• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Object Detection Example
2
3## Introduction
4This is a sample code showing object detection using Arm NN in two different modes:
51. Utilizing public Arm NN C++ API.
62. Utilizing Tensorflow lite delegate file mechanism together with Armnn delegate file.
7
8The compiled application can take
9
10 * a video file
11
12as input and
13 * save a video file
14 * or output video stream to the window
15
16with detections shown in bounding boxes, class labels and confidence.
17
18## Dependencies
19
20This example utilizes OpenCV functions to capture and output video data.
211. Public Arm NN C++ API is provided by Arm NN library.
222. For Delegate file mode following dependencies exist:
232.1 Tensorflow version 2.10
242.2 Flatbuffers version 2.0.6
252.3 Arm NN delegate library
26
27## System
28
29This example was created on Ubuntu 20.04 with gcc and g++ version 9.
30If encountered any compiler errors while running with a different compiler version, you can install version 9 with:
31```commandline
32sudo apt install gcc-9 g++-9
33```
34and add to every cmake command those compiler flags:
35-DCMAKE_C_COMPILER=gcc-9 -DCMAKE_CXX_COMPILER=g++-9
36
37### Arm NN
38
39Object detection example build system does not trigger Arm NN compilation. Thus, before building the application,
40please ensure that Arm NN libraries and header files are available on your build platform.
41The application executable binary dynamically links with the following Arm NN libraries:
42* libarmnn.so
43For Arm NN public C++ API mode:
44* libarmnnTfLiteParser.so
45For Delegate file mode:
46* libarmnnDelegate.so
47
48Pre compiled Arm NN libraries can be downloaded from https://github.com/ARM-software/armnn/releases/download/v21.11/ArmNN-linux-aarch64.tar.gz
49the "lib" and "include" directories should be taken together.
50
51The build script searches for available Arm NN libraries in the following order:
521. Inside custom user directory specified by ARMNN_LIB_DIR cmake option.
532. Inside the current Arm NN repository, assuming that Arm NN was built following [this instructions](../../BuildGuideCrossCompilation.md).
543. Inside default locations for system libraries, assuming Arm NN was installed from deb packages.
55
56Arm NN header files will be searched in parent directory of found libraries files under `include` directory, i.e.
57libraries found in `/usr/lib` or `/usr/lib64` and header files in `/usr/include` (or `${ARMNN_LIB_DIR}/include`).
58
59Please see [find_armnn.cmake](./cmake/find_armnn.cmake) for implementation details.
60
61### OpenCV
62
63This application uses [OpenCV (Open Source Computer Vision Library)](https://opencv.org/) for video stream processing.
64Your host platform may have OpenCV available through linux package manager. If this is the case, please install it using standard way.
65```commandline
66sudo apt install python3-opencv
67```
68If not, our build system has a script to download and cross-compile required OpenCV modules
69as well as [FFMPEG](https://ffmpeg.org/) and [x264 encoder](https://www.videolan.org/developers/x264.html) libraries.
70The latter will build limited OpenCV functionality and application will support only video file input and video file output
71way of working. Displaying video frames in a window requires building OpenCV with GTK and OpenGL support.
72
73The application executable binary dynamically links with the following OpenCV libraries:
74* libopencv_core.so.4.0.0
75* libopencv_imgproc.so.4.0.0
76* libopencv_imgcodecs.so.4.0.0
77* libopencv_videoio.so.4.0.0
78* libopencv_video.so.4.0.0
79* libopencv_highgui.so.4.0.0
80
81and transitively depends on:
82* libavcodec.so (FFMPEG)
83* libavformat.so (FFMPEG)
84* libavutil.so (FFMPEG)
85* libswscale.so (FFMPEG)
86* libx264.so (x264)
87
88The application searches for above libraries in the following order:
891. Inside custom user directory specified by OPENCV_LIB_DIR cmake option.
902. Inside default locations for system libraries.
91
92If no OpenCV libraries were found, the cross-compilation build is extended with x264, ffmpeg and OpenCV compilation steps.
93
94Note: Native build does not add third party libraries to compilation.
95
96Please see [find_opencv.cmake](./cmake/find_opencv.cmake) for implementation details.
97
98### Tensorflow Lite (Needed only in delegate file mode)
99
100This application uses [Tensorflow Lite)](https://www.tensorflow.org/) version 2.10 for demonstrating use of 'armnnDelegate'.
101armnnDelegate is a library for accelerating certain TensorFlow Lite operators on Arm hardware by providing
102the TensorFlow Lite interpreter with an alternative implementation of the operators via its delegation mechanism.
103You may clone and build Tensorflow lite and provide the path to its root and output library directories through the cmake
104flags TENSORFLOW_ROOT and TFLITE_LIB_ROOT respectively.
105For implementation details see the scripts FindTfLite.cmake and FindTfLiteSrc.cmake
106
107The application links with the Tensorflow lite library libtensorflow-lite.a
108
109#### Download and build Tensorflow Lite version 2.10
110Example for Tensorflow Lite native compilation
111```commandline
112sudo apt install build-essential
113git clone https://github.com/tensorflow/tensorflow.git
114cd tensorflow/tensorflow
115git checkout 359c3cdfc5fabac82b3c70b3b6de2b0a8c16874f #Tensorflow 2.10
116mkdir build && cd build
117cmake ../lite -DTFLITE_ENABLE_XNNPACK=OFF
118make
119```
120
121### Flatbuffers (needed only in delegate file mode)
122
123This application uses [Flatbuffers)](https://google.github.io/flatbuffers/) version 1.12.0 for serialization
124You may clone and build Flatbuffers and provide the path to its root directory through the cmake
125flag FLATBUFFERS_ROOT.
126Please see [FindFlatbuffers.cmake] for implementation details.
127
128The application links with the Flatbuffers library libflatbuffers.a
129
130#### Download and build flatbuffers version 2.0.6
131Example for flatbuffer native compilation
132```commandline
133wget https://github.com/google/flatbuffers/archive/v2.0.6.tar.gz
134tar xf v2.0.6.tar.gz
135cd flatbuffers-2.0.6
136mkdir install && cd install
137cmake .. -DCMAKE_INSTALL_PREFIX:PATH=`pwd`
138make install
139```
140
141## Building
142There are two flows for building this application:
143* native build on a host platform,
144* cross-compilation for a Arm-based host platform.
145
146### Build Options
147
148* CMAKE_TOOLCHAIN_FILE - choose one of the  available cross-compilation toolchain files:
149    * `cmake/aarch64-toolchain.cmake`
150    * `cmake/arm-linux-gnueabihf-toolchain.cmake`
151* ARMNN_LIB_DIR - point to the custom location of the Arm NN libs and headers.
152* OPENCV_LIB_DIR  - point to the custom location of the OpenCV libs and headers.
153* BUILD_UNIT_TESTS -  set to `1` to build tests. Additionally to the main application, `object_detection_example-tests`
154unit tests executable will be created.
155
156* For the Delegate file mode:
157* USE_ARMNN_DELEGATE - set to True to build the application with Tflite and delegate file mode. default is False.
158* TFLITE_LIB_ROOT - point to the custom location of Tflite lib
159* TENSORFLOW_ROOT - point to the custom location of Tensorflow root directory
160* FLATBUFFERS_ROOT - point to the custom location of Flatbuffers root directory
161
162### Native Build
163To build this application on a host platform, firstly ensure that required dependencies are installed:
164For example, for raspberry PI:
165```commandline
166sudo apt-get update
167sudo apt-get -yq install pkg-config
168sudo apt-get -yq install libgtk2.0-dev zlib1g-dev libjpeg-dev libpng-dev libxvidcore-dev libx264-dev
169sudo apt-get -yq install libavcodec-dev libavformat-dev libswscale-dev ocl-icd-opencl-dev
170```
171
172To build demo application, create a build directory:
173```commandline
174mkdir build
175cd build
176```
177If you have already installed Arm NN and OpenCV:
178
179Inside build directory, run cmake and make commands:
180```commandline
181cmake  ..
182make
183```
184This will build the following in bin directory:
185* object_detection_example - application executable
186
187If you have custom Arm NN and OpenCV location, use `OPENCV_LIB_DIR` and `ARMNN_LIB_DIR` options:
188```commandline
189cmake  -DARMNN_LIB_DIR=/path/to/armnn -DOPENCV_LIB_DIR=/path/to/opencv ..
190make
191```
192
193If you have build with Delegate file mode and have custom Arm NN, Tflite, and Flatbuffers locations,
194use the USE_ARMNN_DELEGATE flag together with `TFLITE_LIB_ROOT`, `TENSORFLOW_ROOT`, `FLATBUFFERS_ROOT` and
195`ARMNN_LIB_DIR` options:
196```commandline
197cmake -DARMNN_LIB_DIR=/path/to/armnn/build/lib/ -DUSE_ARMNN_DELEGATE=True -DTFLITE_LIB_ROOT=/path/to/tensorflow/
198 -DTENSORFLOW_ROOT=/path/to/tensorflow/ -DFLATBUFFERS_ROOT=/path/to/flatbuffers/ ..
199make
200```
201
202### Cross-compilation
203
204This section will explain how to cross-compile the application and dependencies on a Linux x86 machine
205for arm host platforms.
206
207You will require working cross-compilation toolchain supported by your host platform. For raspberry Pi 3 and 4 with glibc
208runtime version 2.28, the following toolchains were successfully used:
209* https://releases.linaro.org/components/toolchain/binaries/latest-7/aarch64-linux-gnu/
210* https://releases.linaro.org/components/toolchain/binaries/latest-7/arm-linux-gnueabihf/
211
212Choose aarch64-linux-gnu if `lscpu` command shows architecture as aarch64 or arm-linux-gnueabihf if detected
213architecture is armv71.
214
215You can check runtime version on your host platform by running:
216```
217ldd --version
218```
219On **build machine**, install C and C++ cross compiler toolchains and add them to the PATH variable.
220
221Install package dependencies:
222```commandline
223sudo apt-get update
224sudo apt-get -yq install pkg-config
225```
226Package config is required by OpenCV build to discover FFMPEG libs.
227
228To build demo application, create a build directory:
229```commandline
230mkdir build
231cd build
232```
233Inside build directory, run cmake and make commands:
234
235**Arm 32bit**
236```commandline
237cmake -DARMNN_LIB_DIR=<path-to-armnn-libs> -DCMAKE_TOOLCHAIN_FILE=cmake/arm-linux-gnueabihf-toolchain.cmake ..
238make
239```
240**Arm 64bit**
241```commandline
242cmake -DARMNN_LIB_DIR=<path-to-armnn-libs> -DCMAKE_TOOLCHAIN_FILE=cmake/aarch64-toolchain.cmake ..
243make
244```
245
246Add `-j` flag to the make command to run compilation in multiple threads.
247
248From the build directory, copy the following to the host platform:
249* bin directory - contains object_detection_example executable,
250* lib directory - contains cross-compiled OpenCV, ffmpeg, x264 libraries,
251* Your Arm NN libs used during compilation.
252
253The full list of libs after cross-compilation to copy on your board:
254```
255libarmnn.so
256libarmnn.so.31
257libarmnn.so.31.0
258For Arm NN public C++ API mode:
259libarmnnTfLiteParser.so
260libarmnnTfLiteParser.so.24.4
261end
262For Delegate file mode:
263libarmnnDelegate.so
264libarmnnDelegate.so.25
265libarmnnDelegate.so.25.0
266libtensorflow-lite.a
267libflatbuffers.a
268end
269
270libavcodec.so
271libavcodec.so.58
272libavcodec.so.58.54.100
273libavdevice.so
274libavdevice.so.58
275libavdevice.so.58.8.100
276libavfilter.so
277libavfilter.so.7
278libavfilter.so.7.57.100
279libavformat.so
280libavformat.so.58
281libavformat.so.58.29.100
282libavutil.so
283libavutil.so.56
284libavutil.so.56.31.100
285libopencv_core.so
286libopencv_core.so.4.0
287libopencv_core.so.4.0.0
288libopencv_highgui.so
289libopencv_highgui.so.4.0
290libopencv_highgui.so.4.0.0
291libopencv_imgcodecs.so
292libopencv_imgcodecs.so.4.0
293libopencv_imgcodecs.so.4.0.0
294libopencv_imgproc.so
295libopencv_imgproc.so.4.0
296libopencv_imgproc.so.4.0.0
297libopencv_video.so
298libopencv_video.so.4.0
299libopencv_video.so.4.0.0
300libopencv_videoio.so
301libopencv_videoio.so.4.0
302libopencv_videoio.so.4.0.0
303libpostproc.so
304libpostproc.so.55
305libpostproc.so.55.5.100
306libswresample.a
307libswresample.so
308libswresample.so.3
309libswresample.so.3.5.100
310libswscale.so
311libswscale.so.5
312libswscale.so.5.5.100
313libx264.so
314libx264.so.160
315```
316## Executing
317
318Once the application executable is built, it can be executed with the following options:
319* --video-file-path: Path to the video file to run object detection on **[REQUIRED]**
320* --model-file-path: Path to the Object Detection model to use **[REQUIRED]**
321* --label-path: Path to the label set for the provided model file **[REQUIRED]**
322* --model-name: The name of the model being used. Accepted options: SSD_MOBILE | YOLO_V3_TINY **[REQUIRED]**
323* --output-video-file-path: Path to the output video file with detections added in. Defaults to /tmp/output.avi
324 **[OPTIONAL]**
325* --preferred-backends: Takes the preferred backends in preference order, separated by comma.
326                        For example: CpuAcc,GpuAcc,CpuRef. Accepted options: [CpuAcc, CpuRef, GpuAcc].
327                        Defaults to CpuRef **[OPTIONAL]**
328* --profiling_enabled: Enabling this option will print important ML related milestones timing
329                       information in micro-seconds. By default, this option is disabled.
330                       Accepted options are true/false **[OPTIONAL]**
331
332### Object Detection on a supplied video file
333
334To run object detection on a supplied video file and output result to a video file:
335```commandline
336LD_LIBRARY_PATH=/path/to/armnn/libs:/path/to/opencv/libs ./object_detection_example --label-path /path/to/labels/file
337 --video-file-path /path/to/video/file --model-file-path /path/to/model/file
338 --model-name [YOLO_V3_TINY | SSD_MOBILE] --output-video-file-path /path/to/output/file
339```
340
341To run object detection on a supplied video file and output result to a window gui:
342```commandline
343LD_LIBRARY_PATH=/path/to/armnn/libs:/path/to/opencv/libs ./object_detection_example --label-path /path/to/labels/file
344 --video-file-path /path/to/video/file --model-file-path /path/to/model/file
345 --model-name [YOLO_V3_TINY | SSD_MOBILE]
346```
347
348This application has been verified to work against the MobileNet SSD and the YOLO V3 tiny models, which can be downloaded along with their label sets from the Arm Model Zoo:
349* https://github.com/ARM-software/ML-zoo/tree/master/models/object_detection/ssd_mobilenet_v1
350* https://github.com/ARM-software/ML-zoo/tree/master/models/object_detection/yolo_v3_tiny
351
352---
353
354# Application Overview
355This section provides a walkthrough of the application, explaining in detail the steps:
3561. Initialisation
357    1. Reading from Video Source
358    2. Preparing Labels and Model Specific Functions
3592. Creating a Network (two modes are available)
360    a. Armnn C++ API mode:
361        1. Creating Parser and Importing Graph
362        2. Optimizing Graph for Compute Device
363        3. Creating Input and Output Binding Information
364    b. using Tflite and delegate file mode:
365        1. Building a Model and creating Interpreter
366        2. Creating Arm NN delegate file
367        3. Registering the Arm NN delegate file to the Interpreter
3683. Object detection pipeline
369    1. Pre-processing the Captured Frame
370    2. Making Input and Output Tensors
371    3. Executing Inference
372    4. Postprocessing
373    5. Decoding and Processing Inference Output
374    6. Drawing Bounding Boxes
375
376
377### Initialisation
378
379##### Reading from Video Source
380After parsing user arguments, the chosen video file or stream is loaded into an OpenCV `cv::VideoCapture` object.
381We use [`IFrameReader`](./include/IFrameReader.hpp) interface and OpenCV specific implementation
382[`CvVideoFrameReader`](./include/CvVideoFrameReader.hpp) in our main function to capture frames from the source using the
383`ReadFrame()` function.
384
385The `CvVideoFrameReader` object also tells us information about the input video. Using this information and application
386arguments, we create one of the implementations of the [`IFrameOutput`](./include/IFrameOutput.hpp) interface:
387[`CvVideoFileWriter`](./include/CvVideoFileWriter.hpp) or [`CvWindowOutput`](./include/CvWindowOutput.hpp).
388This object will be used at the end of every loop to write the processed frame to an output video file or gui
389window.
390`CvVideoFileWriter` uses `cv::VideoWriter` with ffmpeg backend. `CvWindowOutput` makes use of `cv::imshow()` function.
391
392See `GetFrameSourceAndSink` function in [Main.cpp](./src/Main.cpp) for more details.
393
394##### Preparing Labels and Model Specific Functions
395In order to interpret the result of running inference on the loaded network, it is required to load the labels
396associated with the model. In the provided example code, the `AssignColourToLabel` function creates a vector of pairs
397label - colour that is ordered according to object class index at the output node of the model. Labels are assigned with
398a randomly generated RGB color. This ensures that each class has a unique color which will prove helpful when plotting
399the bounding boxes of various detected objects in a frame.
400
401Depending on the model being used, `CreatePipeline`  function returns specific implementation of the object detection
402pipeline.
403
404
405### There are two ways for Creating the Network. The first is using the Arm NN C++ API, and the second is using
406### Tflite with Arm NN delegate file
407
408#### Creating a Network using the Arm NN C++ API
409
410All operations with Arm NN and networks are encapsulated in
411[`ArmnnNetworkExecutor`](./common/include/ArmnnUtils/ArmnnNetworkExecutor.hpp) class.
412
413##### Creating Parser and Importing Graph
414The first step with Arm NN SDK is to import a graph from file by using the appropriate parser.
415
416The Arm NN SDK provides parsers for reading graphs from a variety of model formats. In our application we specifically
417focus on `.tflite, .pb, .onnx` models.
418
419Based on the extension of the provided model file, the corresponding parser is created and the network file loaded with
420`CreateNetworkFromBinaryFile()` method. The parser will handle the creation of the underlying Arm NN graph.
421
422Current example accepts tflite format model files, we use `ITfLiteParser`:
423```c++
424#include "armnnTfLiteParser/ITfLiteParser.hpp"
425
426armnnTfLiteParser::ITfLiteParserPtr parser = armnnTfLiteParser::ITfLiteParser::Create();
427armnn::INetworkPtr network = parser->CreateNetworkFromBinaryFile(modelPath.c_str());
428```
429
430##### Optimizing Graph for Compute Device
431Arm NN supports optimized execution on multiple CPU and GPU devices. Prior to executing a graph, we must select the
432appropriate device context. We do this by creating a runtime context with default options with `IRuntime()`.
433
434For example:
435```c++
436#include "armnn/ArmNN.hpp"
437
438auto runtime = armnn::IRuntime::Create(armnn::IRuntime::CreationOptions());
439```
440
441We can optimize the imported graph by specifying a list of backends in order of preference and implement
442backend-specific optimizations. The backends are identified by a string unique to the backend,
443for example `CpuAcc, GpuAcc, CpuRef`.
444
445For example:
446```c++
447std::vector<armnn::BackendId> backends{"CpuAcc", "GpuAcc", "CpuRef"};
448```
449
450Internally and transparently, Arm NN splits the graph into subgraph based on backends, it calls a optimize subgraphs
451function on each of them and, if possible, substitutes the corresponding subgraph in the original graph with
452its optimized version.
453
454Using the `Optimize()` function we optimize the graph for inference and load the optimized network onto the compute
455device with `LoadNetwork()`. This function creates the backend-specific workloads
456for the layers and a backend specific workload factory which is called to create the workloads.
457
458For example:
459```c++
460armnn::IOptimizedNetworkPtr optNet = Optimize(*network,
461                                              backends,
462                                              m_Runtime->GetDeviceSpec(),
463                                              armnn::OptimizerOptions());
464std::string errorMessage;
465runtime->LoadNetwork(0, std::move(optNet), errorMessage));
466std::cerr << errorMessage << std::endl;
467```
468
469##### Creating Input and Output Binding Information
470Parsers can also be used to extract the input information for the network. By calling `GetSubgraphInputTensorNames`
471we extract all the input names and, with `GetNetworkInputBindingInfo`, bind the input points of the graph.
472For example:
473```c++
474std::vector<std::string> inputNames = parser->GetSubgraphInputTensorNames(0);
475auto inputBindingInfo = parser->GetNetworkInputBindingInfo(0, inputNames[0]);
476```
477The input binding information contains all the essential information about the input. It is a tuple consisting of
478integer identifiers for bindable layers (inputs, outputs) and the tensor info (data type, quantization information,
479number of dimensions, total number of elements).
480
481Similarly, we can get the output binding information for an output layer by using the parser to retrieve output
482tensor names and calling `GetNetworkOutputBindingInfo()`.
483
484#### Creating a Network using Tflite and Arm NN delegate file
485
486All operations with Tflite and networks are encapsulated in [`ArmnnNetworkExecutor`](./include/delegate/ArmnnNetworkExecutor.hpp)
487class.
488
489##### Building a Model and creating Interpreter
490The first step with Tflite is to build a model from file by using Flatbuffer model class.
491with that model we create the Tflite Interpreter.
492```c++
493#include <tensorflow/lite/interpreter.h>
494
495armnnTfLiteParser::ITfLiteParserPtr parser = armnnTfLiteParser::ITfLiteParser::Create();m_model = tflite::FlatBufferModel::BuildFromFile(modelPath.c_str());
496tflite::ops::builtin::BuiltinOpResolver resolver;
497tflite::InterpreterBuilder(*m_model, resolver)(&m_interpreter);
498```
499after the Interpreter is created we allocate tensors using the AllocateTensors function of the Interpreter
500```c++
501m_interpreter->AllocateTensors();
502```
503
504##### Creating Arm NN Delegate file
505Arm NN Delegate file is created using the ArmnnDelegate constructor
506The constructor accepts a DelegateOptions object that is created from the
507list of the preferred backends that we want to use, and the optimizerOptions object (optional).
508In this example we enable fast math and reduce all float32 operators to float16 optimizations.
509These optimizations can sometime improve the performance but can also cause degredation,
510depending on the model and the backends involved, therefore one should try it out and
511decide whether to use it or not.
512
513
514```c++
515#include <armnn_delegate.hpp>
516#include <DelegateOptions.hpp>
517#include <DelegateUtils.hpp>
518
519/* enable fast math optimization */
520armnn::BackendOptions modelOptionGpu("GpuAcc", {{"FastMathEnabled", true}});
521optimizerOptions.m_ModelOptions.push_back(modelOptionGpu);
522
523armnn::BackendOptions modelOptionCpu("CpuAcc", {{"FastMathEnabled", true}});
524optimizerOptions.m_ModelOptions.push_back(modelOptionCpu);
525/* enable reduce float32 to float16 optimization */
526optimizerOptions.m_ReduceFp32ToFp16 = true;
527
528armnnDelegate::DelegateOptions delegateOptions(preferredBackends, optimizerOptions);
529/* create delegate object */
530std::unique_ptr<TfLiteDelegate, decltype(&armnnDelegate::TfLiteArmnnDelegateDelete)>
531            theArmnnDelegate(armnnDelegate::TfLiteArmnnDelegateCreate(delegateOptions),
532                             armnnDelegate::TfLiteArmnnDelegateDelete);
533```
534##### Registering the Arm NN delegate file to the Interpreter
535Registering the Arm NN delegate file will provide the TensorFlow Lite interpreter with an alternative implementation
536of the operators that can be accelerated by the Arm hardware
537For example:
538```c++
539    /* Register the delegate file */
540    m_interpreter->ModifyGraphWithDelegate(std::move(theArmnnDelegate));
541```
542### Object detection pipeline
543
544Generic object detection pipeline has 3 steps, to perform data pre-processing, run inference and decode inference results
545in the post-processing step.
546
547See [`ObjDetectionPipeline`](include/ObjectDetectionPipeline.hpp) and implementations for [`MobileNetSSDv1`](include/ObjectDetectionPipeline.hpp)
548and [`YoloV3Tiny`](include/ObjectDetectionPipeline.hpp) for more details.
549
550#### Pre-processing the Captured Frame
551Each frame captured from source is read as an `cv::Mat` in BGR format but channels are swapped to RGB in a frame reader
552code.
553
554```c++
555cv::Mat processed;
556...
557objectDetectionPipeline->PreProcessing(frame, processed);
558```
559
560A pre-processing step consists of resizing the frame to the required resolution, padding  and doing data type conversion
561to match the model input layer.
562For example, SSD MobileNet V1 that is used in our example takes for input a tensor with shape `[1, 300, 300, 3]` and
563data type `uint8`.
564
565Pre-processing step returns `cv::Mat` object containing data ready for inference.
566
567#### Executing Inference
568```c++
569od::InferenceResults results;
570...
571objectDetectionPipeline->Inference(processed, results);
572```
573Inference step will call `ArmnnNetworkExecutor::Run` method that will prepare input tensors and execute inference.
574We have two separate implementations of the `ArmnnNetworkExecutor` class and its functions including `ArmnnNetworkExecutor::Run`
575The first Implementation [`ArmnnNetworkExecutor`](./common/include/ArmnnUtils/ArmnnNetworkExecutor.hpp)is utilizing
576Arm NN C++ API,
577while the second implementation [`ArmnnNetworkExecutor`](./include/delegate/ArmnnNetworkExecutor.hpp) is utilizing
578Tensorflow lite and its Delegate file mechanism.
579
580##### Executing Inference utilizing the Arm NN C++ API
581A compute device performs inference for the loaded network using the `EnqueueWorkload()` function of the runtime context.
582For example:
583```c++
584//const void* inputData = ...;
585//outputTensors were pre-allocated before
586
587armnn::InputTensors inputTensors = {{ inputBindingInfo.first,armnn::ConstTensor(inputBindingInfo.second, inputData)}};
588runtime->EnqueueWorkload(0, inputTensors, outputTensors);
589```
590We allocate memory for output data once and map it to output tensor objects. After successful inference, we read data
591from the pre-allocated output data buffer.
592See [`ArmnnNetworkExecutor::ArmnnNetworkExecutor`](./common/include/ArmnnUtils/ArmnnNetworkExecutor.hpp)
593and [`ArmnnNetworkExecutor::Run`](./common/include/ArmnnUtils/ArmnnNetworkExecutor.hpp) for more details.
594
595##### Executing Inference utilizing the Tensorflow lite and Arm NN delegate file
596Inside the `PrepareTensors(..)` function, the input frame is copied to the Tflite Interpreter input tensor,
597than the Tflite Interpreter performs inference for the loaded network using the `Invoke()` function.
598For example:
599```c++
600PrepareTensors(inputData, dataBytes);
601
602if (m_interpreter->Invoke() == kTfLiteOk)
603```
604After successful inference, we read data from the Tflite Interpreter output tensor and copy
605it to the outResults vector.
606See [`ArmnnNetworkExecutor::Run`](./include/delegate/ArmnnNetworkExecutor.hpp) for more details.
607
608#### Postprocessing
609
610##### Decoding and Processing Inference Output
611The output from inference must be decoded to obtain information about detected objects in the frame. In the examples
612there are implementations for two networks but you may also implement your own network decoding solution here.
613
614For SSD MobileNet V1 models, we decode the results to obtain the bounding box positions, classification index,
615confidence and number of detections in the input frame.
616See [`SSDResultDecoder`](./include/SSDResultDecoder.hpp) for more details.
617
618For YOLO V3 Tiny models, we decode the output and perform non-maximum suppression to filter out any weak detections
619below a confidence threshold and any redundant bounding boxes above an intersection-over-union threshold.
620See [`YoloResultDecoder`](./include/YoloResultDecoder.hpp) for more details.
621
622It is encouraged to experiment with threshold values for confidence and intersection-over-union (IoU)
623to achieve the best visual results.
624
625The detection results are always returned as a vector of [`DetectedObject`](./include/DetectedObject.hpp),
626with the box positions list containing bounding box coordinates in the form `[x_min, y_min, x_max, y_max]`.
627
628#### Drawing Bounding Boxes
629Post-processing step accepts a callback function to be invoked when the decoding is finished. We will use it
630to draw detections on the initial frame.
631With the obtained detections and using [`AddInferenceOutputToFrame`](./src/ImageUtils.cpp) function, we are able to draw bounding boxes around
632detected objects and add the associated label and confidence score.
633```c++
634//results - inference output
635objectDetectionPipeline->PostProcessing(results, [&frame, &labels](od::DetectedObjects detects) -> void {
636            AddInferenceOutputToFrame(detects, *frame, labels);
637        });
638```
639The processed frames are written to a file or displayed in a separate window.
640