• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright © 2022-2023 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 #pragma once
6 
7 #include <armnn/INetwork.hpp>
8 
9 #include <CommonTestUtils.hpp>
10 #include <ResolveType.hpp>
11 
12 #include <doctest/doctest.h>
13 
14 namespace
15 {
16 
17 template<typename armnn::DataType DataType>
CreateMultiplicationNetwork(const armnn::TensorShape & inputXShape,const armnn::TensorShape & inputYShape,const armnn::TensorShape & outputShape,const float qScale=1.0f,const int32_t qOffset=0)18 armnn::INetworkPtr CreateMultiplicationNetwork(const armnn::TensorShape& inputXShape,
19                                                const armnn::TensorShape& inputYShape,
20                                                const armnn::TensorShape& outputShape,
21                                                const float qScale = 1.0f,
22                                                const int32_t qOffset = 0)
23 {
24     using namespace armnn;
25 
26     INetworkPtr network(INetwork::Create());
27 
28     TensorInfo inputXTensorInfo(inputXShape, DataType, qScale, qOffset, true);
29     TensorInfo inputYTensorInfo(inputYShape, DataType, qScale, qOffset, true);
30 
31     TensorInfo outputTensorInfo(outputShape, DataType, qScale, qOffset);
32 
33     ARMNN_NO_DEPRECATE_WARN_BEGIN
34     IConnectableLayer* multiplication = network->AddMultiplicationLayer("multiplication");
35     ARMNN_NO_DEPRECATE_WARN_END
36     IConnectableLayer* inputX = network->AddInputLayer(0, "inputX");
37     IConnectableLayer* inputY = network->AddInputLayer(1, "inputY");
38     IConnectableLayer* output = network->AddOutputLayer(0, "output");
39 
40     Connect(inputX, multiplication, inputXTensorInfo, 0, 0);
41     Connect(inputY, multiplication, inputYTensorInfo, 0, 1);
42     Connect(multiplication, output, outputTensorInfo, 0, 0);
43 
44     return network;
45 }
46 
47 template<armnn::DataType ArmnnType, typename T = armnn::ResolveType<ArmnnType>>
MultiplicationEndToEnd(const std::vector<armnn::BackendId> & backends)48 void MultiplicationEndToEnd(const std::vector<armnn::BackendId>& backends)
49 {
50     using namespace armnn;
51 
52     const TensorShape& inputXShape = { 2, 2 };
53     const TensorShape& inputYShape = { 2, 2 };
54     const TensorShape& outputShape = { 2, 2 };
55 
56     INetworkPtr network = CreateMultiplicationNetwork<ArmnnType>(inputXShape, inputYShape, outputShape);
57 
58     CHECK(network);
59 
60     std::vector<T> inputXData{ 1, 2, 3, 4 };
61     std::vector<T> inputYData{ 5, 2, 6, 3 };
62     std::vector<T> expectedOutput{ 5, 4, 18, 12 };
63 
64     std::map<int, std::vector<T>> inputTensorData = {{ 0, inputXData }, {1, inputYData}};
65     std::map<int, std::vector<T>> expectedOutputData = { { 0, expectedOutput } };
66 
67     EndToEndLayerTestImpl<ArmnnType, ArmnnType>(std::move(network), inputTensorData, expectedOutputData, backends);
68 }
69 
70 template<armnn::DataType ArmnnType>
MultiplicationEndToEndFloat16(const std::vector<armnn::BackendId> & backends)71 void MultiplicationEndToEndFloat16(const std::vector<armnn::BackendId>& backends)
72 {
73     using namespace armnn;
74     using namespace half_float::literal;
75     using Half = half_float::half;
76 
77     const TensorShape& inputXShape = { 2, 2 };
78     const TensorShape& inputYShape = { 2, 2 };
79     const TensorShape& outputShape = { 2, 2 };
80 
81     INetworkPtr network = CreateMultiplicationNetwork<ArmnnType>(inputXShape, inputYShape, outputShape);
82     CHECK(network);
83 
84     std::vector<Half> inputXData{ 1._h, 2._h,
85                                   3._h, 4._h };
86     std::vector<Half> inputYData{ 1._h, 2._h,
87                                   3._h, 4._h };
88     std::vector<Half> expectedOutput{ 1._h, 4._h,
89                                       9._h, 16._h };
90 
91     std::map<int, std::vector<Half>> inputTensorData = {{ 0, inputXData }, { 1, inputYData }};
92     std::map<int, std::vector<Half>> expectedOutputData = { { 0, expectedOutput } };
93 
94     EndToEndLayerTestImpl<ArmnnType, ArmnnType>(std::move(network), inputTensorData, expectedOutputData, backends);
95 }
96 
97 } // anonymous namespace
98