• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.]
56  */
57 /* ====================================================================
58  * Copyright (c) 1998-2002 The OpenSSL Project.  All rights reserved.
59  *
60  * Redistribution and use in source and binary forms, with or without
61  * modification, are permitted provided that the following conditions
62  * are met:
63  *
64  * 1. Redistributions of source code must retain the above copyright
65  *    notice, this list of conditions and the following disclaimer.
66  *
67  * 2. Redistributions in binary form must reproduce the above copyright
68  *    notice, this list of conditions and the following disclaimer in
69  *    the documentation and/or other materials provided with the
70  *    distribution.
71  *
72  * 3. All advertising materials mentioning features or use of this
73  *    software must display the following acknowledgment:
74  *    "This product includes software developed by the OpenSSL Project
75  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76  *
77  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78  *    endorse or promote products derived from this software without
79  *    prior written permission. For written permission, please contact
80  *    openssl-core@openssl.org.
81  *
82  * 5. Products derived from this software may not be called "OpenSSL"
83  *    nor may "OpenSSL" appear in their names without prior written
84  *    permission of the OpenSSL Project.
85  *
86  * 6. Redistributions of any form whatsoever must retain the following
87  *    acknowledgment:
88  *    "This product includes software developed by the OpenSSL Project
89  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90  *
91  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
95  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102  * OF THE POSSIBILITY OF SUCH DAMAGE.
103  * ====================================================================
104  *
105  * This product includes cryptographic software written by Eric Young
106  * (eay@cryptsoft.com).  This product includes software written by Tim
107  * Hudson (tjh@cryptsoft.com). */
108 
109 #include <openssl/ssl.h>
110 
111 #include <assert.h>
112 #include <string.h>
113 
114 #include <openssl/bytestring.h>
115 #include <openssl/err.h>
116 #include <openssl/mem.h>
117 
118 #include "internal.h"
119 #include "../crypto/internal.h"
120 
121 
122 BSSL_NAMESPACE_BEGIN
123 
124 // kMaxEmptyRecords is the number of consecutive, empty records that will be
125 // processed. Without this limit an attacker could send empty records at a
126 // faster rate than we can process and cause record processing to loop
127 // forever.
128 static const uint8_t kMaxEmptyRecords = 32;
129 
130 // kMaxEarlyDataSkipped is the maximum number of rejected early data bytes that
131 // will be skipped. Without this limit an attacker could send records at a
132 // faster rate than we can process and cause trial decryption to loop forever.
133 // This value should be slightly above kMaxEarlyDataAccepted, which is measured
134 // in plaintext.
135 static const size_t kMaxEarlyDataSkipped = 16384;
136 
137 // kMaxWarningAlerts is the number of consecutive warning alerts that will be
138 // processed.
139 static const uint8_t kMaxWarningAlerts = 4;
140 
141 // ssl_needs_record_splitting returns one if |ssl|'s current outgoing cipher
142 // state needs record-splitting and zero otherwise.
ssl_needs_record_splitting(const SSL * ssl)143 static bool ssl_needs_record_splitting(const SSL *ssl) {
144 #if !defined(BORINGSSL_UNSAFE_FUZZER_MODE)
145   return !ssl->s3->aead_write_ctx->is_null_cipher() &&
146          ssl->s3->aead_write_ctx->ProtocolVersion() < TLS1_1_VERSION &&
147          (ssl->mode & SSL_MODE_CBC_RECORD_SPLITTING) != 0 &&
148          SSL_CIPHER_is_block_cipher(ssl->s3->aead_write_ctx->cipher());
149 #else
150   return false;
151 #endif
152 }
153 
ssl_record_prefix_len(const SSL * ssl)154 size_t ssl_record_prefix_len(const SSL *ssl) {
155   size_t header_len;
156   if (SSL_is_dtls(ssl)) {
157     header_len = DTLS1_RT_HEADER_LENGTH;
158   } else {
159     header_len = SSL3_RT_HEADER_LENGTH;
160   }
161 
162   return header_len + ssl->s3->aead_read_ctx->ExplicitNonceLen();
163 }
164 
ssl_seal_align_prefix_len(const SSL * ssl)165 size_t ssl_seal_align_prefix_len(const SSL *ssl) {
166   if (SSL_is_dtls(ssl)) {
167     return DTLS1_RT_HEADER_LENGTH + ssl->s3->aead_write_ctx->ExplicitNonceLen();
168   }
169 
170   size_t ret =
171       SSL3_RT_HEADER_LENGTH + ssl->s3->aead_write_ctx->ExplicitNonceLen();
172   if (ssl_needs_record_splitting(ssl)) {
173     ret += SSL3_RT_HEADER_LENGTH;
174     ret += ssl_cipher_get_record_split_len(ssl->s3->aead_write_ctx->cipher());
175   }
176   return ret;
177 }
178 
skip_early_data(SSL * ssl,uint8_t * out_alert,size_t consumed)179 static ssl_open_record_t skip_early_data(SSL *ssl, uint8_t *out_alert,
180                                          size_t consumed) {
181   ssl->s3->early_data_skipped += consumed;
182   if (ssl->s3->early_data_skipped < consumed) {
183     ssl->s3->early_data_skipped = kMaxEarlyDataSkipped + 1;
184   }
185 
186   if (ssl->s3->early_data_skipped > kMaxEarlyDataSkipped) {
187     OPENSSL_PUT_ERROR(SSL, SSL_R_TOO_MUCH_SKIPPED_EARLY_DATA);
188     *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
189     return ssl_open_record_error;
190   }
191 
192   return ssl_open_record_discard;
193 }
194 
tls_open_record(SSL * ssl,uint8_t * out_type,Span<uint8_t> * out,size_t * out_consumed,uint8_t * out_alert,Span<uint8_t> in)195 ssl_open_record_t tls_open_record(SSL *ssl, uint8_t *out_type,
196                                   Span<uint8_t> *out, size_t *out_consumed,
197                                   uint8_t *out_alert, Span<uint8_t> in) {
198   *out_consumed = 0;
199   if (ssl->s3->read_shutdown == ssl_shutdown_close_notify) {
200     return ssl_open_record_close_notify;
201   }
202 
203   // If there is an unprocessed handshake message or we are already buffering
204   // too much, stop before decrypting another handshake record.
205   if (!tls_can_accept_handshake_data(ssl, out_alert)) {
206     return ssl_open_record_error;
207   }
208 
209   CBS cbs = CBS(in);
210 
211   // Decode the record header.
212   uint8_t type;
213   uint16_t version, ciphertext_len;
214   if (!CBS_get_u8(&cbs, &type) ||
215       !CBS_get_u16(&cbs, &version) ||
216       !CBS_get_u16(&cbs, &ciphertext_len)) {
217     *out_consumed = SSL3_RT_HEADER_LENGTH;
218     return ssl_open_record_partial;
219   }
220 
221   bool version_ok;
222   if (ssl->s3->aead_read_ctx->is_null_cipher()) {
223     // Only check the first byte. Enforcing beyond that can prevent decoding
224     // version negotiation failure alerts.
225     version_ok = (version >> 8) == SSL3_VERSION_MAJOR;
226   } else {
227     version_ok = version == ssl->s3->aead_read_ctx->RecordVersion();
228   }
229 
230   if (!version_ok) {
231     OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_VERSION_NUMBER);
232     *out_alert = SSL_AD_PROTOCOL_VERSION;
233     return ssl_open_record_error;
234   }
235 
236   // Check the ciphertext length.
237   if (ciphertext_len > SSL3_RT_MAX_ENCRYPTED_LENGTH) {
238     OPENSSL_PUT_ERROR(SSL, SSL_R_ENCRYPTED_LENGTH_TOO_LONG);
239     *out_alert = SSL_AD_RECORD_OVERFLOW;
240     return ssl_open_record_error;
241   }
242 
243   // Extract the body.
244   CBS body;
245   if (!CBS_get_bytes(&cbs, &body, ciphertext_len)) {
246     *out_consumed = SSL3_RT_HEADER_LENGTH + (size_t)ciphertext_len;
247     return ssl_open_record_partial;
248   }
249 
250   Span<const uint8_t> header = in.subspan(0, SSL3_RT_HEADER_LENGTH);
251   ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_HEADER, header);
252 
253   *out_consumed = in.size() - CBS_len(&cbs);
254 
255   if (ssl->s3->have_version &&
256       ssl_protocol_version(ssl) >= TLS1_3_VERSION &&
257       SSL_in_init(ssl) &&
258       type == SSL3_RT_CHANGE_CIPHER_SPEC &&
259       ciphertext_len == 1 &&
260       CBS_data(&body)[0] == 1) {
261     ssl->s3->empty_record_count++;
262     if (ssl->s3->empty_record_count > kMaxEmptyRecords) {
263       OPENSSL_PUT_ERROR(SSL, SSL_R_TOO_MANY_EMPTY_FRAGMENTS);
264       *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
265       return ssl_open_record_error;
266     }
267     return ssl_open_record_discard;
268   }
269 
270   // Skip early data received when expecting a second ClientHello if we rejected
271   // 0RTT.
272   if (ssl->s3->skip_early_data &&
273       ssl->s3->aead_read_ctx->is_null_cipher() &&
274       type == SSL3_RT_APPLICATION_DATA) {
275     return skip_early_data(ssl, out_alert, *out_consumed);
276   }
277 
278   // Ensure the sequence number update does not overflow.
279   if (ssl->s3->read_sequence + 1 == 0) {
280     OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
281     *out_alert = SSL_AD_INTERNAL_ERROR;
282     return ssl_open_record_error;
283   }
284 
285   // Decrypt the body in-place.
286   if (!ssl->s3->aead_read_ctx->Open(
287           out, type, version, ssl->s3->read_sequence, header,
288           MakeSpan(const_cast<uint8_t *>(CBS_data(&body)), CBS_len(&body)))) {
289     if (ssl->s3->skip_early_data && !ssl->s3->aead_read_ctx->is_null_cipher()) {
290       ERR_clear_error();
291       return skip_early_data(ssl, out_alert, *out_consumed);
292     }
293 
294     OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC);
295     *out_alert = SSL_AD_BAD_RECORD_MAC;
296     return ssl_open_record_error;
297   }
298 
299   ssl->s3->skip_early_data = false;
300   ssl->s3->read_sequence++;
301 
302   // TLS 1.3 hides the record type inside the encrypted data.
303   bool has_padding =
304       !ssl->s3->aead_read_ctx->is_null_cipher() &&
305       ssl->s3->aead_read_ctx->ProtocolVersion() >= TLS1_3_VERSION;
306 
307   // If there is padding, the plaintext limit includes the padding, but includes
308   // extra room for the inner content type.
309   size_t plaintext_limit =
310       has_padding ? SSL3_RT_MAX_PLAIN_LENGTH + 1 : SSL3_RT_MAX_PLAIN_LENGTH;
311   if (out->size() > plaintext_limit) {
312     OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG);
313     *out_alert = SSL_AD_RECORD_OVERFLOW;
314     return ssl_open_record_error;
315   }
316 
317   if (has_padding) {
318     // The outer record type is always application_data.
319     if (type != SSL3_RT_APPLICATION_DATA) {
320       OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_OUTER_RECORD_TYPE);
321       *out_alert = SSL_AD_DECODE_ERROR;
322       return ssl_open_record_error;
323     }
324 
325     do {
326       if (out->empty()) {
327         OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC);
328         *out_alert = SSL_AD_DECRYPT_ERROR;
329         return ssl_open_record_error;
330       }
331       type = out->back();
332       *out = out->subspan(0, out->size() - 1);
333     } while (type == 0);
334   }
335 
336   // Limit the number of consecutive empty records.
337   if (out->empty()) {
338     ssl->s3->empty_record_count++;
339     if (ssl->s3->empty_record_count > kMaxEmptyRecords) {
340       OPENSSL_PUT_ERROR(SSL, SSL_R_TOO_MANY_EMPTY_FRAGMENTS);
341       *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
342       return ssl_open_record_error;
343     }
344     // Apart from the limit, empty records are returned up to the caller. This
345     // allows the caller to reject records of the wrong type.
346   } else {
347     ssl->s3->empty_record_count = 0;
348   }
349 
350   if (type == SSL3_RT_ALERT) {
351     return ssl_process_alert(ssl, out_alert, *out);
352   }
353 
354   // Handshake messages may not interleave with any other record type.
355   if (type != SSL3_RT_HANDSHAKE &&
356       tls_has_unprocessed_handshake_data(ssl)) {
357     OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD);
358     *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
359     return ssl_open_record_error;
360   }
361 
362   ssl->s3->warning_alert_count = 0;
363 
364   *out_type = type;
365   return ssl_open_record_success;
366 }
367 
do_seal_record(SSL * ssl,uint8_t * out_prefix,uint8_t * out,uint8_t * out_suffix,uint8_t type,const uint8_t * in,const size_t in_len)368 static bool do_seal_record(SSL *ssl, uint8_t *out_prefix, uint8_t *out,
369                            uint8_t *out_suffix, uint8_t type, const uint8_t *in,
370                            const size_t in_len) {
371   SSLAEADContext *aead = ssl->s3->aead_write_ctx.get();
372   uint8_t *extra_in = NULL;
373   size_t extra_in_len = 0;
374   if (!aead->is_null_cipher() &&
375       aead->ProtocolVersion() >= TLS1_3_VERSION) {
376     // TLS 1.3 hides the actual record type inside the encrypted data.
377     extra_in = &type;
378     extra_in_len = 1;
379   }
380 
381   size_t suffix_len, ciphertext_len;
382   if (!aead->SuffixLen(&suffix_len, in_len, extra_in_len) ||
383       !aead->CiphertextLen(&ciphertext_len, in_len, extra_in_len)) {
384     OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE);
385     return false;
386   }
387 
388   assert(in == out || !buffers_alias(in, in_len, out, in_len));
389   assert(!buffers_alias(in, in_len, out_prefix, ssl_record_prefix_len(ssl)));
390   assert(!buffers_alias(in, in_len, out_suffix, suffix_len));
391 
392   if (extra_in_len) {
393     out_prefix[0] = SSL3_RT_APPLICATION_DATA;
394   } else {
395     out_prefix[0] = type;
396   }
397 
398   uint16_t record_version = aead->RecordVersion();
399 
400   out_prefix[1] = record_version >> 8;
401   out_prefix[2] = record_version & 0xff;
402   out_prefix[3] = ciphertext_len >> 8;
403   out_prefix[4] = ciphertext_len & 0xff;
404   Span<const uint8_t> header = MakeSpan(out_prefix, SSL3_RT_HEADER_LENGTH);
405 
406   // Ensure the sequence number update does not overflow.
407   if (ssl->s3->write_sequence + 1 == 0) {
408     OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
409     return false;
410   }
411 
412   if (!aead->SealScatter(out_prefix + SSL3_RT_HEADER_LENGTH, out, out_suffix,
413                          out_prefix[0], record_version, ssl->s3->write_sequence,
414                          header, in, in_len, extra_in, extra_in_len)) {
415     return false;
416   }
417 
418   ssl->s3->write_sequence++;
419   ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_HEADER, header);
420   return true;
421 }
422 
tls_seal_scatter_prefix_len(const SSL * ssl,uint8_t type,size_t in_len)423 static size_t tls_seal_scatter_prefix_len(const SSL *ssl, uint8_t type,
424                                           size_t in_len) {
425   size_t ret = SSL3_RT_HEADER_LENGTH;
426   if (type == SSL3_RT_APPLICATION_DATA && in_len > 1 &&
427       ssl_needs_record_splitting(ssl)) {
428     // In the case of record splitting, the 1-byte record (of the 1/n-1 split)
429     // will be placed in the prefix, as will four of the five bytes of the
430     // record header for the main record. The final byte will replace the first
431     // byte of the plaintext that was used in the small record.
432     ret += ssl_cipher_get_record_split_len(ssl->s3->aead_write_ctx->cipher());
433     ret += SSL3_RT_HEADER_LENGTH - 1;
434   } else {
435     ret += ssl->s3->aead_write_ctx->ExplicitNonceLen();
436   }
437   return ret;
438 }
439 
tls_seal_scatter_suffix_len(const SSL * ssl,size_t * out_suffix_len,uint8_t type,size_t in_len)440 static bool tls_seal_scatter_suffix_len(const SSL *ssl, size_t *out_suffix_len,
441                                         uint8_t type, size_t in_len) {
442   size_t extra_in_len = 0;
443   if (!ssl->s3->aead_write_ctx->is_null_cipher() &&
444       ssl->s3->aead_write_ctx->ProtocolVersion() >= TLS1_3_VERSION) {
445     // TLS 1.3 adds an extra byte for encrypted record type.
446     extra_in_len = 1;
447   }
448   // clang-format off
449   if (type == SSL3_RT_APPLICATION_DATA &&
450       in_len > 1 &&
451       ssl_needs_record_splitting(ssl)) {
452     // With record splitting enabled, the first byte gets sealed into a separate
453     // record which is written into the prefix.
454     in_len -= 1;
455   }
456   // clang-format on
457   return ssl->s3->aead_write_ctx->SuffixLen(out_suffix_len, in_len, extra_in_len);
458 }
459 
460 // tls_seal_scatter_record seals a new record of type |type| and body |in| and
461 // splits it between |out_prefix|, |out|, and |out_suffix|. Exactly
462 // |tls_seal_scatter_prefix_len| bytes are written to |out_prefix|, |in_len|
463 // bytes to |out|, and |tls_seal_scatter_suffix_len| bytes to |out_suffix|. It
464 // returns one on success and zero on error. If enabled,
465 // |tls_seal_scatter_record| implements TLS 1.0 CBC 1/n-1 record splitting and
466 // may write two records concatenated.
tls_seal_scatter_record(SSL * ssl,uint8_t * out_prefix,uint8_t * out,uint8_t * out_suffix,uint8_t type,const uint8_t * in,size_t in_len)467 static bool tls_seal_scatter_record(SSL *ssl, uint8_t *out_prefix, uint8_t *out,
468                                     uint8_t *out_suffix, uint8_t type,
469                                     const uint8_t *in, size_t in_len) {
470   if (type == SSL3_RT_APPLICATION_DATA && in_len > 1 &&
471       ssl_needs_record_splitting(ssl)) {
472     assert(ssl->s3->aead_write_ctx->ExplicitNonceLen() == 0);
473     const size_t prefix_len = SSL3_RT_HEADER_LENGTH;
474 
475     // Write the 1-byte fragment into |out_prefix|.
476     uint8_t *split_body = out_prefix + prefix_len;
477     uint8_t *split_suffix = split_body + 1;
478 
479     if (!do_seal_record(ssl, out_prefix, split_body, split_suffix, type, in,
480                         1)) {
481       return false;
482     }
483 
484     size_t split_record_suffix_len;
485     if (!ssl->s3->aead_write_ctx->SuffixLen(&split_record_suffix_len, 1, 0)) {
486       assert(false);
487       return false;
488     }
489     const size_t split_record_len = prefix_len + 1 + split_record_suffix_len;
490     assert(SSL3_RT_HEADER_LENGTH + ssl_cipher_get_record_split_len(
491                                        ssl->s3->aead_write_ctx->cipher()) ==
492            split_record_len);
493 
494     // Write the n-1-byte fragment. The header gets split between |out_prefix|
495     // (header[:-1]) and |out| (header[-1:]).
496     uint8_t tmp_prefix[SSL3_RT_HEADER_LENGTH];
497     if (!do_seal_record(ssl, tmp_prefix, out + 1, out_suffix, type, in + 1,
498                         in_len - 1)) {
499       return false;
500     }
501     assert(tls_seal_scatter_prefix_len(ssl, type, in_len) ==
502            split_record_len + SSL3_RT_HEADER_LENGTH - 1);
503     OPENSSL_memcpy(out_prefix + split_record_len, tmp_prefix,
504                    SSL3_RT_HEADER_LENGTH - 1);
505     OPENSSL_memcpy(out, tmp_prefix + SSL3_RT_HEADER_LENGTH - 1, 1);
506     return true;
507   }
508 
509   return do_seal_record(ssl, out_prefix, out, out_suffix, type, in, in_len);
510 }
511 
tls_seal_record(SSL * ssl,uint8_t * out,size_t * out_len,size_t max_out_len,uint8_t type,const uint8_t * in,size_t in_len)512 bool tls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len,
513                      size_t max_out_len, uint8_t type, const uint8_t *in,
514                      size_t in_len) {
515   if (buffers_alias(in, in_len, out, max_out_len)) {
516     OPENSSL_PUT_ERROR(SSL, SSL_R_OUTPUT_ALIASES_INPUT);
517     return false;
518   }
519 
520   const size_t prefix_len = tls_seal_scatter_prefix_len(ssl, type, in_len);
521   size_t suffix_len;
522   if (!tls_seal_scatter_suffix_len(ssl, &suffix_len, type, in_len)) {
523     return false;
524   }
525   if (in_len + prefix_len < in_len ||
526       prefix_len + in_len + suffix_len < prefix_len + in_len) {
527     OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE);
528     return false;
529   }
530   if (max_out_len < in_len + prefix_len + suffix_len) {
531     OPENSSL_PUT_ERROR(SSL, SSL_R_BUFFER_TOO_SMALL);
532     return false;
533   }
534 
535   uint8_t *prefix = out;
536   uint8_t *body = out + prefix_len;
537   uint8_t *suffix = body + in_len;
538   if (!tls_seal_scatter_record(ssl, prefix, body, suffix, type, in, in_len)) {
539     return false;
540   }
541 
542   *out_len = prefix_len + in_len + suffix_len;
543   return true;
544 }
545 
ssl_process_alert(SSL * ssl,uint8_t * out_alert,Span<const uint8_t> in)546 enum ssl_open_record_t ssl_process_alert(SSL *ssl, uint8_t *out_alert,
547                                          Span<const uint8_t> in) {
548   // Alerts records may not contain fragmented or multiple alerts.
549   if (in.size() != 2) {
550     *out_alert = SSL_AD_DECODE_ERROR;
551     OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_ALERT);
552     return ssl_open_record_error;
553   }
554 
555   ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_ALERT, in);
556 
557   const uint8_t alert_level = in[0];
558   const uint8_t alert_descr = in[1];
559 
560   uint16_t alert = (alert_level << 8) | alert_descr;
561   ssl_do_info_callback(ssl, SSL_CB_READ_ALERT, alert);
562 
563   if (alert_level == SSL3_AL_WARNING) {
564     if (alert_descr == SSL_AD_CLOSE_NOTIFY) {
565       ssl->s3->read_shutdown = ssl_shutdown_close_notify;
566       return ssl_open_record_close_notify;
567     }
568 
569     // Warning alerts do not exist in TLS 1.3, but RFC 8446 section 6.1
570     // continues to define user_canceled as a signal to cancel the handshake,
571     // without specifying how to handle it. JDK11 misuses it to signal
572     // full-duplex connection close after the handshake. As a workaround, skip
573     // user_canceled as in TLS 1.2. This matches NSS and OpenSSL.
574     if (ssl->s3->have_version &&
575         ssl_protocol_version(ssl) >= TLS1_3_VERSION &&
576         alert_descr != SSL_AD_USER_CANCELLED) {
577       *out_alert = SSL_AD_DECODE_ERROR;
578       OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_ALERT);
579       return ssl_open_record_error;
580     }
581 
582     ssl->s3->warning_alert_count++;
583     if (ssl->s3->warning_alert_count > kMaxWarningAlerts) {
584       *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
585       OPENSSL_PUT_ERROR(SSL, SSL_R_TOO_MANY_WARNING_ALERTS);
586       return ssl_open_record_error;
587     }
588     return ssl_open_record_discard;
589   }
590 
591   if (alert_level == SSL3_AL_FATAL) {
592     OPENSSL_PUT_ERROR(SSL, SSL_AD_REASON_OFFSET + alert_descr);
593     ERR_add_error_dataf("SSL alert number %d", alert_descr);
594     *out_alert = 0;  // No alert to send back to the peer.
595     return ssl_open_record_error;
596   }
597 
598   *out_alert = SSL_AD_ILLEGAL_PARAMETER;
599   OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_ALERT_TYPE);
600   return ssl_open_record_error;
601 }
602 
603 BSSL_NAMESPACE_END
604 
605 using namespace bssl;
606 
SSL_max_seal_overhead(const SSL * ssl)607 size_t SSL_max_seal_overhead(const SSL *ssl) {
608   if (SSL_is_dtls(ssl)) {
609     return dtls_max_seal_overhead(ssl, dtls1_use_current_epoch);
610   }
611 
612   size_t ret = SSL3_RT_HEADER_LENGTH;
613   ret += ssl->s3->aead_write_ctx->MaxOverhead();
614   // TLS 1.3 needs an extra byte for the encrypted record type.
615   if (!ssl->s3->aead_write_ctx->is_null_cipher() &&
616       ssl->s3->aead_write_ctx->ProtocolVersion() >= TLS1_3_VERSION) {
617     ret += 1;
618   }
619   if (ssl_needs_record_splitting(ssl)) {
620     ret *= 2;
621   }
622   return ret;
623 }
624