• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2015-2016 The Khronos Group Inc.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #ifndef SOURCE_CFA_H_
16 #define SOURCE_CFA_H_
17 
18 #include <algorithm>
19 #include <cassert>
20 #include <cstdint>
21 #include <functional>
22 #include <map>
23 #include <unordered_map>
24 #include <unordered_set>
25 #include <utility>
26 #include <vector>
27 
28 namespace spvtools {
29 
30 // Control Flow Analysis of control flow graphs of basic block nodes |BB|.
31 template <class BB>
32 class CFA {
33   using bb_ptr = BB*;
34   using cbb_ptr = const BB*;
35   using bb_iter = typename std::vector<BB*>::const_iterator;
36   using get_blocks_func = std::function<const std::vector<BB*>*(const BB*)>;
37 
38   struct block_info {
39     cbb_ptr block;  ///< pointer to the block
40     bb_iter iter;   ///< Iterator to the current child node being processed
41   };
42 
43   /// Returns true if a block with @p id is found in the @p work_list vector
44   ///
45   /// @param[in] work_list  Set of blocks visited in the depth first
46   /// traversal
47   ///                       of the CFG
48   /// @param[in] id         The ID of the block being checked
49   ///
50   /// @return true if the edge work_list.back().block->id() => id is a back-edge
51   static bool FindInWorkList(const std::vector<block_info>& work_list,
52                              uint32_t id);
53 
54  public:
55   /// @brief Depth first traversal starting from the \p entry BasicBlock
56   ///
57   /// This function performs a depth first traversal from the \p entry
58   /// BasicBlock and calls the pre/postorder functions when it needs to process
59   /// the node in pre order, post order.
60   ///
61   /// @param[in] entry      The root BasicBlock of a CFG
62   /// @param[in] successor_func  A function which will return a pointer to the
63   ///                            successor nodes
64   /// @param[in] preorder   A function that will be called for every block in a
65   ///                       CFG following preorder traversal semantics
66   /// @param[in] postorder  A function that will be called for every block in a
67   ///                       CFG following postorder traversal semantics
68   /// @param[in] terminal   A function that will be called to determine if the
69   ///                       search should stop at the given node.
70   /// NOTE: The @p successor_func and predecessor_func each return a pointer to
71   /// a collection such that iterators to that collection remain valid for the
72   /// lifetime of the algorithm.
73   static void DepthFirstTraversal(const BB* entry,
74                                   get_blocks_func successor_func,
75                                   std::function<void(cbb_ptr)> preorder,
76                                   std::function<void(cbb_ptr)> postorder,
77                                   std::function<bool(cbb_ptr)> terminal);
78 
79   /// @brief Depth first traversal starting from the \p entry BasicBlock
80   ///
81   /// This function performs a depth first traversal from the \p entry
82   /// BasicBlock and calls the pre/postorder functions when it needs to process
83   /// the node in pre order, post order. It also calls the backedge function
84   /// when a back edge is encountered. The backedge function can be empty.  The
85   /// runtime of the algorithm is improved if backedge is empty.
86   ///
87   /// @param[in] entry      The root BasicBlock of a CFG
88   /// @param[in] successor_func  A function which will return a pointer to the
89   ///                            successor nodes
90   /// @param[in] preorder   A function that will be called for every block in a
91   ///                       CFG following preorder traversal semantics
92   /// @param[in] postorder  A function that will be called for every block in a
93   ///                       CFG following postorder traversal semantics
94   /// @param[in] backedge   A function that will be called when a backedge is
95   ///                       encountered during a traversal.
96   /// @param[in] terminal   A function that will be called to determine if the
97   ///                       search should stop at the given node.
98   /// NOTE: The @p successor_func and predecessor_func each return a pointer to
99   /// a collection such that iterators to that collection remain valid for the
100   /// lifetime of the algorithm.
101   static void DepthFirstTraversal(
102       const BB* entry, get_blocks_func successor_func,
103       std::function<void(cbb_ptr)> preorder,
104       std::function<void(cbb_ptr)> postorder,
105       std::function<void(cbb_ptr, cbb_ptr)> backedge,
106       std::function<bool(cbb_ptr)> terminal);
107 
108   /// @brief Calculates dominator edges for a set of blocks
109   ///
110   /// Computes dominators using the algorithm of Cooper, Harvey, and Kennedy
111   /// "A Simple, Fast Dominance Algorithm", 2001.
112   ///
113   /// The algorithm assumes there is a unique root node (a node without
114   /// predecessors), and it is therefore at the end of the postorder vector.
115   ///
116   /// This function calculates the dominator edges for a set of blocks in the
117   /// CFG.
118   /// Uses the dominator algorithm by Cooper et al.
119   ///
120   /// @param[in] postorder        A vector of blocks in post order traversal
121   /// order
122   ///                             in a CFG
123   /// @param[in] predecessor_func Function used to get the predecessor nodes of
124   /// a
125   ///                             block
126   ///
127   /// @return the dominator tree of the graph, as a vector of pairs of nodes.
128   /// The first node in the pair is a node in the graph. The second node in the
129   /// pair is its immediate dominator in the sense of Cooper et.al., where a
130   /// block
131   /// without predecessors (such as the root node) is its own immediate
132   /// dominator.
133   static std::vector<std::pair<BB*, BB*>> CalculateDominators(
134       const std::vector<cbb_ptr>& postorder, get_blocks_func predecessor_func);
135 
136   // Computes a minimal set of root nodes required to traverse, in the forward
137   // direction, the CFG represented by the given vector of blocks, and successor
138   // and predecessor functions.  When considering adding two nodes, each having
139   // predecessors, favour using the one that appears earlier on the input blocks
140   // list.
141   static std::vector<BB*> TraversalRoots(const std::vector<BB*>& blocks,
142                                          get_blocks_func succ_func,
143                                          get_blocks_func pred_func);
144 
145   static void ComputeAugmentedCFG(
146       std::vector<BB*>& ordered_blocks, BB* pseudo_entry_block,
147       BB* pseudo_exit_block,
148       std::unordered_map<const BB*, std::vector<BB*>>* augmented_successors_map,
149       std::unordered_map<const BB*, std::vector<BB*>>*
150           augmented_predecessors_map,
151       get_blocks_func succ_func, get_blocks_func pred_func);
152 };
153 
154 template <class BB>
FindInWorkList(const std::vector<block_info> & work_list,uint32_t id)155 bool CFA<BB>::FindInWorkList(const std::vector<block_info>& work_list,
156                              uint32_t id) {
157   for (const auto& b : work_list) {
158     if (b.block->id() == id) return true;
159   }
160   return false;
161 }
162 
163 template <class BB>
DepthFirstTraversal(const BB * entry,get_blocks_func successor_func,std::function<void (cbb_ptr)> preorder,std::function<void (cbb_ptr)> postorder,std::function<bool (cbb_ptr)> terminal)164 void CFA<BB>::DepthFirstTraversal(const BB* entry,
165                                   get_blocks_func successor_func,
166                                   std::function<void(cbb_ptr)> preorder,
167                                   std::function<void(cbb_ptr)> postorder,
168                                   std::function<bool(cbb_ptr)> terminal) {
169   DepthFirstTraversal(entry, successor_func, preorder, postorder,
170                       /* backedge = */ {}, terminal);
171 }
172 
173 template <class BB>
DepthFirstTraversal(const BB * entry,get_blocks_func successor_func,std::function<void (cbb_ptr)> preorder,std::function<void (cbb_ptr)> postorder,std::function<void (cbb_ptr,cbb_ptr)> backedge,std::function<bool (cbb_ptr)> terminal)174 void CFA<BB>::DepthFirstTraversal(
175     const BB* entry, get_blocks_func successor_func,
176     std::function<void(cbb_ptr)> preorder,
177     std::function<void(cbb_ptr)> postorder,
178     std::function<void(cbb_ptr, cbb_ptr)> backedge,
179     std::function<bool(cbb_ptr)> terminal) {
180   assert(successor_func && "The successor function cannot be empty.");
181   assert(preorder && "The preorder function cannot be empty.");
182   assert(postorder && "The postorder function cannot be empty.");
183   assert(terminal && "The terminal function cannot be empty.");
184 
185   std::unordered_set<uint32_t> processed;
186 
187   /// NOTE: work_list is the sequence of nodes from the root node to the node
188   /// being processed in the traversal
189   std::vector<block_info> work_list;
190   work_list.reserve(10);
191 
192   work_list.push_back({entry, std::begin(*successor_func(entry))});
193   preorder(entry);
194   processed.insert(entry->id());
195 
196   while (!work_list.empty()) {
197     block_info& top = work_list.back();
198     if (terminal(top.block) || top.iter == end(*successor_func(top.block))) {
199       postorder(top.block);
200       work_list.pop_back();
201     } else {
202       BB* child = *top.iter;
203       top.iter++;
204       if (backedge && FindInWorkList(work_list, child->id())) {
205         backedge(top.block, child);
206       }
207       if (processed.count(child->id()) == 0) {
208         preorder(child);
209         work_list.emplace_back(
210             block_info{child, std::begin(*successor_func(child))});
211         processed.insert(child->id());
212       }
213     }
214   }
215 }
216 
217 template <class BB>
CalculateDominators(const std::vector<cbb_ptr> & postorder,get_blocks_func predecessor_func)218 std::vector<std::pair<BB*, BB*>> CFA<BB>::CalculateDominators(
219     const std::vector<cbb_ptr>& postorder, get_blocks_func predecessor_func) {
220   struct block_detail {
221     size_t dominator;  ///< The index of blocks's dominator in post order array
222     size_t postorder_index;  ///< The index of the block in the post order array
223   };
224   const size_t undefined_dom = postorder.size();
225 
226   std::unordered_map<cbb_ptr, block_detail> idoms;
227   for (size_t i = 0; i < postorder.size(); i++) {
228     idoms[postorder[i]] = {undefined_dom, i};
229   }
230   idoms[postorder.back()].dominator = idoms[postorder.back()].postorder_index;
231 
232   bool changed = true;
233   while (changed) {
234     changed = false;
235     for (auto b = postorder.rbegin() + 1; b != postorder.rend(); ++b) {
236       const std::vector<BB*>& predecessors = *predecessor_func(*b);
237       // Find the first processed/reachable predecessor that is reachable
238       // in the forward traversal.
239       auto res = std::find_if(std::begin(predecessors), std::end(predecessors),
240                               [&idoms, undefined_dom](BB* pred) {
241                                 return idoms.count(pred) &&
242                                        idoms[pred].dominator != undefined_dom;
243                               });
244       if (res == end(predecessors)) continue;
245       const BB* idom = *res;
246       size_t idom_idx = idoms[idom].postorder_index;
247 
248       // all other predecessors
249       for (const auto* p : predecessors) {
250         if (idom == p) continue;
251         // Only consider nodes reachable in the forward traversal.
252         // Otherwise the intersection doesn't make sense and will never
253         // terminate.
254         if (!idoms.count(p)) continue;
255         if (idoms[p].dominator != undefined_dom) {
256           size_t finger1 = idoms[p].postorder_index;
257           size_t finger2 = idom_idx;
258           while (finger1 != finger2) {
259             while (finger1 < finger2) {
260               finger1 = idoms[postorder[finger1]].dominator;
261             }
262             while (finger2 < finger1) {
263               finger2 = idoms[postorder[finger2]].dominator;
264             }
265           }
266           idom_idx = finger1;
267         }
268       }
269       if (idoms[*b].dominator != idom_idx) {
270         idoms[*b].dominator = idom_idx;
271         changed = true;
272       }
273     }
274   }
275 
276   std::vector<std::pair<bb_ptr, bb_ptr>> out;
277   for (auto idom : idoms) {
278     // At this point if there is no dominator for the node, just make it
279     // reflexive.
280     auto dominator = std::get<1>(idom).dominator;
281     if (dominator == undefined_dom) {
282       dominator = std::get<1>(idom).postorder_index;
283     }
284     // NOTE: performing a const cast for convenient usage with
285     // UpdateImmediateDominators
286     out.push_back({const_cast<BB*>(std::get<0>(idom)),
287                    const_cast<BB*>(postorder[dominator])});
288   }
289 
290   // Sort by postorder index to generate a deterministic ordering of edges.
291   std::sort(
292       out.begin(), out.end(),
293       [&idoms](const std::pair<bb_ptr, bb_ptr>& lhs,
294                const std::pair<bb_ptr, bb_ptr>& rhs) {
295         assert(lhs.first);
296         assert(lhs.second);
297         assert(rhs.first);
298         assert(rhs.second);
299         auto lhs_indices = std::make_pair(idoms[lhs.first].postorder_index,
300                                           idoms[lhs.second].postorder_index);
301         auto rhs_indices = std::make_pair(idoms[rhs.first].postorder_index,
302                                           idoms[rhs.second].postorder_index);
303         return lhs_indices < rhs_indices;
304       });
305   return out;
306 }
307 
308 template <class BB>
TraversalRoots(const std::vector<BB * > & blocks,get_blocks_func succ_func,get_blocks_func pred_func)309 std::vector<BB*> CFA<BB>::TraversalRoots(const std::vector<BB*>& blocks,
310                                          get_blocks_func succ_func,
311                                          get_blocks_func pred_func) {
312   // The set of nodes which have been visited from any of the roots so far.
313   std::unordered_set<const BB*> visited;
314 
315   auto mark_visited = [&visited](const BB* b) { visited.insert(b); };
316   auto ignore_block = [](const BB*) {};
317   auto no_terminal_blocks = [](const BB*) { return false; };
318 
319   auto traverse_from_root = [&mark_visited, &succ_func, &ignore_block,
320                              &no_terminal_blocks](const BB* entry) {
321     DepthFirstTraversal(entry, succ_func, mark_visited, ignore_block,
322                         no_terminal_blocks);
323   };
324 
325   std::vector<BB*> result;
326 
327   // First collect nodes without predecessors.
328   for (auto block : blocks) {
329     if (pred_func(block)->empty()) {
330       assert(visited.count(block) == 0 && "Malformed graph!");
331       result.push_back(block);
332       traverse_from_root(block);
333     }
334   }
335 
336   // Now collect other stranded nodes.  These must be in unreachable cycles.
337   for (auto block : blocks) {
338     if (visited.count(block) == 0) {
339       result.push_back(block);
340       traverse_from_root(block);
341     }
342   }
343 
344   return result;
345 }
346 
347 template <class BB>
ComputeAugmentedCFG(std::vector<BB * > & ordered_blocks,BB * pseudo_entry_block,BB * pseudo_exit_block,std::unordered_map<const BB *,std::vector<BB * >> * augmented_successors_map,std::unordered_map<const BB *,std::vector<BB * >> * augmented_predecessors_map,get_blocks_func succ_func,get_blocks_func pred_func)348 void CFA<BB>::ComputeAugmentedCFG(
349     std::vector<BB*>& ordered_blocks, BB* pseudo_entry_block,
350     BB* pseudo_exit_block,
351     std::unordered_map<const BB*, std::vector<BB*>>* augmented_successors_map,
352     std::unordered_map<const BB*, std::vector<BB*>>* augmented_predecessors_map,
353     get_blocks_func succ_func, get_blocks_func pred_func) {
354   // Compute the successors of the pseudo-entry block, and
355   // the predecessors of the pseudo exit block.
356   auto sources = TraversalRoots(ordered_blocks, succ_func, pred_func);
357 
358   // For the predecessor traversals, reverse the order of blocks.  This
359   // will affect the post-dominance calculation as follows:
360   //  - Suppose you have blocks A and B, with A appearing before B in
361   //    the list of blocks.
362   //  - Also, A branches only to B, and B branches only to A.
363   //  - We want to compute A as dominating B, and B as post-dominating B.
364   // By using reversed blocks for predecessor traversal roots discovery,
365   // we'll add an edge from B to the pseudo-exit node, rather than from A.
366   // All this is needed to correctly process the dominance/post-dominance
367   // constraint when A is a loop header that points to itself as its
368   // own continue target, and B is the latch block for the loop.
369   std::vector<BB*> reversed_blocks(ordered_blocks.rbegin(),
370                                    ordered_blocks.rend());
371   auto sinks = TraversalRoots(reversed_blocks, pred_func, succ_func);
372 
373   // Wire up the pseudo entry block.
374   (*augmented_successors_map)[pseudo_entry_block] = sources;
375   for (auto block : sources) {
376     auto& augmented_preds = (*augmented_predecessors_map)[block];
377     const auto preds = pred_func(block);
378     augmented_preds.reserve(1 + preds->size());
379     augmented_preds.push_back(pseudo_entry_block);
380     augmented_preds.insert(augmented_preds.end(), preds->begin(), preds->end());
381   }
382 
383   // Wire up the pseudo exit block.
384   (*augmented_predecessors_map)[pseudo_exit_block] = sinks;
385   for (auto block : sinks) {
386     auto& augmented_succ = (*augmented_successors_map)[block];
387     const auto succ = succ_func(block);
388     augmented_succ.reserve(1 + succ->size());
389     augmented_succ.push_back(pseudo_exit_block);
390     augmented_succ.insert(augmented_succ.end(), succ->begin(), succ->end());
391   }
392 }
393 
394 }  // namespace spvtools
395 
396 #endif  // SOURCE_CFA_H_
397