• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Polynomial coefficients for double-precision erfc(x) vector function.
3  *
4  * Copyright (c) 2020-2023, Arm Limited.
5  * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6  */
7 
8 #include "math_config.h"
9 
10 /* Coefficients for 20 order-12 polynomials used in v_erfc. The intervals have
11    the same bounds as the scalar algorithm, with the exception of the lower
12    bound of the first interval which is larger. This is because the vector
13    variants fall back to the scalar for tiny arguments, meaning that we can use
14    a slightly different approach which is more precise for larger inputs but
15    unacceptably imprecise for tiny inputs.  */
16 
17 const struct v_erfc_data __v_erfc_data = {
18 
19 /* Bounds for 20 intervals spanning [0x1.0p-28., 31.]. Interval bounds are a
20    logarithmic scale, i.e. interval n has lower bound 2^(n/4) - 1, with the
21    exception of the first interval.  */
22 .interval_bounds = {
23   0x1p-28,		/* If xmin=2^-28, 0 otherwise.  */
24   0x1.837f0518db8a9p-3, /* 0.189.  */
25   0x1.a827999fcef32p-2, /* 0.414.  */
26   0x1.5d13f32b5a75bp-1, /* 0.682.  */
27   0x1.0p0,		/* 1.000.  */
28   0x1.60dfc14636e2ap0,	/* 1.378.  */
29   0x1.d413cccfe779ap0,	/* 1.828.  */
30   0x1.2e89f995ad3adp1,	/* 2.364.  */
31   0x1.8p1,		/* 3.000.  */
32   0x1.e0dfc14636e2ap1,	/* 3.757.  */
33   0x1.2a09e667f3bcdp2,	/* 4.657.  */
34   0x1.6e89f995ad3adp2,	/* 5.727.  */
35   0x1.cp2,		/* 7.000.  */
36   0x1.106fe0a31b715p3,	/* 8.514.  */
37   0x1.4a09e667f3bcdp3,	/* 10.31.  */
38   0x1.8e89f995ad3adp3,	/* 12.45.  */
39   0x1.ep3,		/* 15.00.  */
40   0x1.206fe0a31b715p4,	/* 18.03.  */
41   0x1.5a09e667f3bcdp4,	/* 21.63.  */
42   0x1.9e89f995ad3adp4,	/* 25.91.  */
43   0x1.fp4		/* 31.00.  */
44 },
45 
46 /* Generated using fpminimax algorithm on each interval separately. The
47    polynomial approximates erfc(x + a) * exp((x + a) ^ 2) in the interval
48    [0;b-a], where [a;b] is the interval in which the input lies. Note this is
49    slightly different from the scalar polynomial, which approximates
50    erfc(x + a) * exp(x ^ 2). See v_erfc.sollya for more details.  */
51 .poly = {
52 /* 3.725290298461914e-9 < x < 0.18920711500272103.  */
53 {0x1.ffffffdbe4516p-1, -0x1.20dd74e429b54p0, 0x1.ffffffb7c6a67p-1, -0x1.8127466fa2ec9p-1, 0x1.ffffff6eeff5ap-2, -0x1.341f668c90dccp-2, 0x1.5554aca74e5d6p-3, -0x1.6014d9d3fed0dp-4, 0x1.546b5f2c85127p-5, -0x1.2f7ec79acc129p-6, 0x1.a27e53703b7abp-8, 0x1.7b18bce311fa3p-12, -0x1.1897cda04df3ap-9},
54 /* 0.18920711500272103 < x < 0.41421356237309515.  */
55 {0x1.a2b43de077724p-1, -0x1.a3495bb58664cp-1, 0x1.535f3ff4547e6p-1, -0x1.d96eea2951a7cp-2, 0x1.269566a956371p-2, -0x1.4e281de026b47p-3, 0x1.5ea071b652a2fp-4, -0x1.57f46cfca7024p-5, 0x1.3db28243f06abp-6, -0x1.138745eef6f26p-7, 0x1.a9cd70bad344p-9, -0x1.c6e4fda8920c4p-11, 0x1.624709ca2bc71p-16},
56 /* 0.41421356237309515 < x < 0.681792830507429.  */
57 {0x1.532e75764e513p-1, -0x1.28be34f327f9dp-1, 0x1.b088738cca84cp-2, -0x1.14377551bd5c8p-2, 0x1.3e1ecedd64246p-3, -0x1.5087f3110eb57p-4, 0x1.4b3c61efcb562p-5, -0x1.324cc70a4f459p-6, 0x1.0cd19a96af21bp-7, -0x1.cc2ccc725d07p-9, 0x1.a3ba67a7d02b4p-10, -0x1.b1943295882abp-11, 0x1.53a1c5fdf8e67p-12},
58 /* 0.681792830507429 < x < 1.  */
59 {0x1.10f974588f63dp-1, -0x1.9b032139e3367p-2, 0x1.09b942b8a951dp-2, -0x1.327553909cb88p-3, 0x1.42819b6c9a14p-4, -0x1.3a6d6f1924825p-5, 0x1.1f1864dd6f28fp-6, -0x1.ef12c5e9f3232p-8, 0x1.962ac63d55aa1p-9, -0x1.4146d9206419cp-10, 0x1.f823f62268229p-12, -0x1.837ab488d5ed8p-13, 0x1.aa021ae16edfep-15},
60 /* 1 < x < 1.378414230005442.  */
61 {0x1.b5d8780f956b2p-2, -0x1.17c4e3f17c034p-2, 0x1.3c27283c31939p-3, -0x1.44837f88a0ecdp-4, 0x1.33cad0dc779c8p-5, -0x1.10fcef8294e8dp-6, 0x1.c8cb3e5a6a5a6p-8, -0x1.6aedbd3a05f1cp-9, 0x1.1325c0bf9a0cap-10, -0x1.8e28d61a0f646p-12, 0x1.0d554e2ab3652p-13, -0x1.35b5f9ac296ebp-15, 0x1.b8faf07e2527dp-18},
62 /* 1.378414230005442 < x < 1.8284271247461903.  */
63 {0x1.5ee444130b7dbp-2, -0x1.78396ab2083e8p-3, 0x1.6e617ec5bc039p-4, -0x1.49e60f6238765p-5, 0x1.16064fb4428c9p-6, -0x1.ba80a8575a434p-8, 0x1.4ec30f2efeb8p-9, -0x1.e40456c735f09p-11, 0x1.4f7ee6b7885b7p-12, -0x1.bc9997995fdecp-14, 0x1.1169f7327ff2p-15, -0x1.174826d000852p-17, 0x1.5506a7433e925p-20},
64 /* 1.8284271247461903 < x < 2.363585661014858.  */
65 {0x1.19a22c064d4eap-2, -0x1.f645498cae1b3p-4, 0x1.a0565950e1256p-5, -0x1.446605c186f6dp-6, 0x1.df1231b47ff04p-8, -0x1.515164d13dfafp-9, 0x1.c72bde869ad61p-11, -0x1.2768fbf9b1d6ep-12, 0x1.71bd3a1b851e9p-14, -0x1.bca5b5942017cp-16, 0x1.f2d480b3a2e63p-18, -0x1.d339662d53467p-20, 0x1.06d67ebf792bp-22},
66 /* 2.363585661014858 < x < 3.  */
67 {0x1.c57f0542a7637p-3, -0x1.4e5535c17af25p-4, 0x1.d31272523acfep-6, -0x1.3727cbbfd1bfcp-7, 0x1.8d6730b8c5a4cp-9, -0x1.e88548286036fp-11, 0x1.21f6e89456853p-12, -0x1.4d4b7787bd3c2p-14, 0x1.735dc84e7ff16p-16, -0x1.8eb02db832048p-18, 0x1.8dfb8add3b86ep-20, -0x1.47a340d76c72bp-22, 0x1.3e5925ffebe6bp-25},
68 /* 3 < x < 3.756828460010884.  */
69 {0x1.6e9827d229d2dp-3, -0x1.bd6ae4d14b1adp-5, 0x1.043fe1a98c3b9p-6, -0x1.259061ba34453p-8, 0x1.409cc2cc96bedp-10, -0x1.53dec3fd6c443p-12, 0x1.5e72f7baf3554p-14, -0x1.601aa94bf21eep-16, 0x1.58e730ceaa91dp-18, -0x1.4762cbd256163p-20, 0x1.22b8bea5d4a5ap-22, -0x1.ac197af37fcadp-25, 0x1.74cdf138a0b73p-28},
70 /* 3.756828460010884 < x < 4.656854249492381.  */
71 {0x1.29a8a4e95063ep-3, -0x1.29a8a316d331dp-5, 0x1.21876b3fe50cfp-7, -0x1.1276f2d8eefd9p-9, 0x1.fbff521741e5cp-12, -0x1.cb9ce996b9601p-14, 0x1.971075371ef81p-16, -0x1.61458571e4738p-18, 0x1.2c51c21b7ab9ep-20, -0x1.f01e444a666c3p-23, 0x1.7e8f2979b67f1p-25, -0x1.e505367843027p-28, 0x1.67809d68de49cp-31},
72 /* 4.656854249492381 < x < 5.727171322029716.  */
73 {0x1.e583024e2bc7fp-4, -0x1.8fb458acb5acep-6, 0x1.42b9dffac075cp-8, -0x1.ff9fe9a48522p-11, 0x1.8e7e866f4f073p-13, -0x1.313aeee1c2d45p-15, 0x1.cc299efd7374cp-18, -0x1.5587e53442d66p-20, 0x1.f2aca160f159bp-23, -0x1.62ae4834dcda7p-25, 0x1.d6b070147cb37p-28, -0x1.fee399e7be1bfp-31, 0x1.41d6f9fbc9515p-34},
74 /* 5.727171322029716 < x < 7.  */
75 {0x1.8d9cbafa30408p-4, -0x1.0dd14614ed1cfp-6, 0x1.6943976ea6bf4p-9, -0x1.dd6f05f3b914cp-12, 0x1.37891317e7bcfp-14, -0x1.91a81ce9014a2p-17, 0x1.ffcac303208b9p-20, -0x1.424f1af78feb3p-22, 0x1.90b8edbca12a5p-25, -0x1.e69bea0338c7fp-28, 0x1.13b974a710373p-30, -0x1.fdc9aa9359794p-34, 0x1.105fc772b5a66p-37},
76 /* 7 < x < 8.513656920021768.  */
77 {0x1.46dc6bf900f68p-4, -0x1.6e4b45246f95p-7, 0x1.96a3de47d4bd7p-10, -0x1.bf5070eccb409p-13, 0x1.e7af6e83607a2p-16, -0x1.078bf5306f9eep-18, 0x1.1a6e8327243adp-21, -0x1.2c1e7368c7809p-24, 0x1.3bc83557dac43p-27, -0x1.45a6405b2e649p-30, 0x1.3aac4888689ebp-33, -0x1.f1fa23448a168p-37, 0x1.c868668755778p-41},
78 /* 8.513656920021768 < x < 10.313708498984761.  */
79 {0x1.0d9a17e032288p-4, -0x1.f3e942ff4df7p-8, 0x1.cc77f09dabc5cp-11, -0x1.a56e8bfd32da8p-14, 0x1.7f49e31164409p-17, -0x1.5a73f46a6afc9p-20, 0x1.374240ce973d2p-23, -0x1.15e8d473b728cp-26, 0x1.ec3ec79699378p-30, -0x1.ab3b8aba63362p-33, 0x1.5a1381cfe2866p-36, -0x1.c78e252ce77ccp-40, 0x1.589857ceaaaeep-44},
80 /* 10.313708498984761 < x < 12.454342644059432.  */
81 {0x1.be0c73cc19eddp-5, -0x1.56ce6f6c0cbb1p-8, 0x1.0645980ecbbfcp-11, -0x1.8f86f887f6598p-15, 0x1.2ef80cd9e00b1p-18, -0x1.c97ffd66720e4p-22, 0x1.57f0eeecf030ap-25, -0x1.016df7d5e28d9p-28, 0x1.7f0d022922f1dp-32, -0x1.1849731f004aep-35, 0x1.8149e7ca0fb3cp-39, -0x1.b1fe4abe62d81p-43, 0x1.1ae4d60247651p-47},
82 /* 12.454342644059432 < x < 15.  */
83 {0x1.71eafbd9f5877p-5, -0x1.d83714d90461fp-9, 0x1.2c74dbacd45fdp-12, -0x1.7d27f3cfe160ep-16, 0x1.e20b13b8d32e3p-20, -0x1.2fe33cb2bce33p-23, 0x1.7dfd564d69a07p-27, -0x1.dea62ef0f7d7ep-31, 0x1.2a7b946273ea5p-34, -0x1.6eb665bad5b72p-38, 0x1.a8191750e8bf9p-42, -0x1.92d8a86cbd0fcp-46, 0x1.bba272feef841p-51},
84 /* 15 < x < 18.027313840043536.  */
85 {0x1.33714a024097ep-5, -0x1.467f441a50bc3p-9, 0x1.59fa2994c6f7ap-13, -0x1.6dd369d642b7dp-17, 0x1.81fb2aaf2e37p-21, -0x1.966040990b623p-25, 0x1.aaee55e15a079p-29, -0x1.bf756fc8ef04p-33, 0x1.d2daf554e0157p-37, -0x1.dec63e10d317p-41, 0x1.cae915bab7704p-45, -0x1.6537fbb62a8edp-49, 0x1.3f14bd5531da8p-54},
86 /* 18.027313840043536 < x < 21.627416997969522.  */
87 {0x1.fff97acd75487p-6, -0x1.c502e8e46eb81p-10, 0x1.903b065062756p-14, -0x1.6110aa5e81885p-18, 0x1.36fd4c13c4f1fp-22, -0x1.11848650be987p-26, 0x1.e06596bf6a27p-31, -0x1.a527876771d55p-35, 0x1.6fe1b92a40eb8p-39, -0x1.3c6eb50b23bc6p-43, 0x1.fead2230125dp-48, -0x1.5073427c5207dp-52, 0x1.ff420973fa51dp-58},
88 /* 21.627416997969522 < x < 25.908685288118864.  */
89 {0x1.aaf347fc8c45bp-6, -0x1.3b2fd709cf8e5p-10, 0x1.d0ddfb858b60ap-15, -0x1.5673f4a8bb08ep-19, 0x1.f80488e89ddb9p-24, -0x1.728391905fcf3p-28, 0x1.101538d7e30bap-32, -0x1.8f16f49d0fa3bp-37, 0x1.23bbaea534034p-41, -0x1.a40119533ee1p-46, 0x1.1b75770e435fdp-50, -0x1.3804bdeb33efdp-55, 0x1.8ba4e7838a4dp-61},
90 /* 25.908685288118864 < x < 31.  */
91 {0x1.64839d636f92bp-6, -0x1.b7adf753623afp-11, 0x1.0eec0b635a0c4p-15, -0x1.4da09b802ef48p-20, 0x1.9a8b149f5ddf1p-25, -0x1.f8d1f722c65bap-30, 0x1.36247d9a20e19p-34, -0x1.7cbd25180c1d3p-39, 0x1.d243c7a5c8331p-44, -0x1.19e00cc6b1e08p-48, 0x1.418cb6823f2d9p-53, -0x1.2dfdc526c43acp-58, 0x1.49885a987486fp-64},
92 /* Dummy interval for x>31 */
93 {0x0p0, 0x0p0, 0x0p0, 0x0p0, 0x0p0, 0x0p0, 0x0p0, 0x0p0, 0x0p0, 0x0p0,
94  0x0p0, 0x0p0, 0x0p0}
95 }
96 };
97