• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * DTLS implementation written by Nagendra Modadugu
3  * (nagendra@cs.stanford.edu) for the OpenSSL project 2005.
4  */
5 /* ====================================================================
6  * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  *
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  *
20  * 3. All advertising materials mentioning features or use of this
21  *    software must display the following acknowledgment:
22  *    "This product includes software developed by the OpenSSL Project
23  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24  *
25  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26  *    endorse or promote products derived from this software without
27  *    prior written permission. For written permission, please contact
28  *    openssl-core@openssl.org.
29  *
30  * 5. Products derived from this software may not be called "OpenSSL"
31  *    nor may "OpenSSL" appear in their names without prior written
32  *    permission of the OpenSSL Project.
33  *
34  * 6. Redistributions of any form whatsoever must retain the following
35  *    acknowledgment:
36  *    "This product includes software developed by the OpenSSL Project
37  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38  *
39  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
43  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50  * OF THE POSSIBILITY OF SUCH DAMAGE.
51  * ====================================================================
52  *
53  * This product includes cryptographic software written by Eric Young
54  * (eay@cryptsoft.com).  This product includes software written by Tim
55  * Hudson (tjh@cryptsoft.com).
56  *
57  */
58 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
59  * All rights reserved.
60  *
61  * This package is an SSL implementation written
62  * by Eric Young (eay@cryptsoft.com).
63  * The implementation was written so as to conform with Netscapes SSL.
64  *
65  * This library is free for commercial and non-commercial use as long as
66  * the following conditions are aheared to.  The following conditions
67  * apply to all code found in this distribution, be it the RC4, RSA,
68  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
69  * included with this distribution is covered by the same copyright terms
70  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
71  *
72  * Copyright remains Eric Young's, and as such any Copyright notices in
73  * the code are not to be removed.
74  * If this package is used in a product, Eric Young should be given attribution
75  * as the author of the parts of the library used.
76  * This can be in the form of a textual message at program startup or
77  * in documentation (online or textual) provided with the package.
78  *
79  * Redistribution and use in source and binary forms, with or without
80  * modification, are permitted provided that the following conditions
81  * are met:
82  * 1. Redistributions of source code must retain the copyright
83  *    notice, this list of conditions and the following disclaimer.
84  * 2. Redistributions in binary form must reproduce the above copyright
85  *    notice, this list of conditions and the following disclaimer in the
86  *    documentation and/or other materials provided with the distribution.
87  * 3. All advertising materials mentioning features or use of this software
88  *    must display the following acknowledgement:
89  *    "This product includes cryptographic software written by
90  *     Eric Young (eay@cryptsoft.com)"
91  *    The word 'cryptographic' can be left out if the rouines from the library
92  *    being used are not cryptographic related :-).
93  * 4. If you include any Windows specific code (or a derivative thereof) from
94  *    the apps directory (application code) you must include an acknowledgement:
95  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
96  *
97  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
98  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
99  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
100  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
101  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
102  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
103  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
104  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
105  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
106  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
107  * SUCH DAMAGE.
108  *
109  * The licence and distribution terms for any publically available version or
110  * derivative of this code cannot be changed.  i.e. this code cannot simply be
111  * copied and put under another distribution licence
112  * [including the GNU Public Licence.] */
113 
114 #include <openssl/ssl.h>
115 
116 #include <assert.h>
117 #include <limits.h>
118 #include <string.h>
119 
120 #include <openssl/err.h>
121 #include <openssl/evp.h>
122 #include <openssl/mem.h>
123 #include <openssl/rand.h>
124 
125 #include "../crypto/internal.h"
126 #include "internal.h"
127 
128 
129 BSSL_NAMESPACE_BEGIN
130 
131 // TODO(davidben): 28 comes from the size of IP + UDP header. Is this reasonable
132 // for these values? Notably, why is kMinMTU a function of the transport
133 // protocol's overhead rather than, say, what's needed to hold a minimally-sized
134 // handshake fragment plus protocol overhead.
135 
136 // kMinMTU is the minimum acceptable MTU value.
137 static const unsigned int kMinMTU = 256 - 28;
138 
139 // kDefaultMTU is the default MTU value to use if neither the user nor
140 // the underlying BIO supplies one.
141 static const unsigned int kDefaultMTU = 1500 - 28;
142 
143 
144 // Receiving handshake messages.
145 
~hm_fragment()146 hm_fragment::~hm_fragment() {
147   OPENSSL_free(data);
148   OPENSSL_free(reassembly);
149 }
150 
dtls1_hm_fragment_new(const struct hm_header_st * msg_hdr)151 static UniquePtr<hm_fragment> dtls1_hm_fragment_new(
152     const struct hm_header_st *msg_hdr) {
153   ScopedCBB cbb;
154   UniquePtr<hm_fragment> frag = MakeUnique<hm_fragment>();
155   if (!frag) {
156     return nullptr;
157   }
158   frag->type = msg_hdr->type;
159   frag->seq = msg_hdr->seq;
160   frag->msg_len = msg_hdr->msg_len;
161 
162   // Allocate space for the reassembled message and fill in the header.
163   frag->data =
164       (uint8_t *)OPENSSL_malloc(DTLS1_HM_HEADER_LENGTH + msg_hdr->msg_len);
165   if (frag->data == NULL) {
166     return nullptr;
167   }
168 
169   if (!CBB_init_fixed(cbb.get(), frag->data, DTLS1_HM_HEADER_LENGTH) ||
170       !CBB_add_u8(cbb.get(), msg_hdr->type) ||
171       !CBB_add_u24(cbb.get(), msg_hdr->msg_len) ||
172       !CBB_add_u16(cbb.get(), msg_hdr->seq) ||
173       !CBB_add_u24(cbb.get(), 0 /* frag_off */) ||
174       !CBB_add_u24(cbb.get(), msg_hdr->msg_len) ||
175       !CBB_finish(cbb.get(), NULL, NULL)) {
176     return nullptr;
177   }
178 
179   // If the handshake message is empty, |frag->reassembly| is NULL.
180   if (msg_hdr->msg_len > 0) {
181     // Initialize reassembly bitmask.
182     if (msg_hdr->msg_len + 7 < msg_hdr->msg_len) {
183       OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
184       return nullptr;
185     }
186     size_t bitmask_len = (msg_hdr->msg_len + 7) / 8;
187     frag->reassembly = (uint8_t *)OPENSSL_malloc(bitmask_len);
188     if (frag->reassembly == NULL) {
189       return nullptr;
190     }
191     OPENSSL_memset(frag->reassembly, 0, bitmask_len);
192   }
193 
194   return frag;
195 }
196 
197 // bit_range returns a |uint8_t| with bits |start|, inclusive, to |end|,
198 // exclusive, set.
bit_range(size_t start,size_t end)199 static uint8_t bit_range(size_t start, size_t end) {
200   return (uint8_t)(~((1u << start) - 1) & ((1u << end) - 1));
201 }
202 
203 // dtls1_hm_fragment_mark marks bytes |start|, inclusive, to |end|, exclusive,
204 // as received in |frag|. If |frag| becomes complete, it clears
205 // |frag->reassembly|. The range must be within the bounds of |frag|'s message
206 // and |frag->reassembly| must not be NULL.
dtls1_hm_fragment_mark(hm_fragment * frag,size_t start,size_t end)207 static void dtls1_hm_fragment_mark(hm_fragment *frag, size_t start,
208                                    size_t end) {
209   size_t msg_len = frag->msg_len;
210 
211   if (frag->reassembly == NULL || start > end || end > msg_len) {
212     assert(0);
213     return;
214   }
215   // A zero-length message will never have a pending reassembly.
216   assert(msg_len > 0);
217 
218   if (start == end) {
219     return;
220   }
221 
222   if ((start >> 3) == (end >> 3)) {
223     frag->reassembly[start >> 3] |= bit_range(start & 7, end & 7);
224   } else {
225     frag->reassembly[start >> 3] |= bit_range(start & 7, 8);
226     for (size_t i = (start >> 3) + 1; i < (end >> 3); i++) {
227       frag->reassembly[i] = 0xff;
228     }
229     if ((end & 7) != 0) {
230       frag->reassembly[end >> 3] |= bit_range(0, end & 7);
231     }
232   }
233 
234   // Check if the fragment is complete.
235   for (size_t i = 0; i < (msg_len >> 3); i++) {
236     if (frag->reassembly[i] != 0xff) {
237       return;
238     }
239   }
240   if ((msg_len & 7) != 0 &&
241       frag->reassembly[msg_len >> 3] != bit_range(0, msg_len & 7)) {
242     return;
243   }
244 
245   OPENSSL_free(frag->reassembly);
246   frag->reassembly = NULL;
247 }
248 
249 // dtls1_is_current_message_complete returns whether the current handshake
250 // message is complete.
dtls1_is_current_message_complete(const SSL * ssl)251 static bool dtls1_is_current_message_complete(const SSL *ssl) {
252   size_t idx = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT;
253   hm_fragment *frag = ssl->d1->incoming_messages[idx].get();
254   return frag != NULL && frag->reassembly == NULL;
255 }
256 
257 // dtls1_get_incoming_message returns the incoming message corresponding to
258 // |msg_hdr|. If none exists, it creates a new one and inserts it in the
259 // queue. Otherwise, it checks |msg_hdr| is consistent with the existing one. It
260 // returns NULL on failure. The caller does not take ownership of the result.
dtls1_get_incoming_message(SSL * ssl,uint8_t * out_alert,const struct hm_header_st * msg_hdr)261 static hm_fragment *dtls1_get_incoming_message(
262     SSL *ssl, uint8_t *out_alert, const struct hm_header_st *msg_hdr) {
263   if (msg_hdr->seq < ssl->d1->handshake_read_seq ||
264       msg_hdr->seq - ssl->d1->handshake_read_seq >= SSL_MAX_HANDSHAKE_FLIGHT) {
265     *out_alert = SSL_AD_INTERNAL_ERROR;
266     return NULL;
267   }
268 
269   size_t idx = msg_hdr->seq % SSL_MAX_HANDSHAKE_FLIGHT;
270   hm_fragment *frag = ssl->d1->incoming_messages[idx].get();
271   if (frag != NULL) {
272     assert(frag->seq == msg_hdr->seq);
273     // The new fragment must be compatible with the previous fragments from this
274     // message.
275     if (frag->type != msg_hdr->type ||
276         frag->msg_len != msg_hdr->msg_len) {
277       OPENSSL_PUT_ERROR(SSL, SSL_R_FRAGMENT_MISMATCH);
278       *out_alert = SSL_AD_ILLEGAL_PARAMETER;
279       return NULL;
280     }
281     return frag;
282   }
283 
284   // This is the first fragment from this message.
285   ssl->d1->incoming_messages[idx] = dtls1_hm_fragment_new(msg_hdr);
286   if (!ssl->d1->incoming_messages[idx]) {
287     *out_alert = SSL_AD_INTERNAL_ERROR;
288     return NULL;
289   }
290   return ssl->d1->incoming_messages[idx].get();
291 }
292 
dtls1_open_handshake(SSL * ssl,size_t * out_consumed,uint8_t * out_alert,Span<uint8_t> in)293 ssl_open_record_t dtls1_open_handshake(SSL *ssl, size_t *out_consumed,
294                                        uint8_t *out_alert, Span<uint8_t> in) {
295   uint8_t type;
296   Span<uint8_t> record;
297   auto ret = dtls_open_record(ssl, &type, &record, out_consumed, out_alert, in);
298   if (ret != ssl_open_record_success) {
299     return ret;
300   }
301 
302   switch (type) {
303     case SSL3_RT_APPLICATION_DATA:
304       // Unencrypted application data records are always illegal.
305       if (ssl->s3->aead_read_ctx->is_null_cipher()) {
306         OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD);
307         *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
308         return ssl_open_record_error;
309       }
310 
311       // Out-of-order application data may be received between ChangeCipherSpec
312       // and finished. Discard it.
313       return ssl_open_record_discard;
314 
315     case SSL3_RT_CHANGE_CIPHER_SPEC:
316       // We do not support renegotiation, so encrypted ChangeCipherSpec records
317       // are illegal.
318       if (!ssl->s3->aead_read_ctx->is_null_cipher()) {
319         OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD);
320         *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
321         return ssl_open_record_error;
322       }
323 
324       if (record.size() != 1u || record[0] != SSL3_MT_CCS) {
325         OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_CHANGE_CIPHER_SPEC);
326         *out_alert = SSL_AD_ILLEGAL_PARAMETER;
327         return ssl_open_record_error;
328       }
329 
330       // Flag the ChangeCipherSpec for later.
331       ssl->d1->has_change_cipher_spec = true;
332       ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_CHANGE_CIPHER_SPEC,
333                           record);
334       return ssl_open_record_success;
335 
336     case SSL3_RT_HANDSHAKE:
337       // Break out to main processing.
338       break;
339 
340     default:
341       OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD);
342       *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
343       return ssl_open_record_error;
344   }
345 
346   CBS cbs;
347   CBS_init(&cbs, record.data(), record.size());
348   while (CBS_len(&cbs) > 0) {
349     // Read a handshake fragment.
350     struct hm_header_st msg_hdr;
351     CBS body;
352     if (!dtls1_parse_fragment(&cbs, &msg_hdr, &body)) {
353       OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_HANDSHAKE_RECORD);
354       *out_alert = SSL_AD_DECODE_ERROR;
355       return ssl_open_record_error;
356     }
357 
358     const size_t frag_off = msg_hdr.frag_off;
359     const size_t frag_len = msg_hdr.frag_len;
360     const size_t msg_len = msg_hdr.msg_len;
361     if (frag_off > msg_len || frag_off + frag_len < frag_off ||
362         frag_off + frag_len > msg_len ||
363         msg_len > ssl_max_handshake_message_len(ssl)) {
364       OPENSSL_PUT_ERROR(SSL, SSL_R_EXCESSIVE_MESSAGE_SIZE);
365       *out_alert = SSL_AD_ILLEGAL_PARAMETER;
366       return ssl_open_record_error;
367     }
368 
369     // The encrypted epoch in DTLS has only one handshake message.
370     if (ssl->d1->r_epoch == 1 && msg_hdr.seq != ssl->d1->handshake_read_seq) {
371       OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD);
372       *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
373       return ssl_open_record_error;
374     }
375 
376     if (msg_hdr.seq < ssl->d1->handshake_read_seq ||
377         msg_hdr.seq >
378             (unsigned)ssl->d1->handshake_read_seq + SSL_MAX_HANDSHAKE_FLIGHT) {
379       // Ignore fragments from the past, or ones too far in the future.
380       continue;
381     }
382 
383     hm_fragment *frag = dtls1_get_incoming_message(ssl, out_alert, &msg_hdr);
384     if (frag == NULL) {
385       return ssl_open_record_error;
386     }
387     assert(frag->msg_len == msg_len);
388 
389     if (frag->reassembly == NULL) {
390       // The message is already assembled.
391       continue;
392     }
393     assert(msg_len > 0);
394 
395     // Copy the body into the fragment.
396     OPENSSL_memcpy(frag->data + DTLS1_HM_HEADER_LENGTH + frag_off,
397                    CBS_data(&body), CBS_len(&body));
398     dtls1_hm_fragment_mark(frag, frag_off, frag_off + frag_len);
399   }
400 
401   return ssl_open_record_success;
402 }
403 
dtls1_get_message(const SSL * ssl,SSLMessage * out)404 bool dtls1_get_message(const SSL *ssl, SSLMessage *out) {
405   if (!dtls1_is_current_message_complete(ssl)) {
406     return false;
407   }
408 
409   size_t idx = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT;
410   hm_fragment *frag = ssl->d1->incoming_messages[idx].get();
411   out->type = frag->type;
412   CBS_init(&out->body, frag->data + DTLS1_HM_HEADER_LENGTH, frag->msg_len);
413   CBS_init(&out->raw, frag->data, DTLS1_HM_HEADER_LENGTH + frag->msg_len);
414   out->is_v2_hello = false;
415   if (!ssl->s3->has_message) {
416     ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_HANDSHAKE, out->raw);
417     ssl->s3->has_message = true;
418   }
419   return true;
420 }
421 
dtls1_next_message(SSL * ssl)422 void dtls1_next_message(SSL *ssl) {
423   assert(ssl->s3->has_message);
424   assert(dtls1_is_current_message_complete(ssl));
425   size_t index = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT;
426   ssl->d1->incoming_messages[index].reset();
427   ssl->d1->handshake_read_seq++;
428   ssl->s3->has_message = false;
429   // If we previously sent a flight, mark it as having a reply, so
430   // |on_handshake_complete| can manage post-handshake retransmission.
431   if (ssl->d1->outgoing_messages_complete) {
432     ssl->d1->flight_has_reply = true;
433   }
434 }
435 
dtls_has_unprocessed_handshake_data(const SSL * ssl)436 bool dtls_has_unprocessed_handshake_data(const SSL *ssl) {
437   size_t current = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT;
438   for (size_t i = 0; i < SSL_MAX_HANDSHAKE_FLIGHT; i++) {
439     // Skip the current message.
440     if (ssl->s3->has_message && i == current) {
441       assert(dtls1_is_current_message_complete(ssl));
442       continue;
443     }
444     if (ssl->d1->incoming_messages[i] != nullptr) {
445       return true;
446     }
447   }
448   return false;
449 }
450 
dtls1_parse_fragment(CBS * cbs,struct hm_header_st * out_hdr,CBS * out_body)451 bool dtls1_parse_fragment(CBS *cbs, struct hm_header_st *out_hdr,
452                           CBS *out_body) {
453   OPENSSL_memset(out_hdr, 0x00, sizeof(struct hm_header_st));
454 
455   if (!CBS_get_u8(cbs, &out_hdr->type) ||
456       !CBS_get_u24(cbs, &out_hdr->msg_len) ||
457       !CBS_get_u16(cbs, &out_hdr->seq) ||
458       !CBS_get_u24(cbs, &out_hdr->frag_off) ||
459       !CBS_get_u24(cbs, &out_hdr->frag_len) ||
460       !CBS_get_bytes(cbs, out_body, out_hdr->frag_len)) {
461     return false;
462   }
463 
464   return true;
465 }
466 
dtls1_open_change_cipher_spec(SSL * ssl,size_t * out_consumed,uint8_t * out_alert,Span<uint8_t> in)467 ssl_open_record_t dtls1_open_change_cipher_spec(SSL *ssl, size_t *out_consumed,
468                                                 uint8_t *out_alert,
469                                                 Span<uint8_t> in) {
470   if (!ssl->d1->has_change_cipher_spec) {
471     // dtls1_open_handshake processes both handshake and ChangeCipherSpec.
472     auto ret = dtls1_open_handshake(ssl, out_consumed, out_alert, in);
473     if (ret != ssl_open_record_success) {
474       return ret;
475     }
476   }
477   if (ssl->d1->has_change_cipher_spec) {
478     ssl->d1->has_change_cipher_spec = false;
479     return ssl_open_record_success;
480   }
481   return ssl_open_record_discard;
482 }
483 
484 
485 // Sending handshake messages.
486 
Clear()487 void DTLS_OUTGOING_MESSAGE::Clear() { data.Reset(); }
488 
dtls_clear_outgoing_messages(SSL * ssl)489 void dtls_clear_outgoing_messages(SSL *ssl) {
490   for (size_t i = 0; i < ssl->d1->outgoing_messages_len; i++) {
491     ssl->d1->outgoing_messages[i].Clear();
492   }
493   ssl->d1->outgoing_messages_len = 0;
494   ssl->d1->outgoing_written = 0;
495   ssl->d1->outgoing_offset = 0;
496   ssl->d1->outgoing_messages_complete = false;
497   ssl->d1->flight_has_reply = false;
498 }
499 
dtls1_init_message(const SSL * ssl,CBB * cbb,CBB * body,uint8_t type)500 bool dtls1_init_message(const SSL *ssl, CBB *cbb, CBB *body, uint8_t type) {
501   // Pick a modest size hint to save most of the |realloc| calls.
502   if (!CBB_init(cbb, 64) ||
503       !CBB_add_u8(cbb, type) ||
504       !CBB_add_u24(cbb, 0 /* length (filled in later) */) ||
505       !CBB_add_u16(cbb, ssl->d1->handshake_write_seq) ||
506       !CBB_add_u24(cbb, 0 /* offset */) ||
507       !CBB_add_u24_length_prefixed(cbb, body)) {
508     return false;
509   }
510 
511   return true;
512 }
513 
dtls1_finish_message(const SSL * ssl,CBB * cbb,Array<uint8_t> * out_msg)514 bool dtls1_finish_message(const SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg) {
515   if (!CBBFinishArray(cbb, out_msg) ||
516       out_msg->size() < DTLS1_HM_HEADER_LENGTH) {
517     OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
518     return false;
519   }
520 
521   // Fix up the header. Copy the fragment length into the total message
522   // length.
523   OPENSSL_memcpy(out_msg->data() + 1,
524                  out_msg->data() + DTLS1_HM_HEADER_LENGTH - 3, 3);
525   return true;
526 }
527 
528 // ssl_size_t_greater_than_32_bits returns whether |v| exceeds the bounds of a
529 // 32-bit value. The obvious thing doesn't work because, in some 32-bit build
530 // configurations, the compiler warns that the test is always false and breaks
531 // the build.
ssl_size_t_greater_than_32_bits(size_t v)532 static bool ssl_size_t_greater_than_32_bits(size_t v) {
533 #if defined(OPENSSL_64_BIT)
534   return v > 0xffffffff;
535 #elif defined(OPENSSL_32_BIT)
536   return false;
537 #else
538 #error "Building for neither 32- nor 64-bits."
539 #endif
540 }
541 
542 // add_outgoing adds a new handshake message or ChangeCipherSpec to the current
543 // outgoing flight. It returns true on success and false on error.
add_outgoing(SSL * ssl,bool is_ccs,Array<uint8_t> data)544 static bool add_outgoing(SSL *ssl, bool is_ccs, Array<uint8_t> data) {
545   if (ssl->d1->outgoing_messages_complete) {
546     // If we've begun writing a new flight, we received the peer flight. Discard
547     // the timer and the our flight.
548     dtls1_stop_timer(ssl);
549     dtls_clear_outgoing_messages(ssl);
550   }
551 
552   static_assert(SSL_MAX_HANDSHAKE_FLIGHT <
553                     (1 << 8 * sizeof(ssl->d1->outgoing_messages_len)),
554                 "outgoing_messages_len is too small");
555   if (ssl->d1->outgoing_messages_len >= SSL_MAX_HANDSHAKE_FLIGHT ||
556       ssl_size_t_greater_than_32_bits(data.size())) {
557     assert(false);
558     OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
559     return false;
560   }
561 
562   if (!is_ccs) {
563     // TODO(svaldez): Move this up a layer to fix abstraction for SSLTranscript
564     // on hs.
565     if (ssl->s3->hs != NULL &&
566         !ssl->s3->hs->transcript.Update(data)) {
567       OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
568       return false;
569     }
570     ssl->d1->handshake_write_seq++;
571   }
572 
573   DTLS_OUTGOING_MESSAGE *msg =
574       &ssl->d1->outgoing_messages[ssl->d1->outgoing_messages_len];
575   msg->data = std::move(data);
576   msg->epoch = ssl->d1->w_epoch;
577   msg->is_ccs = is_ccs;
578 
579   ssl->d1->outgoing_messages_len++;
580   return true;
581 }
582 
dtls1_add_message(SSL * ssl,Array<uint8_t> data)583 bool dtls1_add_message(SSL *ssl, Array<uint8_t> data) {
584   return add_outgoing(ssl, false /* handshake */, std::move(data));
585 }
586 
dtls1_add_change_cipher_spec(SSL * ssl)587 bool dtls1_add_change_cipher_spec(SSL *ssl) {
588   return add_outgoing(ssl, true /* ChangeCipherSpec */, Array<uint8_t>());
589 }
590 
591 // dtls1_update_mtu updates the current MTU from the BIO, ensuring it is above
592 // the minimum.
dtls1_update_mtu(SSL * ssl)593 static void dtls1_update_mtu(SSL *ssl) {
594   // TODO(davidben): No consumer implements |BIO_CTRL_DGRAM_SET_MTU| and the
595   // only |BIO_CTRL_DGRAM_QUERY_MTU| implementation could use
596   // |SSL_set_mtu|. Does this need to be so complex?
597   if (ssl->d1->mtu < dtls1_min_mtu() &&
598       !(SSL_get_options(ssl) & SSL_OP_NO_QUERY_MTU)) {
599     long mtu = BIO_ctrl(ssl->wbio.get(), BIO_CTRL_DGRAM_QUERY_MTU, 0, NULL);
600     if (mtu >= 0 && mtu <= (1 << 30) && (unsigned)mtu >= dtls1_min_mtu()) {
601       ssl->d1->mtu = (unsigned)mtu;
602     } else {
603       ssl->d1->mtu = kDefaultMTU;
604       BIO_ctrl(ssl->wbio.get(), BIO_CTRL_DGRAM_SET_MTU, ssl->d1->mtu, NULL);
605     }
606   }
607 
608   // The MTU should be above the minimum now.
609   assert(ssl->d1->mtu >= dtls1_min_mtu());
610 }
611 
612 enum seal_result_t {
613   seal_error,
614   seal_no_progress,
615   seal_partial,
616   seal_success,
617 };
618 
619 // seal_next_message seals |msg|, which must be the next message, to |out|. If
620 // progress was made, it returns |seal_partial| or |seal_success| and sets
621 // |*out_len| to the number of bytes written.
seal_next_message(SSL * ssl,uint8_t * out,size_t * out_len,size_t max_out,const DTLS_OUTGOING_MESSAGE * msg)622 static enum seal_result_t seal_next_message(SSL *ssl, uint8_t *out,
623                                             size_t *out_len, size_t max_out,
624                                             const DTLS_OUTGOING_MESSAGE *msg) {
625   assert(ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len);
626   assert(msg == &ssl->d1->outgoing_messages[ssl->d1->outgoing_written]);
627 
628   enum dtls1_use_epoch_t use_epoch = dtls1_use_current_epoch;
629   if (ssl->d1->w_epoch >= 1 && msg->epoch == ssl->d1->w_epoch - 1) {
630     use_epoch = dtls1_use_previous_epoch;
631   } else if (msg->epoch != ssl->d1->w_epoch) {
632     OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
633     return seal_error;
634   }
635 
636   size_t overhead = dtls_max_seal_overhead(ssl, use_epoch);
637   size_t prefix = dtls_seal_prefix_len(ssl, use_epoch);
638 
639   if (msg->is_ccs) {
640     // Check there is room for the ChangeCipherSpec.
641     static const uint8_t kChangeCipherSpec[1] = {SSL3_MT_CCS};
642     if (max_out < sizeof(kChangeCipherSpec) + overhead) {
643       return seal_no_progress;
644     }
645 
646     if (!dtls_seal_record(ssl, out, out_len, max_out,
647                           SSL3_RT_CHANGE_CIPHER_SPEC, kChangeCipherSpec,
648                           sizeof(kChangeCipherSpec), use_epoch)) {
649       return seal_error;
650     }
651 
652     ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_CHANGE_CIPHER_SPEC,
653                         kChangeCipherSpec);
654     return seal_success;
655   }
656 
657   // DTLS messages are serialized as a single fragment in |msg|.
658   CBS cbs, body;
659   struct hm_header_st hdr;
660   CBS_init(&cbs, msg->data.data(), msg->data.size());
661   if (!dtls1_parse_fragment(&cbs, &hdr, &body) ||
662       hdr.frag_off != 0 ||
663       hdr.frag_len != CBS_len(&body) ||
664       hdr.msg_len != CBS_len(&body) ||
665       !CBS_skip(&body, ssl->d1->outgoing_offset) ||
666       CBS_len(&cbs) != 0) {
667     OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
668     return seal_error;
669   }
670 
671   // Determine how much progress can be made.
672   if (max_out < DTLS1_HM_HEADER_LENGTH + 1 + overhead || max_out < prefix) {
673     return seal_no_progress;
674   }
675   size_t todo = CBS_len(&body);
676   if (todo > max_out - DTLS1_HM_HEADER_LENGTH - overhead) {
677     todo = max_out - DTLS1_HM_HEADER_LENGTH - overhead;
678   }
679 
680   // Assemble a fragment, to be sealed in-place.
681   ScopedCBB cbb;
682   CBB child;
683   uint8_t *frag = out + prefix;
684   size_t max_frag = max_out - prefix, frag_len;
685   if (!CBB_init_fixed(cbb.get(), frag, max_frag) ||
686       !CBB_add_u8(cbb.get(), hdr.type) ||
687       !CBB_add_u24(cbb.get(), hdr.msg_len) ||
688       !CBB_add_u16(cbb.get(), hdr.seq) ||
689       !CBB_add_u24(cbb.get(), ssl->d1->outgoing_offset) ||
690       !CBB_add_u24_length_prefixed(cbb.get(), &child) ||
691       !CBB_add_bytes(&child, CBS_data(&body), todo) ||
692       !CBB_finish(cbb.get(), NULL, &frag_len)) {
693     OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
694     return seal_error;
695   }
696 
697   ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_HANDSHAKE,
698                       MakeSpan(frag, frag_len));
699 
700   if (!dtls_seal_record(ssl, out, out_len, max_out, SSL3_RT_HANDSHAKE,
701                         out + prefix, frag_len, use_epoch)) {
702     return seal_error;
703   }
704 
705   if (todo == CBS_len(&body)) {
706     // The next message is complete.
707     ssl->d1->outgoing_offset = 0;
708     return seal_success;
709   }
710 
711   ssl->d1->outgoing_offset += todo;
712   return seal_partial;
713 }
714 
715 // seal_next_packet writes as much of the next flight as possible to |out| and
716 // advances |ssl->d1->outgoing_written| and |ssl->d1->outgoing_offset| as
717 // appropriate.
seal_next_packet(SSL * ssl,uint8_t * out,size_t * out_len,size_t max_out)718 static bool seal_next_packet(SSL *ssl, uint8_t *out, size_t *out_len,
719                              size_t max_out) {
720   bool made_progress = false;
721   size_t total = 0;
722   assert(ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len);
723   for (; ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len;
724        ssl->d1->outgoing_written++) {
725     const DTLS_OUTGOING_MESSAGE *msg =
726         &ssl->d1->outgoing_messages[ssl->d1->outgoing_written];
727     size_t len;
728     enum seal_result_t ret = seal_next_message(ssl, out, &len, max_out, msg);
729     switch (ret) {
730       case seal_error:
731         return false;
732 
733       case seal_no_progress:
734         goto packet_full;
735 
736       case seal_partial:
737       case seal_success:
738         out += len;
739         max_out -= len;
740         total += len;
741         made_progress = true;
742 
743         if (ret == seal_partial) {
744           goto packet_full;
745         }
746         break;
747     }
748   }
749 
750 packet_full:
751   // The MTU was too small to make any progress.
752   if (!made_progress) {
753     OPENSSL_PUT_ERROR(SSL, SSL_R_MTU_TOO_SMALL);
754     return false;
755   }
756 
757   *out_len = total;
758   return true;
759 }
760 
send_flight(SSL * ssl)761 static int send_flight(SSL *ssl) {
762   if (ssl->s3->write_shutdown != ssl_shutdown_none) {
763     OPENSSL_PUT_ERROR(SSL, SSL_R_PROTOCOL_IS_SHUTDOWN);
764     return -1;
765   }
766 
767   if (ssl->wbio == nullptr) {
768     OPENSSL_PUT_ERROR(SSL, SSL_R_BIO_NOT_SET);
769     return -1;
770   }
771 
772   dtls1_update_mtu(ssl);
773 
774   Array<uint8_t> packet;
775   if (!packet.Init(ssl->d1->mtu)) {
776     return -1;
777   }
778 
779   while (ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len) {
780     uint8_t old_written = ssl->d1->outgoing_written;
781     uint32_t old_offset = ssl->d1->outgoing_offset;
782 
783     size_t packet_len;
784     if (!seal_next_packet(ssl, packet.data(), &packet_len, packet.size())) {
785       return -1;
786     }
787 
788     int bio_ret = BIO_write(ssl->wbio.get(), packet.data(), packet_len);
789     if (bio_ret <= 0) {
790       // Retry this packet the next time around.
791       ssl->d1->outgoing_written = old_written;
792       ssl->d1->outgoing_offset = old_offset;
793       ssl->s3->rwstate = SSL_ERROR_WANT_WRITE;
794       return bio_ret;
795     }
796   }
797 
798   if (BIO_flush(ssl->wbio.get()) <= 0) {
799     ssl->s3->rwstate = SSL_ERROR_WANT_WRITE;
800     return -1;
801   }
802 
803   return 1;
804 }
805 
dtls1_flush_flight(SSL * ssl)806 int dtls1_flush_flight(SSL *ssl) {
807   ssl->d1->outgoing_messages_complete = true;
808   // Start the retransmission timer for the next flight (if any).
809   dtls1_start_timer(ssl);
810   return send_flight(ssl);
811 }
812 
dtls1_retransmit_outgoing_messages(SSL * ssl)813 int dtls1_retransmit_outgoing_messages(SSL *ssl) {
814   // Rewind to the start of the flight and write it again.
815   //
816   // TODO(davidben): This does not allow retransmits to be resumed on
817   // non-blocking write.
818   ssl->d1->outgoing_written = 0;
819   ssl->d1->outgoing_offset = 0;
820 
821   return send_flight(ssl);
822 }
823 
dtls1_min_mtu(void)824 unsigned int dtls1_min_mtu(void) {
825   return kMinMTU;
826 }
827 
828 BSSL_NAMESPACE_END
829