType = typename std::tuple_element<N, ElementTypes>::type;
380 
381   constexpr explicit LayoutImpl(IntToSize<SizeSeq>... sizes)
382       : size_{sizes...} {}
383 
384   // Alignment of the layout, equal to the strictest alignment of all elements.
385   // All pointers passed to the methods of layout must be aligned to this value.
386   static constexpr size_t Alignment() {
387     return adl_barrier::Max(AlignOf<Elements>::value...);
388   }
389 
390   // Offset in bytes of the Nth array.
391   //
392   //   // int[3], 4 bytes of padding, double[4].
393   //   Layout<int, double> x(3, 4);
394   //   assert(x.Offset<0>() == 0);   // The ints starts from 0.
395   //   assert(x.Offset<1>() == 16);  // The doubles starts from 16.
396   //
397   // Requires: `N <= NumSizes && N < sizeof...(Ts)`.
398   template <size_t N, EnableIf<N == 0> = 0>
399   constexpr size_t Offset() const {
400     return 0;
401   }
402 
403   template <size_t N, EnableIf<N != 0> = 0>
404   constexpr size_t Offset() const {
405     static_assert(N < NumOffsets, "Index out of bounds");
406     return adl_barrier::Align(
407         Offset<N - 1>() + SizeOf<ElementType<N - 1>>::value * size_[N - 1],
408         ElementAlignment<N>::value);
409   }
410 
411   // Offset in bytes of the array with the specified element type. There must
412   // be exactly one such array and its zero-based index must be at most
413   // `NumSizes`.
414   //
415   //   // int[3], 4 bytes of padding, double[4].
416   //   Layout<int, double> x(3, 4);
417   //   assert(x.Offset<int>() == 0);      // The ints starts from 0.
418   //   assert(x.Offset<double>() == 16);  // The doubles starts from 16.
419   template <class T>
420   constexpr size_t Offset() const {
421     return Offset<ElementIndex<T>()>();
422   }
423 
424   // Offsets in bytes of all arrays for which the offsets are known.
425   constexpr std::array<size_t, NumOffsets> Offsets() const {
426     return {{Offset<OffsetSeq>()...}};
427   }
428 
429   // The number of elements in the Nth array. This is the Nth argument of
430   // `Layout::Partial()` or `Layout::Layout()` (zero-based).
431   //
432   //   // int[3], 4 bytes of padding, double[4].
433   //   Layout<int, double> x(3, 4);
434   //   assert(x.Size<0>() == 3);
435   //   assert(x.Size<1>() == 4);
436   //
437   // Requires: `N < NumSizes`.
438   template <size_t N>
439   constexpr size_t Size() const {
440     static_assert(N < NumSizes, "Index out of bounds");
441     return size_[N];
442   }
443 
444   // The number of elements in the array with the specified element type.
445   // There must be exactly one such array and its zero-based index must be
446   // at most `NumSizes`.
447   //
448   //   // int[3], 4 bytes of padding, double[4].
449   //   Layout<int, double> x(3, 4);
450   //   assert(x.Size<int>() == 3);
451   //   assert(x.Size<double>() == 4);
452   template <class T>
453   constexpr size_t Size() const {
454     return Size<ElementIndex<T>()>();
455   }
456 
457   // The number of elements of all arrays for which they are known.
458   constexpr std::array<size_t, NumSizes> Sizes() const {
459     return {{Size<SizeSeq>()...}};
460   }
461 
462   // Pointer to the beginning of the Nth array.
463   //
464   // `Char` must be `[const] [signed|unsigned] char`.
465   //
466   //   // int[3], 4 bytes of padding, double[4].
467   //   Layout<int, double> x(3, 4);
468   //   unsigned char* p = new unsigned char[x.AllocSize()];
469   //   int* ints = x.Pointer<0>(p);
470   //   double* doubles = x.Pointer<1>(p);
471   //
472   // Requires: `N <= NumSizes && N < sizeof...(Ts)`.
473   // Requires: `p` is aligned to `Alignment()`.
474   template <size_t N, class Char>
475   CopyConst<Char, ElementType<N>>* Pointer(Char* p) const {
476     using C = typename std::remove_const<Char>::type;
477     static_assert(
478         std::is_same<C, char>() || std::is_same<C, unsigned char>() ||
479             std::is_same<C, signed char>(),
480         "The argument must be a pointer to [const] [signed|unsigned] char");
481     constexpr size_t alignment = Alignment();
482     (void)alignment;
483     assert(reinterpret_cast<uintptr_t>(p) % alignment == 0);
484     return reinterpret_cast<CopyConst<Char, ElementType<N>>*>(p + Offset<N>());
485   }
486 
487   // Pointer to the beginning of the array with the specified element type.
488   // There must be exactly one such array and its zero-based index must be at
489   // most `NumSizes`.
490   //
491   // `Char` must be `[const] [signed|unsigned] char`.
492   //
493   //   // int[3], 4 bytes of padding, double[4].
494   //   Layout<int, double> x(3, 4);
495   //   unsigned char* p = new unsigned char[x.AllocSize()];
496   //   int* ints = x.Pointer<int>(p);
497   //   double* doubles = x.Pointer<double>(p);
498   //
499   // Requires: `p` is aligned to `Alignment()`.
500   template <class T, class Char>
501   CopyConst<Char, T>* Pointer(Char* p) const {
502     return Pointer<ElementIndex<T>()>(p);
503   }
504 
505   // Pointers to all arrays for which pointers are known.
506   //
507   // `Char` must be `[const] [signed|unsigned] char`.
508   //
509   //   // int[3], 4 bytes of padding, double[4].
510   //   Layout<int, double> x(3, 4);
511   //   unsigned char* p = new unsigned char[x.AllocSize()];
512   //
513   //   int* ints;
514   //   double* doubles;
515   //   std::tie(ints, doubles) = x.Pointers(p);
516   //
517   // Requires: `p` is aligned to `Alignment()`.
518   //
519   // Note: We're not using ElementType alias here because it does not compile
520   // under MSVC.
521   template <class Char>
522   std::tuple<CopyConst<
523       Char, typename std::tuple_element<OffsetSeq, ElementTypes>::type>*...>
524   Pointers(Char* p) const {
525     return std::tuple<CopyConst<Char, ElementType<OffsetSeq>>*...>(
526         Pointer<OffsetSeq>(p)...);
527   }
528 
529   // The Nth array.
530   //
531   // `Char` must be `[const] [signed|unsigned] char`.
532   //
533   //   // int[3], 4 bytes of padding, double[4].
534   //   Layout<int, double> x(3, 4);
535   //   unsigned char* p = new unsigned char[x.AllocSize()];
536   //   Span<int> ints = x.Slice<0>(p);
537   //   Span<double> doubles = x.Slice<1>(p);
538   //
539   // Requires: `N < NumSizes`.
540   // Requires: `p` is aligned to `Alignment()`.
541   template <size_t N, class Char>
542   SliceType<CopyConst<Char, ElementType<N>>> Slice(Char* p) const {
543     return SliceType<CopyConst<Char, ElementType<N>>>(Pointer<N>(p), Size<N>());
544   }
545 
546   // The array with the specified element type. There must be exactly one
547   // such array and its zero-based index must be less than `NumSizes`.
548   //
549   // `Char` must be `[const] [signed|unsigned] char`.
550   //
551   //   // int[3], 4 bytes of padding, double[4].
552   //   Layout<int, double> x(3, 4);
553   //   unsigned char* p = new unsigned char[x.AllocSize()];
554   //   Span<int> ints = x.Slice<int>(p);
555   //   Span<double> doubles = x.Slice<double>(p);
556   //
557   // Requires: `p` is aligned to `Alignment()`.
558   template <class T, class Char>
559   SliceType<CopyConst<Char, T>> Slice(Char* p) const {
560     return Slice<ElementIndex<T>()>(p);
561   }
562 
563   // All arrays with known sizes.
564   //
565   // `Char` must be `[const] [signed|unsigned] char`.
566   //
567   //   // int[3], 4 bytes of padding, double[4].
568   //   Layout<int, double> x(3, 4);
569   //   unsigned char* p = new unsigned char[x.AllocSize()];
570   //
571   //   Span<int> ints;
572   //   Span<double> doubles;
573   //   std::tie(ints, doubles) = x.Slices(p);
574   //
575   // Requires: `p` is aligned to `Alignment()`.
576   //
577   // Note: We're not using ElementType alias here because it does not compile
578   // under MSVC.
579   template <class Char>
580   std::tuple<SliceType<CopyConst<
581       Char, typename std::tuple_element<SizeSeq, ElementTypes>::type>>...>
582   Slices(Char* p) const {
583     // Workaround for https://gcc.gnu.org/bugzilla/show_bug.cgi?id=63875 (fixed
584     // in 6.1).
585     (void)p;
586     return std::tuple<SliceType<CopyConst<Char, ElementType<SizeSeq>>>...>(
587         Slice<SizeSeq>(p)...);
588   }
589 
590   // The size of the allocation that fits all arrays.
591   //
592   //   // int[3], 4 bytes of padding, double[4].
593   //   Layout<int, double> x(3, 4);
594   //   unsigned char* p = new unsigned char[x.AllocSize()];  // 48 bytes
595   //
596   // Requires: `NumSizes == sizeof...(Ts)`.
597   constexpr size_t AllocSize() const {
598     static_assert(NumTypes == NumSizes, "You must specify sizes of all fields");
599     return Offset<NumTypes - 1>() +
600         SizeOf<ElementType<NumTypes - 1>>::value * size_[NumTypes - 1];
601   }
602 
603   // If built with --config=asan, poisons padding bytes (if any) in the
604   // allocation. The pointer must point to a memory block at least
605   // `AllocSize()` bytes in length.
606   //
607   // `Char` must be `[const] [signed|unsigned] char`.
608   //
609   // Requires: `p` is aligned to `Alignment()`.
610   template <class Char, size_t N = NumOffsets - 1, EnableIf<N == 0> = 0>
611   void PoisonPadding(const Char* p) const {
612     Pointer<0>(p);  // verify the requirements on `Char` and `p`
613   }
614 
615   template <class Char, size_t N = NumOffsets - 1, EnableIf<N != 0> = 0>
616   void PoisonPadding(const Char* p) const {
617     static_assert(N < NumOffsets, "Index out of bounds");
618     (void)p;
619 #ifdef ABSL_HAVE_ADDRESS_SANITIZER
620     PoisonPadding<Char, N - 1>(p);
621     // The `if` is an optimization. It doesn't affect the observable behaviour.
622     if (ElementAlignment<N - 1>::value % ElementAlignment<N>::value) {
623       size_t start =
624           Offset<N - 1>() + SizeOf<ElementType<N - 1>>::value * size_[N - 1];
625       ASAN_POISON_MEMORY_REGION(p + start, Offset<N>() - start);
626     }
627 #endif
628   }
629 
630   // Human-readable description of the memory layout. Useful for debugging.
631   // Slow.
632   //
633   //   // char[5], 3 bytes of padding, int[3], 4 bytes of padding, followed
634   //   // by an unknown number of doubles.
635   //   auto x = Layout<char, int, double>::Partial(5, 3);
636   //   assert(x.DebugString() ==
637   //          "@0<char>(1)[5]; @8<int>(4)[3]; @24<double>(8)");
638   //
639   // Each field is in the following format: @offset<type>(sizeof)[size] (<type>
640   // may be missing depending on the target platform). For example,
641   // @8<int>(4)[3] means that at offset 8 we have an array of ints, where each
642   // int is 4 bytes, and we have 3 of those ints. The size of the last field may
643   // be missing (as in the example above). Only fields with known offsets are
644   // described. Type names may differ across platforms: one compiler might
645   // produce "unsigned*" where another produces "unsigned int *".
646   std::string DebugString() const {
647     const auto offsets = Offsets();
648     const size_t sizes[] = {SizeOf<ElementType<OffsetSeq>>::value...};
649     const std::string types[] = {
650         adl_barrier::TypeName<ElementType<OffsetSeq>>()...};
651     std::string res = absl::StrCat("@0", types[0], "(", sizes[0], ")");
652     for (size_t i = 0; i != NumOffsets - 1; ++i) {
653       absl::StrAppend(&res, "[", size_[i], "]; @", offsets[i + 1], types[i + 1],
654                       "(", sizes[i + 1], ")");
655     }
656     // NumSizes is a constant that may be zero. Some compilers cannot see that
657     // inside the if statement "size_[NumSizes - 1]" must be valid.
658     int last = static_cast<int>(NumSizes) - 1;
659     if (NumTypes == NumSizes && last >= 0) {
660       absl::StrAppend(&res, "[", size_[last], "]");
661     }
662     return res;
663   }
664 
665  private:
666   // Arguments of `Layout::Partial()` or `Layout::Layout()`.
667   size_t size_[NumSizes > 0 ? NumSizes : 1];
668 };
669 
670 template <size_t NumSizes, class... Ts>
671 using LayoutType = LayoutImpl<
672     std::tuple<Ts...>, absl::make_index_sequence<NumSizes>,
673     absl::make_index_sequence<adl_barrier::Min(sizeof...(Ts), NumSizes + 1)>>;
674 
675 }  // namespace internal_layout
676 
677 // Descriptor of arrays of various types and sizes laid out in memory one after
678 // another. See the top of the file for documentation.
679 //
680 // Check out the public API of internal_layout::LayoutImpl above. The type is
681 // internal to the library but its methods are public, and they are inherited
682 // by `Layout`.
683 template <class... Ts>
684 class Layout : public internal_layout::LayoutType<sizeof...(Ts), Ts...> {
685  public:
686   static_assert(sizeof...(Ts) > 0, "At least one field is required");
687   static_assert(
688       absl::conjunction<internal_layout::IsLegalElementType<Ts>...>::value,
689       "Invalid element type (see IsLegalElementType)");
690 
691   // The result type of `Partial()` with `NumSizes` arguments.
692   template <size_t NumSizes>
693   using PartialType = internal_layout::LayoutType<NumSizes, Ts...>;
694 
695   // `Layout` knows the element types of the arrays we want to lay out in
696   // memory but not the number of elements in each array.
697   // `Partial(size1, ..., sizeN)` allows us to specify the latter. The
698   // resulting immutable object can be used to obtain pointers to the
699   // individual arrays.
700   //
701   // It's allowed to pass fewer array sizes than the number of arrays. E.g.,
702   // if all you need is to the offset of the second array, you only need to
703   // pass one argument -- the number of elements in the first array.
704   //
705   //   // int[3] followed by 4 bytes of padding and an unknown number of
706   //   // doubles.
707   //   auto x = Layout<int, double>::Partial(3);
708   //   // doubles start at byte 16.
709   //   assert(x.Offset<1>() == 16);
710   //
711   // If you know the number of elements in all arrays, you can still call
712   // `Partial()` but it's more convenient to use the constructor of `Layout`.
713   //
714   //   Layout<int, double> x(3, 5);
715   //
716   // Note: The sizes of the arrays must be specified in number of elements,
717   // not in bytes.
718   //
719   // Requires: `sizeof...(Sizes) <= sizeof...(Ts)`.
720   // Requires: all arguments are convertible to `size_t`.
721   template <class... Sizes>
722   static constexpr PartialType<sizeof...(Sizes)> Partial(Sizes&&... sizes) {
723     static_assert(sizeof...(Sizes) <= sizeof...(Ts), "");
724     return PartialType<sizeof...(Sizes)>(absl::forward<Sizes>(sizes)...);
725   }
726 
727   // Creates a layout with the sizes of all arrays specified. If you know
728   // only the sizes of the first N arrays (where N can be zero), you can use
729   // `Partial()` defined above. The constructor is essentially equivalent to
730   // calling `Partial()` and passing in all array sizes; the constructor is
731   // provided as a convenient abbreviation.
732   //
733   // Note: The sizes of the arrays must be specified in number of elements,
734   // not in bytes.
735   constexpr explicit Layout(internal_layout::TypeToSize<Ts>... sizes)
736       : internal_layout::LayoutType<sizeof...(Ts), Ts...>(sizes...) {}
737 };
738 
739 }  // namespace container_internal
740 ABSL_NAMESPACE_END
741 }  // namespace absl
742 
743 #endif  // ABSL_CONTAINER_INTERNAL_LAYOUT_H_
744