• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Double-precision e^x function.
3  *
4  * Copyright (c) 2018-2019, Arm Limited.
5  * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6  */
7 
8 #include <float.h>
9 #include <math.h>
10 #include <stdint.h>
11 #include "math_config.h"
12 
13 #define N (1 << EXP_TABLE_BITS)
14 #define InvLn2N __exp_data.invln2N
15 #define NegLn2hiN __exp_data.negln2hiN
16 #define NegLn2loN __exp_data.negln2loN
17 #define Shift __exp_data.shift
18 #define T __exp_data.tab
19 #define C2 __exp_data.poly[5 - EXP_POLY_ORDER]
20 #define C3 __exp_data.poly[6 - EXP_POLY_ORDER]
21 #define C4 __exp_data.poly[7 - EXP_POLY_ORDER]
22 #define C5 __exp_data.poly[8 - EXP_POLY_ORDER]
23 #define C6 __exp_data.poly[9 - EXP_POLY_ORDER]
24 
25 /* Handle cases that may overflow or underflow when computing the result that
26    is scale*(1+TMP) without intermediate rounding.  The bit representation of
27    scale is in SBITS, however it has a computed exponent that may have
28    overflown into the sign bit so that needs to be adjusted before using it as
29    a double.  (int32_t)KI is the k used in the argument reduction and exponent
30    adjustment of scale, positive k here means the result may overflow and
31    negative k means the result may underflow.  */
32 static inline double
specialcase(double_t tmp,uint64_t sbits,uint64_t ki)33 specialcase (double_t tmp, uint64_t sbits, uint64_t ki)
34 {
35   double_t scale, y;
36 
37   if ((ki & 0x80000000) == 0)
38     {
39       /* k > 0, the exponent of scale might have overflowed by <= 460.  */
40       sbits -= 1009ull << 52;
41       scale = asdouble (sbits);
42       y = 0x1p1009 * (scale + scale * tmp);
43       return check_oflow (eval_as_double (y));
44     }
45   /* k < 0, need special care in the subnormal range.  */
46   sbits += 1022ull << 52;
47   scale = asdouble (sbits);
48   y = scale + scale * tmp;
49   if (y < 1.0)
50     {
51       /* Round y to the right precision before scaling it into the subnormal
52 	 range to avoid double rounding that can cause 0.5+E/2 ulp error where
53 	 E is the worst-case ulp error outside the subnormal range.  So this
54 	 is only useful if the goal is better than 1 ulp worst-case error.  */
55       double_t hi, lo;
56       lo = scale - y + scale * tmp;
57       hi = 1.0 + y;
58       lo = 1.0 - hi + y + lo;
59       y = eval_as_double (hi + lo) - 1.0;
60       /* Avoid -0.0 with downward rounding.  */
61       if (WANT_ROUNDING && y == 0.0)
62 	y = 0.0;
63       /* The underflow exception needs to be signaled explicitly.  */
64       force_eval_double (opt_barrier_double (0x1p-1022) * 0x1p-1022);
65     }
66   y = 0x1p-1022 * y;
67   return check_uflow (eval_as_double (y));
68 }
69 
70 /* Top 12 bits of a double (sign and exponent bits).  */
71 static inline uint32_t
top12(double x)72 top12 (double x)
73 {
74   return asuint64 (x) >> 52;
75 }
76 
77 /* Computes exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|.
78    If hastail is 0 then xtail is assumed to be 0 too.  */
79 static inline double
exp_inline(double x,double xtail,int hastail)80 exp_inline (double x, double xtail, int hastail)
81 {
82   uint32_t abstop;
83   uint64_t ki, idx, top, sbits;
84   /* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */
85   double_t kd, z, r, r2, scale, tail, tmp;
86 
87   abstop = top12 (x) & 0x7ff;
88   if (unlikely (abstop - top12 (0x1p-54) >= top12 (512.0) - top12 (0x1p-54)))
89     {
90       if (abstop - top12 (0x1p-54) >= 0x80000000)
91 	/* Avoid spurious underflow for tiny x.  */
92 	/* Note: 0 is common input.  */
93 	return WANT_ROUNDING ? 1.0 + x : 1.0;
94       if (abstop >= top12 (1024.0))
95 	{
96 	  if (asuint64 (x) == asuint64 (-INFINITY))
97 	    return 0.0;
98 	  if (abstop >= top12 (INFINITY))
99 	    return 1.0 + x;
100 	  if (asuint64 (x) >> 63)
101 	    return __math_uflow (0);
102 	  else
103 	    return __math_oflow (0);
104 	}
105       /* Large x is special cased below.  */
106       abstop = 0;
107     }
108 
109   /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)].  */
110   /* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N].  */
111   z = InvLn2N * x;
112 #if TOINT_INTRINSICS
113   kd = roundtoint (z);
114   ki = converttoint (z);
115 #elif EXP_USE_TOINT_NARROW
116   /* z - kd is in [-0.5-2^-16, 0.5] in all rounding modes.  */
117   kd = eval_as_double (z + Shift);
118   ki = asuint64 (kd) >> 16;
119   kd = (double_t) (int32_t) ki;
120 #else
121   /* z - kd is in [-1, 1] in non-nearest rounding modes.  */
122   kd = eval_as_double (z + Shift);
123   ki = asuint64 (kd);
124   kd -= Shift;
125 #endif
126   r = x + kd * NegLn2hiN + kd * NegLn2loN;
127   /* The code assumes 2^-200 < |xtail| < 2^-8/N.  */
128   if (hastail)
129     r += xtail;
130   /* 2^(k/N) ~= scale * (1 + tail).  */
131   idx = 2 * (ki % N);
132   top = ki << (52 - EXP_TABLE_BITS);
133   tail = asdouble (T[idx]);
134   /* This is only a valid scale when -1023*N < k < 1024*N.  */
135   sbits = T[idx + 1] + top;
136   /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1).  */
137   /* Evaluation is optimized assuming superscalar pipelined execution.  */
138   r2 = r * r;
139   /* Without fma the worst case error is 0.25/N ulp larger.  */
140   /* Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp.  */
141 #if EXP_POLY_ORDER == 4
142   tmp = tail + r + r2 * C2 + r * r2 * (C3 + r * C4);
143 #elif EXP_POLY_ORDER == 5
144   tmp = tail + r + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5);
145 #elif EXP_POLY_ORDER == 6
146   tmp = tail + r + r2 * (0.5 + r * C3) + r2 * r2 * (C4 + r * C5 + r2 * C6);
147 #endif
148   if (unlikely (abstop == 0))
149     return specialcase (tmp, sbits, ki);
150   scale = asdouble (sbits);
151   /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there
152      is no spurious underflow here even without fma.  */
153   return eval_as_double (scale + scale * tmp);
154 }
155 
156 double
exp(double x)157 exp (double x)
158 {
159   return exp_inline (x, 0, 0);
160 }
161 
162 /* May be useful for implementing pow where more than double
163    precision input is needed.  */
164 double
__exp_dd(double x,double xtail)165 __exp_dd (double x, double xtail)
166 {
167   return exp_inline (x, xtail, 1);
168 }
169 #if USE_GLIBC_ABI
strong_alias(exp,__exp_finite)170 strong_alias (exp, __exp_finite)
171 hidden_alias (exp, __ieee754_exp)
172 hidden_alias (__exp_dd, __exp1)
173 # if LDBL_MANT_DIG == 53
174 long double expl (long double x) { return exp (x); }
175 # endif
176 #endif
177