• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved.
3  * Copyright (c) 2014, Intel Corporation. All Rights Reserved.
4  *
5  * Licensed under the OpenSSL license (the "License").  You may not use
6  * this file except in compliance with the License.  You can obtain a copy
7  * in the file LICENSE in the source distribution or at
8  * https://www.openssl.org/source/license.html
9  *
10  * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1)
11  * (1) Intel Corporation, Israel Development Center, Haifa, Israel
12  * (2) University of Haifa, Israel
13  *
14  * Reference:
15  * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with
16  *                          256 Bit Primes"
17  */
18 
19 #include <openssl/ec.h>
20 
21 #include <assert.h>
22 #include <stdint.h>
23 #include <string.h>
24 
25 #include <openssl/bn.h>
26 #include <openssl/crypto.h>
27 #include <openssl/err.h>
28 
29 #include "../bn/internal.h"
30 #include "../delocate.h"
31 #include "../../internal.h"
32 #include "internal.h"
33 #include "p256-nistz.h"
34 
35 #if !defined(OPENSSL_NO_ASM) &&  \
36     (defined(OPENSSL_X86_64) || defined(OPENSSL_AARCH64)) &&    \
37     !defined(OPENSSL_SMALL)
38 
39 typedef P256_POINT_AFFINE PRECOMP256_ROW[64];
40 
41 // One converted into the Montgomery domain
42 static const BN_ULONG ONE[P256_LIMBS] = {
43     TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),
44     TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe),
45 };
46 
47 // Precomputed tables for the default generator
48 #include "p256-nistz-table.h"
49 
50 // Recode window to a signed digit, see |ec_GFp_nistp_recode_scalar_bits| in
51 // util.c for details
booth_recode_w5(crypto_word_t in)52 static crypto_word_t booth_recode_w5(crypto_word_t in) {
53   crypto_word_t s, d;
54 
55   s = ~((in >> 5) - 1);
56   d = (1 << 6) - in - 1;
57   d = (d & s) | (in & ~s);
58   d = (d >> 1) + (d & 1);
59 
60   return (d << 1) + (s & 1);
61 }
62 
booth_recode_w7(crypto_word_t in)63 static crypto_word_t booth_recode_w7(crypto_word_t in) {
64   crypto_word_t s, d;
65 
66   s = ~((in >> 7) - 1);
67   d = (1 << 8) - in - 1;
68   d = (d & s) | (in & ~s);
69   d = (d >> 1) + (d & 1);
70 
71   return (d << 1) + (s & 1);
72 }
73 
74 // copy_conditional copies |src| to |dst| if |move| is one and leaves it as-is
75 // if |move| is zero.
76 //
77 // WARNING: this breaks the usual convention of constant-time functions
78 // returning masks.
copy_conditional(BN_ULONG dst[P256_LIMBS],const BN_ULONG src[P256_LIMBS],BN_ULONG move)79 static void copy_conditional(BN_ULONG dst[P256_LIMBS],
80                              const BN_ULONG src[P256_LIMBS], BN_ULONG move) {
81   BN_ULONG mask1 = ((BN_ULONG)0) - move;
82   BN_ULONG mask2 = ~mask1;
83 
84   dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);
85   dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);
86   dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);
87   dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);
88   if (P256_LIMBS == 8) {
89     dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);
90     dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);
91     dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);
92     dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);
93   }
94 }
95 
96 // is_not_zero returns one iff in != 0 and zero otherwise.
97 //
98 // WARNING: this breaks the usual convention of constant-time functions
99 // returning masks.
100 //
101 // (define-fun is_not_zero ((in (_ BitVec 64))) (_ BitVec 64)
102 //   (bvlshr (bvor in (bvsub #x0000000000000000 in)) #x000000000000003f)
103 // )
104 //
105 // (declare-fun x () (_ BitVec 64))
106 //
107 // (assert (and (= x #x0000000000000000) (= (is_not_zero x) #x0000000000000001)))
108 // (check-sat)
109 //
110 // (assert (and (not (= x #x0000000000000000)) (= (is_not_zero x) #x0000000000000000)))
111 // (check-sat)
112 //
is_not_zero(BN_ULONG in)113 static BN_ULONG is_not_zero(BN_ULONG in) {
114   in |= (0 - in);
115   in >>= BN_BITS2 - 1;
116   return in;
117 }
118 
119 // ecp_nistz256_mod_inverse_sqr_mont sets |r| to (|in| * 2^-256)^-2 * 2^256 mod
120 // p. That is, |r| is the modular inverse square of |in| for input and output in
121 // the Montgomery domain.
ecp_nistz256_mod_inverse_sqr_mont(BN_ULONG r[P256_LIMBS],const BN_ULONG in[P256_LIMBS])122 static void ecp_nistz256_mod_inverse_sqr_mont(BN_ULONG r[P256_LIMBS],
123                                               const BN_ULONG in[P256_LIMBS]) {
124   // This implements the addition chain described in
125   // https://briansmith.org/ecc-inversion-addition-chains-01#p256_field_inversion
126   BN_ULONG x2[P256_LIMBS], x3[P256_LIMBS], x6[P256_LIMBS], x12[P256_LIMBS],
127       x15[P256_LIMBS], x30[P256_LIMBS], x32[P256_LIMBS];
128   ecp_nistz256_sqr_mont(x2, in);      // 2^2 - 2^1
129   ecp_nistz256_mul_mont(x2, x2, in);  // 2^2 - 2^0
130 
131   ecp_nistz256_sqr_mont(x3, x2);      // 2^3 - 2^1
132   ecp_nistz256_mul_mont(x3, x3, in);  // 2^3 - 2^0
133 
134   ecp_nistz256_sqr_mont(x6, x3);
135   for (int i = 1; i < 3; i++) {
136     ecp_nistz256_sqr_mont(x6, x6);
137   }                                   // 2^6 - 2^3
138   ecp_nistz256_mul_mont(x6, x6, x3);  // 2^6 - 2^0
139 
140   ecp_nistz256_sqr_mont(x12, x6);
141   for (int i = 1; i < 6; i++) {
142     ecp_nistz256_sqr_mont(x12, x12);
143   }                                     // 2^12 - 2^6
144   ecp_nistz256_mul_mont(x12, x12, x6);  // 2^12 - 2^0
145 
146   ecp_nistz256_sqr_mont(x15, x12);
147   for (int i = 1; i < 3; i++) {
148     ecp_nistz256_sqr_mont(x15, x15);
149   }                                     // 2^15 - 2^3
150   ecp_nistz256_mul_mont(x15, x15, x3);  // 2^15 - 2^0
151 
152   ecp_nistz256_sqr_mont(x30, x15);
153   for (int i = 1; i < 15; i++) {
154     ecp_nistz256_sqr_mont(x30, x30);
155   }                                      // 2^30 - 2^15
156   ecp_nistz256_mul_mont(x30, x30, x15);  // 2^30 - 2^0
157 
158   ecp_nistz256_sqr_mont(x32, x30);
159   ecp_nistz256_sqr_mont(x32, x32);      // 2^32 - 2^2
160   ecp_nistz256_mul_mont(x32, x32, x2);  // 2^32 - 2^0
161 
162   BN_ULONG ret[P256_LIMBS];
163   ecp_nistz256_sqr_mont(ret, x32);
164   for (int i = 1; i < 31 + 1; i++) {
165     ecp_nistz256_sqr_mont(ret, ret);
166   }                                     // 2^64 - 2^32
167   ecp_nistz256_mul_mont(ret, ret, in);  // 2^64 - 2^32 + 2^0
168 
169   for (int i = 0; i < 96 + 32; i++) {
170     ecp_nistz256_sqr_mont(ret, ret);
171   }                                      // 2^192 - 2^160 + 2^128
172   ecp_nistz256_mul_mont(ret, ret, x32);  // 2^192 - 2^160 + 2^128 + 2^32 - 2^0
173 
174   for (int i = 0; i < 32; i++) {
175     ecp_nistz256_sqr_mont(ret, ret);
176   }                                      // 2^224 - 2^192 + 2^160 + 2^64 - 2^32
177   ecp_nistz256_mul_mont(ret, ret, x32);  // 2^224 - 2^192 + 2^160 + 2^64 - 2^0
178 
179   for (int i = 0; i < 30; i++) {
180     ecp_nistz256_sqr_mont(ret, ret);
181   }                                      // 2^254 - 2^222 + 2^190 + 2^94 - 2^30
182   ecp_nistz256_mul_mont(ret, ret, x30);  // 2^254 - 2^222 + 2^190 + 2^94 - 2^0
183 
184   ecp_nistz256_sqr_mont(ret, ret);
185   ecp_nistz256_sqr_mont(r, ret);  // 2^256 - 2^224 + 2^192 + 2^96 - 2^2
186 }
187 
188 // r = p * p_scalar
ecp_nistz256_windowed_mul(const EC_GROUP * group,P256_POINT * r,const EC_RAW_POINT * p,const EC_SCALAR * p_scalar)189 static void ecp_nistz256_windowed_mul(const EC_GROUP *group, P256_POINT *r,
190                                       const EC_RAW_POINT *p,
191                                       const EC_SCALAR *p_scalar) {
192   assert(p != NULL);
193   assert(p_scalar != NULL);
194   assert(group->field.width == P256_LIMBS);
195 
196   static const size_t kWindowSize = 5;
197   static const crypto_word_t kMask = (1 << (5 /* kWindowSize */ + 1)) - 1;
198 
199   // A |P256_POINT| is (3 * 32) = 96 bytes, and the 64-byte alignment should
200   // add no more than 63 bytes of overhead. Thus, |table| should require
201   // ~1599 ((96 * 16) + 63) bytes of stack space.
202   alignas(64) P256_POINT table[16];
203   uint8_t p_str[33];
204   OPENSSL_memcpy(p_str, p_scalar->words, 32);
205   p_str[32] = 0;
206 
207   // table[0] is implicitly (0,0,0) (the point at infinity), therefore it is
208   // not stored. All other values are actually stored with an offset of -1 in
209   // table.
210   P256_POINT *row = table;
211   assert(group->field.width == P256_LIMBS);
212   OPENSSL_memcpy(row[1 - 1].X, p->X.words, P256_LIMBS * sizeof(BN_ULONG));
213   OPENSSL_memcpy(row[1 - 1].Y, p->Y.words, P256_LIMBS * sizeof(BN_ULONG));
214   OPENSSL_memcpy(row[1 - 1].Z, p->Z.words, P256_LIMBS * sizeof(BN_ULONG));
215 
216   ecp_nistz256_point_double(&row[2 - 1], &row[1 - 1]);
217   ecp_nistz256_point_add(&row[3 - 1], &row[2 - 1], &row[1 - 1]);
218   ecp_nistz256_point_double(&row[4 - 1], &row[2 - 1]);
219   ecp_nistz256_point_double(&row[6 - 1], &row[3 - 1]);
220   ecp_nistz256_point_double(&row[8 - 1], &row[4 - 1]);
221   ecp_nistz256_point_double(&row[12 - 1], &row[6 - 1]);
222   ecp_nistz256_point_add(&row[5 - 1], &row[4 - 1], &row[1 - 1]);
223   ecp_nistz256_point_add(&row[7 - 1], &row[6 - 1], &row[1 - 1]);
224   ecp_nistz256_point_add(&row[9 - 1], &row[8 - 1], &row[1 - 1]);
225   ecp_nistz256_point_add(&row[13 - 1], &row[12 - 1], &row[1 - 1]);
226   ecp_nistz256_point_double(&row[14 - 1], &row[7 - 1]);
227   ecp_nistz256_point_double(&row[10 - 1], &row[5 - 1]);
228   ecp_nistz256_point_add(&row[15 - 1], &row[14 - 1], &row[1 - 1]);
229   ecp_nistz256_point_add(&row[11 - 1], &row[10 - 1], &row[1 - 1]);
230   ecp_nistz256_point_double(&row[16 - 1], &row[8 - 1]);
231 
232   BN_ULONG tmp[P256_LIMBS];
233   alignas(32) P256_POINT h;
234   size_t index = 255;
235   crypto_word_t wvalue = p_str[(index - 1) / 8];
236   wvalue = (wvalue >> ((index - 1) % 8)) & kMask;
237 
238   ecp_nistz256_select_w5(r, table, booth_recode_w5(wvalue) >> 1);
239 
240   while (index >= 5) {
241     if (index != 255) {
242       size_t off = (index - 1) / 8;
243 
244       wvalue = (crypto_word_t)p_str[off] | (crypto_word_t)p_str[off + 1] << 8;
245       wvalue = (wvalue >> ((index - 1) % 8)) & kMask;
246 
247       wvalue = booth_recode_w5(wvalue);
248 
249       ecp_nistz256_select_w5(&h, table, wvalue >> 1);
250 
251       ecp_nistz256_neg(tmp, h.Y);
252       copy_conditional(h.Y, tmp, (wvalue & 1));
253 
254       ecp_nistz256_point_add(r, r, &h);
255     }
256 
257     index -= kWindowSize;
258 
259     ecp_nistz256_point_double(r, r);
260     ecp_nistz256_point_double(r, r);
261     ecp_nistz256_point_double(r, r);
262     ecp_nistz256_point_double(r, r);
263     ecp_nistz256_point_double(r, r);
264   }
265 
266   // Final window
267   wvalue = p_str[0];
268   wvalue = (wvalue << 1) & kMask;
269 
270   wvalue = booth_recode_w5(wvalue);
271 
272   ecp_nistz256_select_w5(&h, table, wvalue >> 1);
273 
274   ecp_nistz256_neg(tmp, h.Y);
275   copy_conditional(h.Y, tmp, wvalue & 1);
276 
277   ecp_nistz256_point_add(r, r, &h);
278 }
279 
calc_first_wvalue(size_t * index,const uint8_t p_str[33])280 static crypto_word_t calc_first_wvalue(size_t *index, const uint8_t p_str[33]) {
281   static const size_t kWindowSize = 7;
282   static const crypto_word_t kMask = (1 << (7 /* kWindowSize */ + 1)) - 1;
283   *index = kWindowSize;
284 
285   crypto_word_t wvalue = (p_str[0] << 1) & kMask;
286   return booth_recode_w7(wvalue);
287 }
288 
calc_wvalue(size_t * index,const uint8_t p_str[33])289 static crypto_word_t calc_wvalue(size_t *index, const uint8_t p_str[33]) {
290   static const size_t kWindowSize = 7;
291   static const crypto_word_t kMask = (1 << (7 /* kWindowSize */ + 1)) - 1;
292 
293   const size_t off = (*index - 1) / 8;
294   crypto_word_t wvalue =
295       (crypto_word_t)p_str[off] | (crypto_word_t)p_str[off + 1] << 8;
296   wvalue = (wvalue >> ((*index - 1) % 8)) & kMask;
297   *index += kWindowSize;
298 
299   return booth_recode_w7(wvalue);
300 }
301 
ecp_nistz256_point_mul(const EC_GROUP * group,EC_RAW_POINT * r,const EC_RAW_POINT * p,const EC_SCALAR * scalar)302 static void ecp_nistz256_point_mul(const EC_GROUP *group, EC_RAW_POINT *r,
303                                    const EC_RAW_POINT *p,
304                                    const EC_SCALAR *scalar) {
305   alignas(32) P256_POINT out;
306   ecp_nistz256_windowed_mul(group, &out, p, scalar);
307 
308   assert(group->field.width == P256_LIMBS);
309   OPENSSL_memcpy(r->X.words, out.X, P256_LIMBS * sizeof(BN_ULONG));
310   OPENSSL_memcpy(r->Y.words, out.Y, P256_LIMBS * sizeof(BN_ULONG));
311   OPENSSL_memcpy(r->Z.words, out.Z, P256_LIMBS * sizeof(BN_ULONG));
312 }
313 
ecp_nistz256_point_mul_base(const EC_GROUP * group,EC_RAW_POINT * r,const EC_SCALAR * scalar)314 static void ecp_nistz256_point_mul_base(const EC_GROUP *group, EC_RAW_POINT *r,
315                                         const EC_SCALAR *scalar) {
316   uint8_t p_str[33];
317   OPENSSL_memcpy(p_str, scalar->words, 32);
318   p_str[32] = 0;
319 
320   // First window
321   size_t index = 0;
322   crypto_word_t wvalue = calc_first_wvalue(&index, p_str);
323 
324   alignas(32) P256_POINT_AFFINE t;
325   alignas(32) P256_POINT p;
326   ecp_nistz256_select_w7(&t, ecp_nistz256_precomputed[0], wvalue >> 1);
327   ecp_nistz256_neg(p.Z, t.Y);
328   copy_conditional(t.Y, p.Z, wvalue & 1);
329 
330   // Convert |t| from affine to Jacobian coordinates. We set Z to zero if |t|
331   // is infinity and |ONE| otherwise. |t| was computed from the table, so it
332   // is infinity iff |wvalue >> 1| is zero.
333   OPENSSL_memcpy(p.X, t.X, sizeof(p.X));
334   OPENSSL_memcpy(p.Y, t.Y, sizeof(p.Y));
335   OPENSSL_memset(p.Z, 0, sizeof(p.Z));
336   copy_conditional(p.Z, ONE, is_not_zero(wvalue >> 1));
337 
338   for (int i = 1; i < 37; i++) {
339     wvalue = calc_wvalue(&index, p_str);
340 
341     ecp_nistz256_select_w7(&t, ecp_nistz256_precomputed[i], wvalue >> 1);
342 
343     alignas(32) BN_ULONG neg_Y[P256_LIMBS];
344     ecp_nistz256_neg(neg_Y, t.Y);
345     copy_conditional(t.Y, neg_Y, wvalue & 1);
346 
347     // Note |ecp_nistz256_point_add_affine| does not work if |p| and |t| are the
348     // same non-infinity point.
349     ecp_nistz256_point_add_affine(&p, &p, &t);
350   }
351 
352   assert(group->field.width == P256_LIMBS);
353   OPENSSL_memcpy(r->X.words, p.X, P256_LIMBS * sizeof(BN_ULONG));
354   OPENSSL_memcpy(r->Y.words, p.Y, P256_LIMBS * sizeof(BN_ULONG));
355   OPENSSL_memcpy(r->Z.words, p.Z, P256_LIMBS * sizeof(BN_ULONG));
356 }
357 
ecp_nistz256_points_mul_public(const EC_GROUP * group,EC_RAW_POINT * r,const EC_SCALAR * g_scalar,const EC_RAW_POINT * p_,const EC_SCALAR * p_scalar)358 static void ecp_nistz256_points_mul_public(const EC_GROUP *group,
359                                            EC_RAW_POINT *r,
360                                            const EC_SCALAR *g_scalar,
361                                            const EC_RAW_POINT *p_,
362                                            const EC_SCALAR *p_scalar) {
363   assert(p_ != NULL && p_scalar != NULL && g_scalar != NULL);
364 
365   alignas(32) P256_POINT p;
366   uint8_t p_str[33];
367   OPENSSL_memcpy(p_str, g_scalar->words, 32);
368   p_str[32] = 0;
369 
370   // First window
371   size_t index = 0;
372   size_t wvalue = calc_first_wvalue(&index, p_str);
373 
374   // Convert |p| from affine to Jacobian coordinates. We set Z to zero if |p|
375   // is infinity and |ONE| otherwise. |p| was computed from the table, so it
376   // is infinity iff |wvalue >> 1| is zero.
377   if ((wvalue >> 1) != 0) {
378     OPENSSL_memcpy(p.X, &ecp_nistz256_precomputed[0][(wvalue >> 1) - 1].X,
379                    sizeof(p.X));
380     OPENSSL_memcpy(p.Y, &ecp_nistz256_precomputed[0][(wvalue >> 1) - 1].Y,
381                    sizeof(p.Y));
382     OPENSSL_memcpy(p.Z, ONE, sizeof(p.Z));
383   } else {
384     OPENSSL_memset(p.X, 0, sizeof(p.X));
385     OPENSSL_memset(p.Y, 0, sizeof(p.Y));
386     OPENSSL_memset(p.Z, 0, sizeof(p.Z));
387   }
388 
389   if ((wvalue & 1) == 1) {
390     ecp_nistz256_neg(p.Y, p.Y);
391   }
392 
393   for (int i = 1; i < 37; i++) {
394     wvalue = calc_wvalue(&index, p_str);
395     if ((wvalue >> 1) == 0) {
396       continue;
397     }
398 
399     alignas(32) P256_POINT_AFFINE t;
400     OPENSSL_memcpy(&t, &ecp_nistz256_precomputed[i][(wvalue >> 1) - 1],
401                    sizeof(t));
402     if ((wvalue & 1) == 1) {
403       ecp_nistz256_neg(t.Y, t.Y);
404     }
405 
406     // Note |ecp_nistz256_point_add_affine| does not work if |p| and |t| are
407     // the same non-infinity point, so it is important that we compute the
408     // |g_scalar| term before the |p_scalar| term.
409     ecp_nistz256_point_add_affine(&p, &p, &t);
410   }
411 
412   alignas(32) P256_POINT tmp;
413   ecp_nistz256_windowed_mul(group, &tmp, p_, p_scalar);
414   ecp_nistz256_point_add(&p, &p, &tmp);
415 
416   assert(group->field.width == P256_LIMBS);
417   OPENSSL_memcpy(r->X.words, p.X, P256_LIMBS * sizeof(BN_ULONG));
418   OPENSSL_memcpy(r->Y.words, p.Y, P256_LIMBS * sizeof(BN_ULONG));
419   OPENSSL_memcpy(r->Z.words, p.Z, P256_LIMBS * sizeof(BN_ULONG));
420 }
421 
ecp_nistz256_get_affine(const EC_GROUP * group,const EC_RAW_POINT * point,EC_FELEM * x,EC_FELEM * y)422 static int ecp_nistz256_get_affine(const EC_GROUP *group,
423                                    const EC_RAW_POINT *point, EC_FELEM *x,
424                                    EC_FELEM *y) {
425   if (ec_GFp_simple_is_at_infinity(group, point)) {
426     OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
427     return 0;
428   }
429 
430   BN_ULONG z_inv2[P256_LIMBS];
431   assert(group->field.width == P256_LIMBS);
432   ecp_nistz256_mod_inverse_sqr_mont(z_inv2, point->Z.words);
433 
434   if (x != NULL) {
435     ecp_nistz256_mul_mont(x->words, z_inv2, point->X.words);
436   }
437 
438   if (y != NULL) {
439     ecp_nistz256_sqr_mont(z_inv2, z_inv2);                            // z^-4
440     ecp_nistz256_mul_mont(y->words, point->Y.words, point->Z.words);  // y * z
441     ecp_nistz256_mul_mont(y->words, y->words, z_inv2);  // y * z^-3
442   }
443 
444   return 1;
445 }
446 
ecp_nistz256_add(const EC_GROUP * group,EC_RAW_POINT * r,const EC_RAW_POINT * a_,const EC_RAW_POINT * b_)447 static void ecp_nistz256_add(const EC_GROUP *group, EC_RAW_POINT *r,
448                              const EC_RAW_POINT *a_, const EC_RAW_POINT *b_) {
449   P256_POINT a, b;
450   OPENSSL_memcpy(a.X, a_->X.words, P256_LIMBS * sizeof(BN_ULONG));
451   OPENSSL_memcpy(a.Y, a_->Y.words, P256_LIMBS * sizeof(BN_ULONG));
452   OPENSSL_memcpy(a.Z, a_->Z.words, P256_LIMBS * sizeof(BN_ULONG));
453   OPENSSL_memcpy(b.X, b_->X.words, P256_LIMBS * sizeof(BN_ULONG));
454   OPENSSL_memcpy(b.Y, b_->Y.words, P256_LIMBS * sizeof(BN_ULONG));
455   OPENSSL_memcpy(b.Z, b_->Z.words, P256_LIMBS * sizeof(BN_ULONG));
456   ecp_nistz256_point_add(&a, &a, &b);
457   OPENSSL_memcpy(r->X.words, a.X, P256_LIMBS * sizeof(BN_ULONG));
458   OPENSSL_memcpy(r->Y.words, a.Y, P256_LIMBS * sizeof(BN_ULONG));
459   OPENSSL_memcpy(r->Z.words, a.Z, P256_LIMBS * sizeof(BN_ULONG));
460 }
461 
ecp_nistz256_dbl(const EC_GROUP * group,EC_RAW_POINT * r,const EC_RAW_POINT * a_)462 static void ecp_nistz256_dbl(const EC_GROUP *group, EC_RAW_POINT *r,
463                              const EC_RAW_POINT *a_) {
464   P256_POINT a;
465   OPENSSL_memcpy(a.X, a_->X.words, P256_LIMBS * sizeof(BN_ULONG));
466   OPENSSL_memcpy(a.Y, a_->Y.words, P256_LIMBS * sizeof(BN_ULONG));
467   OPENSSL_memcpy(a.Z, a_->Z.words, P256_LIMBS * sizeof(BN_ULONG));
468   ecp_nistz256_point_double(&a, &a);
469   OPENSSL_memcpy(r->X.words, a.X, P256_LIMBS * sizeof(BN_ULONG));
470   OPENSSL_memcpy(r->Y.words, a.Y, P256_LIMBS * sizeof(BN_ULONG));
471   OPENSSL_memcpy(r->Z.words, a.Z, P256_LIMBS * sizeof(BN_ULONG));
472 }
473 
ecp_nistz256_inv0_mod_ord(const EC_GROUP * group,EC_SCALAR * out,const EC_SCALAR * in)474 static void ecp_nistz256_inv0_mod_ord(const EC_GROUP *group, EC_SCALAR *out,
475                                       const EC_SCALAR *in) {
476   // table[i] stores a power of |in| corresponding to the matching enum value.
477   enum {
478     // The following indices specify the power in binary.
479     i_1 = 0,
480     i_10,
481     i_11,
482     i_101,
483     i_111,
484     i_1010,
485     i_1111,
486     i_10101,
487     i_101010,
488     i_101111,
489     // The following indices specify 2^N-1, or N ones in a row.
490     i_x6,
491     i_x8,
492     i_x16,
493     i_x32
494   };
495   BN_ULONG table[15][P256_LIMBS];
496 
497   // https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion
498   //
499   // Even though this code path spares 12 squarings, 4.5%, and 13
500   // multiplications, 25%, the overall sign operation is not that much faster,
501   // not more that 2%. Most of the performance of this function comes from the
502   // scalar operations.
503 
504   // Pre-calculate powers.
505   OPENSSL_memcpy(table[i_1], in->words, P256_LIMBS * sizeof(BN_ULONG));
506 
507   ecp_nistz256_ord_sqr_mont(table[i_10], table[i_1], 1);
508 
509   ecp_nistz256_ord_mul_mont(table[i_11], table[i_1], table[i_10]);
510 
511   ecp_nistz256_ord_mul_mont(table[i_101], table[i_11], table[i_10]);
512 
513   ecp_nistz256_ord_mul_mont(table[i_111], table[i_101], table[i_10]);
514 
515   ecp_nistz256_ord_sqr_mont(table[i_1010], table[i_101], 1);
516 
517   ecp_nistz256_ord_mul_mont(table[i_1111], table[i_1010], table[i_101]);
518 
519   ecp_nistz256_ord_sqr_mont(table[i_10101], table[i_1010], 1);
520   ecp_nistz256_ord_mul_mont(table[i_10101], table[i_10101], table[i_1]);
521 
522   ecp_nistz256_ord_sqr_mont(table[i_101010], table[i_10101], 1);
523 
524   ecp_nistz256_ord_mul_mont(table[i_101111], table[i_101010], table[i_101]);
525 
526   ecp_nistz256_ord_mul_mont(table[i_x6], table[i_101010], table[i_10101]);
527 
528   ecp_nistz256_ord_sqr_mont(table[i_x8], table[i_x6], 2);
529   ecp_nistz256_ord_mul_mont(table[i_x8], table[i_x8], table[i_11]);
530 
531   ecp_nistz256_ord_sqr_mont(table[i_x16], table[i_x8], 8);
532   ecp_nistz256_ord_mul_mont(table[i_x16], table[i_x16], table[i_x8]);
533 
534   ecp_nistz256_ord_sqr_mont(table[i_x32], table[i_x16], 16);
535   ecp_nistz256_ord_mul_mont(table[i_x32], table[i_x32], table[i_x16]);
536 
537   // Compute |in| raised to the order-2.
538   ecp_nistz256_ord_sqr_mont(out->words, table[i_x32], 64);
539   ecp_nistz256_ord_mul_mont(out->words, out->words, table[i_x32]);
540   static const struct {
541     uint8_t p, i;
542   } kChain[27] = {{32, i_x32},    {6, i_101111}, {5, i_111},    {4, i_11},
543                   {5, i_1111},    {5, i_10101},  {4, i_101},    {3, i_101},
544                   {3, i_101},     {5, i_111},    {9, i_101111}, {6, i_1111},
545                   {2, i_1},       {5, i_1},      {6, i_1111},   {5, i_111},
546                   {4, i_111},     {5, i_111},    {5, i_101},    {3, i_11},
547                   {10, i_101111}, {2, i_11},     {5, i_11},     {5, i_11},
548                   {3, i_1},       {7, i_10101},  {6, i_1111}};
549   for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kChain); i++) {
550     ecp_nistz256_ord_sqr_mont(out->words, out->words, kChain[i].p);
551     ecp_nistz256_ord_mul_mont(out->words, out->words, table[kChain[i].i]);
552   }
553 }
554 
ecp_nistz256_scalar_to_montgomery_inv_vartime(const EC_GROUP * group,EC_SCALAR * out,const EC_SCALAR * in)555 static int ecp_nistz256_scalar_to_montgomery_inv_vartime(const EC_GROUP *group,
556                                                  EC_SCALAR *out,
557                                                  const EC_SCALAR *in) {
558 #if defined(OPENSSL_X86_64)
559   if (!CRYPTO_is_AVX_capable()) {
560     // No AVX support; fallback to generic code.
561     return ec_simple_scalar_to_montgomery_inv_vartime(group, out, in);
562   }
563 #endif
564 
565   assert(group->order.width == P256_LIMBS);
566   if (!beeu_mod_inverse_vartime(out->words, in->words, group->order.d)) {
567     return 0;
568   }
569 
570   // The result should be returned in the Montgomery domain.
571   ec_scalar_to_montgomery(group, out, out);
572   return 1;
573 }
574 
ecp_nistz256_cmp_x_coordinate(const EC_GROUP * group,const EC_RAW_POINT * p,const EC_SCALAR * r)575 static int ecp_nistz256_cmp_x_coordinate(const EC_GROUP *group,
576                                          const EC_RAW_POINT *p,
577                                          const EC_SCALAR *r) {
578   if (ec_GFp_simple_is_at_infinity(group, p)) {
579     return 0;
580   }
581 
582   assert(group->order.width == P256_LIMBS);
583   assert(group->field.width == P256_LIMBS);
584 
585   // We wish to compare X/Z^2 with r. This is equivalent to comparing X with
586   // r*Z^2. Note that X and Z are represented in Montgomery form, while r is
587   // not.
588   BN_ULONG r_Z2[P256_LIMBS], Z2_mont[P256_LIMBS], X[P256_LIMBS];
589   ecp_nistz256_mul_mont(Z2_mont, p->Z.words, p->Z.words);
590   ecp_nistz256_mul_mont(r_Z2, r->words, Z2_mont);
591   ecp_nistz256_from_mont(X, p->X.words);
592 
593   if (OPENSSL_memcmp(r_Z2, X, sizeof(r_Z2)) == 0) {
594     return 1;
595   }
596 
597   // During signing the x coefficient is reduced modulo the group order.
598   // Therefore there is a small possibility, less than 1/2^128, that group_order
599   // < p.x < P. in that case we need not only to compare against |r| but also to
600   // compare against r+group_order.
601   if (bn_less_than_words(r->words, group->field_minus_order.words,
602                          P256_LIMBS)) {
603     // We can ignore the carry because: r + group_order < p < 2^256.
604     bn_add_words(r_Z2, r->words, group->order.d, P256_LIMBS);
605     ecp_nistz256_mul_mont(r_Z2, r_Z2, Z2_mont);
606     if (OPENSSL_memcmp(r_Z2, X, sizeof(r_Z2)) == 0) {
607       return 1;
608     }
609   }
610 
611   return 0;
612 }
613 
DEFINE_METHOD_FUNCTION(EC_METHOD,EC_GFp_nistz256_method)614 DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistz256_method) {
615   out->group_init = ec_GFp_mont_group_init;
616   out->group_finish = ec_GFp_mont_group_finish;
617   out->group_set_curve = ec_GFp_mont_group_set_curve;
618   out->point_get_affine_coordinates = ecp_nistz256_get_affine;
619   out->add = ecp_nistz256_add;
620   out->dbl = ecp_nistz256_dbl;
621   out->mul = ecp_nistz256_point_mul;
622   out->mul_base = ecp_nistz256_point_mul_base;
623   out->mul_public = ecp_nistz256_points_mul_public;
624   out->felem_mul = ec_GFp_mont_felem_mul;
625   out->felem_sqr = ec_GFp_mont_felem_sqr;
626   out->felem_to_bytes = ec_GFp_mont_felem_to_bytes;
627   out->felem_from_bytes = ec_GFp_mont_felem_from_bytes;
628   out->felem_reduce = ec_GFp_mont_felem_reduce;
629   // TODO(davidben): This should use the specialized field arithmetic
630   // implementation, rather than the generic one.
631   out->felem_exp = ec_GFp_mont_felem_exp;
632   out->scalar_inv0_montgomery = ecp_nistz256_inv0_mod_ord;
633   out->scalar_to_montgomery_inv_vartime =
634       ecp_nistz256_scalar_to_montgomery_inv_vartime;
635   out->cmp_x_coordinate = ecp_nistz256_cmp_x_coordinate;
636 }
637 
638 #endif /* !defined(OPENSSL_NO_ASM) && \
639           (defined(OPENSSL_X86_64) || defined(OPENSSL_AARCH64)) &&  \
640           !defined(OPENSSL_SMALL) */
641