• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (c) 2014, Google Inc.
2  *
3  * Permission to use, copy, modify, and/or distribute this software for any
4  * purpose with or without fee is hereby granted, provided that the above
5  * copyright notice and this permission notice appear in all copies.
6  *
7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14 
15 #include <algorithm>
16 #include <functional>
17 #include <memory>
18 #include <string>
19 #include <vector>
20 
21 #include <assert.h>
22 #include <errno.h>
23 #include <inttypes.h>
24 #include <stdint.h>
25 #include <stdlib.h>
26 #include <string.h>
27 
28 #include <openssl/aead.h>
29 #include <openssl/aes.h>
30 #include <openssl/base64.h>
31 #include <openssl/bn.h>
32 #include <openssl/bytestring.h>
33 #include <openssl/crypto.h>
34 #include <openssl/curve25519.h>
35 #include <openssl/digest.h>
36 #include <openssl/ec.h>
37 #include <openssl/ec_key.h>
38 #include <openssl/ecdsa.h>
39 #include <openssl/err.h>
40 #include <openssl/evp.h>
41 #include <openssl/hrss.h>
42 #include <openssl/kyber.h>
43 #include <openssl/mem.h>
44 #include <openssl/nid.h>
45 #include <openssl/rand.h>
46 #include <openssl/rsa.h>
47 #include <openssl/siphash.h>
48 #include <openssl/trust_token.h>
49 
50 #if defined(OPENSSL_WINDOWS)
51 OPENSSL_MSVC_PRAGMA(warning(push, 3))
52 #include <windows.h>
53 OPENSSL_MSVC_PRAGMA(warning(pop))
54 #elif defined(OPENSSL_APPLE)
55 #include <sys/time.h>
56 #else
57 #include <time.h>
58 #endif
59 
60 #include "../crypto/ec_extra/internal.h"
61 #include "../crypto/fipsmodule/ec/internal.h"
62 #include "../crypto/internal.h"
63 #include "../crypto/trust_token/internal.h"
64 #include "internal.h"
65 
66 // g_print_json is true if printed output is JSON formatted.
67 static bool g_print_json = false;
68 
69 // TimeResults represents the results of benchmarking a function.
70 struct TimeResults {
71   // num_calls is the number of function calls done in the time period.
72   uint64_t num_calls;
73   // us is the number of microseconds that elapsed in the time period.
74   uint64_t us;
75 
PrintTimeResults76   void Print(const std::string &description) const {
77     if (g_print_json) {
78       PrintJSON(description);
79     } else {
80       printf(
81           "Did %" PRIu64 " %s operations in %" PRIu64 "us (%.1f ops/sec)\n",
82           num_calls, description.c_str(), us,
83           (static_cast<double>(num_calls) / static_cast<double>(us)) * 1000000);
84     }
85   }
86 
PrintWithBytesTimeResults87   void PrintWithBytes(const std::string &description,
88                       size_t bytes_per_call) const {
89     if (g_print_json) {
90       PrintJSON(description, bytes_per_call);
91     } else {
92       printf(
93           "Did %" PRIu64 " %s operations in %" PRIu64
94           "us (%.1f ops/sec): %.1f MB/s\n",
95           num_calls, description.c_str(), us,
96           (static_cast<double>(num_calls) / static_cast<double>(us)) * 1000000,
97           static_cast<double>(bytes_per_call * num_calls) /
98               static_cast<double>(us));
99     }
100   }
101 
102  private:
PrintJSONTimeResults103   void PrintJSON(const std::string &description,
104                  size_t bytes_per_call = 0) const {
105     if (first_json_printed) {
106       puts(",");
107     }
108 
109     printf("{\"description\": \"%s\", \"numCalls\": %" PRIu64
110            ", \"microseconds\": %" PRIu64,
111            description.c_str(), num_calls, us);
112 
113     if (bytes_per_call > 0) {
114       printf(", \"bytesPerCall\": %zu", bytes_per_call);
115     }
116 
117     printf("}");
118     first_json_printed = true;
119   }
120 
121   // first_json_printed is true if |g_print_json| is true and the first item in
122   // the JSON results has been printed already. This is used to handle the
123   // commas between each item in the result list.
124   static bool first_json_printed;
125 };
126 
127 bool TimeResults::first_json_printed = false;
128 
129 #if defined(OPENSSL_WINDOWS)
time_now()130 static uint64_t time_now() { return GetTickCount64() * 1000; }
131 #elif defined(OPENSSL_APPLE)
time_now()132 static uint64_t time_now() {
133   struct timeval tv;
134   uint64_t ret;
135 
136   gettimeofday(&tv, NULL);
137   ret = tv.tv_sec;
138   ret *= 1000000;
139   ret += tv.tv_usec;
140   return ret;
141 }
142 #else
time_now()143 static uint64_t time_now() {
144   struct timespec ts;
145   clock_gettime(CLOCK_MONOTONIC, &ts);
146 
147   uint64_t ret = ts.tv_sec;
148   ret *= 1000000;
149   ret += ts.tv_nsec / 1000;
150   return ret;
151 }
152 #endif
153 
154 static uint64_t g_timeout_seconds = 1;
155 static std::vector<size_t> g_chunk_lengths = {16, 256, 1350, 8192, 16384};
156 
TimeFunction(TimeResults * results,std::function<bool ()> func)157 static bool TimeFunction(TimeResults *results, std::function<bool()> func) {
158   // total_us is the total amount of time that we'll aim to measure a function
159   // for.
160   const uint64_t total_us = g_timeout_seconds * 1000000;
161   uint64_t start = time_now(), now, delta;
162 
163   if (!func()) {
164     return false;
165   }
166   now = time_now();
167   delta = now - start;
168   unsigned iterations_between_time_checks;
169   if (delta == 0) {
170     iterations_between_time_checks = 250;
171   } else {
172     // Aim for about 100ms between time checks.
173     iterations_between_time_checks =
174         static_cast<double>(100000) / static_cast<double>(delta);
175     if (iterations_between_time_checks > 1000) {
176       iterations_between_time_checks = 1000;
177     } else if (iterations_between_time_checks < 1) {
178       iterations_between_time_checks = 1;
179     }
180   }
181 
182   uint64_t done = 0;
183   for (;;) {
184     for (unsigned i = 0; i < iterations_between_time_checks; i++) {
185       if (!func()) {
186         return false;
187       }
188       done++;
189     }
190 
191     now = time_now();
192     if (now - start > total_us) {
193       break;
194     }
195   }
196 
197   results->us = now - start;
198   results->num_calls = done;
199   return true;
200 }
201 
SpeedRSA(const std::string & selected)202 static bool SpeedRSA(const std::string &selected) {
203   if (!selected.empty() && selected.find("RSA") == std::string::npos) {
204     return true;
205   }
206 
207   static const struct {
208     const char *name;
209     const uint8_t *key;
210     const size_t key_len;
211   } kRSAKeys[] = {
212     {"RSA 2048", kDERRSAPrivate2048, kDERRSAPrivate2048Len},
213     {"RSA 4096", kDERRSAPrivate4096, kDERRSAPrivate4096Len},
214   };
215 
216   for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kRSAKeys); i++) {
217     const std::string name = kRSAKeys[i].name;
218 
219     bssl::UniquePtr<RSA> key(
220         RSA_private_key_from_bytes(kRSAKeys[i].key, kRSAKeys[i].key_len));
221     if (key == nullptr) {
222       fprintf(stderr, "Failed to parse %s key.\n", name.c_str());
223       ERR_print_errors_fp(stderr);
224       return false;
225     }
226 
227     std::unique_ptr<uint8_t[]> sig(new uint8_t[RSA_size(key.get())]);
228     const uint8_t fake_sha256_hash[32] = {0};
229     unsigned sig_len;
230 
231     TimeResults results;
232     if (!TimeFunction(&results,
233                       [&key, &sig, &fake_sha256_hash, &sig_len]() -> bool {
234           // Usually during RSA signing we're using a long-lived |RSA| that has
235           // already had all of its |BN_MONT_CTX|s constructed, so it makes
236           // sense to use |key| directly here.
237           return RSA_sign(NID_sha256, fake_sha256_hash, sizeof(fake_sha256_hash),
238                           sig.get(), &sig_len, key.get());
239         })) {
240       fprintf(stderr, "RSA_sign failed.\n");
241       ERR_print_errors_fp(stderr);
242       return false;
243     }
244     results.Print(name + " signing");
245 
246     if (!TimeFunction(&results,
247                       [&key, &fake_sha256_hash, &sig, sig_len]() -> bool {
248           return RSA_verify(
249               NID_sha256, fake_sha256_hash, sizeof(fake_sha256_hash),
250               sig.get(), sig_len, key.get());
251         })) {
252       fprintf(stderr, "RSA_verify failed.\n");
253       ERR_print_errors_fp(stderr);
254       return false;
255     }
256     results.Print(name + " verify (same key)");
257 
258     if (!TimeFunction(&results,
259                       [&key, &fake_sha256_hash, &sig, sig_len]() -> bool {
260           // Usually during RSA verification we have to parse an RSA key from a
261           // certificate or similar, in which case we'd need to construct a new
262           // RSA key, with a new |BN_MONT_CTX| for the public modulus. If we
263           // were to use |key| directly instead, then these costs wouldn't be
264           // accounted for.
265           bssl::UniquePtr<RSA> verify_key(RSA_new());
266           if (!verify_key) {
267             return false;
268           }
269           verify_key->n = BN_dup(key->n);
270           verify_key->e = BN_dup(key->e);
271           if (!verify_key->n ||
272               !verify_key->e) {
273             return false;
274           }
275           return RSA_verify(NID_sha256, fake_sha256_hash,
276                             sizeof(fake_sha256_hash), sig.get(), sig_len,
277                             verify_key.get());
278         })) {
279       fprintf(stderr, "RSA_verify failed.\n");
280       ERR_print_errors_fp(stderr);
281       return false;
282     }
283     results.Print(name + " verify (fresh key)");
284 
285     if (!TimeFunction(&results, [&]() -> bool {
286           return bssl::UniquePtr<RSA>(RSA_private_key_from_bytes(
287                      kRSAKeys[i].key, kRSAKeys[i].key_len)) != nullptr;
288         })) {
289       fprintf(stderr, "Failed to parse %s key.\n", name.c_str());
290       ERR_print_errors_fp(stderr);
291       return false;
292     }
293     results.Print(name + " private key parse");
294   }
295 
296   return true;
297 }
298 
SpeedRSAKeyGen(const std::string & selected)299 static bool SpeedRSAKeyGen(const std::string &selected) {
300   // Don't run this by default because it's so slow.
301   if (selected != "RSAKeyGen") {
302     return true;
303   }
304 
305   bssl::UniquePtr<BIGNUM> e(BN_new());
306   if (!BN_set_word(e.get(), 65537)) {
307     return false;
308   }
309 
310   const std::vector<int> kSizes = {2048, 3072, 4096};
311   for (int size : kSizes) {
312     const uint64_t start = time_now();
313     uint64_t num_calls = 0;
314     uint64_t us;
315     std::vector<uint64_t> durations;
316 
317     for (;;) {
318       bssl::UniquePtr<RSA> rsa(RSA_new());
319 
320       const uint64_t iteration_start = time_now();
321       if (!RSA_generate_key_ex(rsa.get(), size, e.get(), nullptr)) {
322         fprintf(stderr, "RSA_generate_key_ex failed.\n");
323         ERR_print_errors_fp(stderr);
324         return false;
325       }
326       const uint64_t iteration_end = time_now();
327 
328       num_calls++;
329       durations.push_back(iteration_end - iteration_start);
330 
331       us = iteration_end - start;
332       if (us > 30 * 1000000 /* 30 secs */) {
333         break;
334       }
335     }
336 
337     std::sort(durations.begin(), durations.end());
338     const std::string description =
339         std::string("RSA ") + std::to_string(size) + std::string(" key-gen");
340     const TimeResults results = {num_calls, us};
341     results.Print(description);
342     const size_t n = durations.size();
343     assert(n > 0);
344 
345     // Distribution information is useful, but doesn't fit into the standard
346     // format used by |g_print_json|.
347     if (!g_print_json) {
348       uint64_t min = durations[0];
349       uint64_t median = n & 1 ? durations[n / 2]
350                               : (durations[n / 2 - 1] + durations[n / 2]) / 2;
351       uint64_t max = durations[n - 1];
352       printf("  min: %" PRIu64 "us, median: %" PRIu64 "us, max: %" PRIu64
353              "us\n",
354              min, median, max);
355     }
356   }
357 
358   return true;
359 }
360 
ChunkLenSuffix(size_t chunk_len)361 static std::string ChunkLenSuffix(size_t chunk_len) {
362   char buf[32];
363   snprintf(buf, sizeof(buf), " (%zu byte%s)", chunk_len,
364            chunk_len != 1 ? "s" : "");
365   return buf;
366 }
367 
SpeedAEADChunk(const EVP_AEAD * aead,std::string name,size_t chunk_len,size_t ad_len,evp_aead_direction_t direction)368 static bool SpeedAEADChunk(const EVP_AEAD *aead, std::string name,
369                            size_t chunk_len, size_t ad_len,
370                            evp_aead_direction_t direction) {
371   static const unsigned kAlignment = 16;
372 
373   name += ChunkLenSuffix(chunk_len);
374   bssl::ScopedEVP_AEAD_CTX ctx;
375   const size_t key_len = EVP_AEAD_key_length(aead);
376   const size_t nonce_len = EVP_AEAD_nonce_length(aead);
377   const size_t overhead_len = EVP_AEAD_max_overhead(aead);
378 
379   std::unique_ptr<uint8_t[]> key(new uint8_t[key_len]);
380   OPENSSL_memset(key.get(), 0, key_len);
381   std::unique_ptr<uint8_t[]> nonce(new uint8_t[nonce_len]);
382   OPENSSL_memset(nonce.get(), 0, nonce_len);
383   std::unique_ptr<uint8_t[]> in_storage(new uint8_t[chunk_len + kAlignment]);
384   // N.B. for EVP_AEAD_CTX_seal_scatter the input and output buffers may be the
385   // same size. However, in the direction == evp_aead_open case we still use
386   // non-scattering seal, hence we add overhead_len to the size of this buffer.
387   std::unique_ptr<uint8_t[]> out_storage(
388       new uint8_t[chunk_len + overhead_len + kAlignment]);
389   std::unique_ptr<uint8_t[]> in2_storage(
390       new uint8_t[chunk_len + overhead_len + kAlignment]);
391   std::unique_ptr<uint8_t[]> ad(new uint8_t[ad_len]);
392   OPENSSL_memset(ad.get(), 0, ad_len);
393   std::unique_ptr<uint8_t[]> tag_storage(
394       new uint8_t[overhead_len + kAlignment]);
395 
396 
397   uint8_t *const in =
398       static_cast<uint8_t *>(align_pointer(in_storage.get(), kAlignment));
399   OPENSSL_memset(in, 0, chunk_len);
400   uint8_t *const out =
401       static_cast<uint8_t *>(align_pointer(out_storage.get(), kAlignment));
402   OPENSSL_memset(out, 0, chunk_len + overhead_len);
403   uint8_t *const tag =
404       static_cast<uint8_t *>(align_pointer(tag_storage.get(), kAlignment));
405   OPENSSL_memset(tag, 0, overhead_len);
406   uint8_t *const in2 =
407       static_cast<uint8_t *>(align_pointer(in2_storage.get(), kAlignment));
408 
409   if (!EVP_AEAD_CTX_init_with_direction(ctx.get(), aead, key.get(), key_len,
410                                         EVP_AEAD_DEFAULT_TAG_LENGTH,
411                                         evp_aead_seal)) {
412     fprintf(stderr, "Failed to create EVP_AEAD_CTX.\n");
413     ERR_print_errors_fp(stderr);
414     return false;
415   }
416 
417   TimeResults results;
418   if (direction == evp_aead_seal) {
419     if (!TimeFunction(&results,
420                       [chunk_len, nonce_len, ad_len, overhead_len, in, out, tag,
421                        &ctx, &nonce, &ad]() -> bool {
422                         size_t tag_len;
423                         return EVP_AEAD_CTX_seal_scatter(
424                             ctx.get(), out, tag, &tag_len, overhead_len,
425                             nonce.get(), nonce_len, in, chunk_len, nullptr, 0,
426                             ad.get(), ad_len);
427                       })) {
428       fprintf(stderr, "EVP_AEAD_CTX_seal failed.\n");
429       ERR_print_errors_fp(stderr);
430       return false;
431     }
432   } else {
433     size_t out_len;
434     EVP_AEAD_CTX_seal(ctx.get(), out, &out_len, chunk_len + overhead_len,
435                       nonce.get(), nonce_len, in, chunk_len, ad.get(), ad_len);
436 
437     ctx.Reset();
438     if (!EVP_AEAD_CTX_init_with_direction(ctx.get(), aead, key.get(), key_len,
439                                           EVP_AEAD_DEFAULT_TAG_LENGTH,
440                                           evp_aead_open)) {
441       fprintf(stderr, "Failed to create EVP_AEAD_CTX.\n");
442       ERR_print_errors_fp(stderr);
443       return false;
444     }
445 
446     if (!TimeFunction(&results,
447                       [chunk_len, overhead_len, nonce_len, ad_len, in2, out,
448                        out_len, &ctx, &nonce, &ad]() -> bool {
449                         size_t in2_len;
450                         // N.B. EVP_AEAD_CTX_open_gather is not implemented for
451                         // all AEADs.
452                         return EVP_AEAD_CTX_open(ctx.get(), in2, &in2_len,
453                                                  chunk_len + overhead_len,
454                                                  nonce.get(), nonce_len, out,
455                                                  out_len, ad.get(), ad_len);
456                       })) {
457       fprintf(stderr, "EVP_AEAD_CTX_open failed.\n");
458       ERR_print_errors_fp(stderr);
459       return false;
460     }
461   }
462 
463   results.PrintWithBytes(
464       name + (direction == evp_aead_seal ? " seal" : " open"), chunk_len);
465   return true;
466 }
467 
SpeedAEAD(const EVP_AEAD * aead,const std::string & name,size_t ad_len,const std::string & selected)468 static bool SpeedAEAD(const EVP_AEAD *aead, const std::string &name,
469                       size_t ad_len, const std::string &selected) {
470   if (!selected.empty() && name.find(selected) == std::string::npos) {
471     return true;
472   }
473 
474   for (size_t chunk_len : g_chunk_lengths) {
475     if (!SpeedAEADChunk(aead, name, chunk_len, ad_len, evp_aead_seal)) {
476       return false;
477     }
478   }
479   return true;
480 }
481 
SpeedAEADOpen(const EVP_AEAD * aead,const std::string & name,size_t ad_len,const std::string & selected)482 static bool SpeedAEADOpen(const EVP_AEAD *aead, const std::string &name,
483                           size_t ad_len, const std::string &selected) {
484   if (!selected.empty() && name.find(selected) == std::string::npos) {
485     return true;
486   }
487 
488   for (size_t chunk_len : g_chunk_lengths) {
489     if (!SpeedAEADChunk(aead, name, chunk_len, ad_len, evp_aead_open)) {
490       return false;
491     }
492   }
493 
494   return true;
495 }
496 
SpeedAESBlock(const std::string & name,unsigned bits,const std::string & selected)497 static bool SpeedAESBlock(const std::string &name, unsigned bits,
498                           const std::string &selected) {
499   if (!selected.empty() && name.find(selected) == std::string::npos) {
500     return true;
501   }
502 
503   static const uint8_t kZero[32] = {0};
504 
505   {
506     TimeResults results;
507     if (!TimeFunction(&results, [&]() -> bool {
508           AES_KEY key;
509           return AES_set_encrypt_key(kZero, bits, &key) == 0;
510         })) {
511       fprintf(stderr, "AES_set_encrypt_key failed.\n");
512       return false;
513     }
514     results.Print(name + " encrypt setup");
515   }
516 
517   {
518     AES_KEY key;
519     if (AES_set_encrypt_key(kZero, bits, &key) != 0) {
520       return false;
521     }
522     uint8_t block[16] = {0};
523     TimeResults results;
524     if (!TimeFunction(&results, [&]() -> bool {
525           AES_encrypt(block, block, &key);
526           return true;
527         })) {
528       fprintf(stderr, "AES_encrypt failed.\n");
529       return false;
530     }
531     results.Print(name + " encrypt");
532   }
533 
534   {
535     TimeResults results;
536     if (!TimeFunction(&results, [&]() -> bool {
537           AES_KEY key;
538           return AES_set_decrypt_key(kZero, bits, &key) == 0;
539         })) {
540       fprintf(stderr, "AES_set_decrypt_key failed.\n");
541       return false;
542     }
543     results.Print(name + " decrypt setup");
544   }
545 
546   {
547     AES_KEY key;
548     if (AES_set_decrypt_key(kZero, bits, &key) != 0) {
549       return false;
550     }
551     uint8_t block[16] = {0};
552     TimeResults results;
553     if (!TimeFunction(&results, [&]() -> bool {
554           AES_decrypt(block, block, &key);
555           return true;
556         })) {
557       fprintf(stderr, "AES_decrypt failed.\n");
558       return false;
559     }
560     results.Print(name + " decrypt");
561   }
562 
563   return true;
564 }
565 
SpeedHashChunk(const EVP_MD * md,std::string name,size_t chunk_len)566 static bool SpeedHashChunk(const EVP_MD *md, std::string name,
567                            size_t chunk_len) {
568   bssl::ScopedEVP_MD_CTX ctx;
569   uint8_t input[16384] = {0};
570 
571   if (chunk_len > sizeof(input)) {
572     return false;
573   }
574 
575   name += ChunkLenSuffix(chunk_len);
576   TimeResults results;
577   if (!TimeFunction(&results, [&ctx, md, chunk_len, &input]() -> bool {
578         uint8_t digest[EVP_MAX_MD_SIZE];
579         unsigned int md_len;
580 
581         return EVP_DigestInit_ex(ctx.get(), md, NULL /* ENGINE */) &&
582                EVP_DigestUpdate(ctx.get(), input, chunk_len) &&
583                EVP_DigestFinal_ex(ctx.get(), digest, &md_len);
584       })) {
585     fprintf(stderr, "EVP_DigestInit_ex failed.\n");
586     ERR_print_errors_fp(stderr);
587     return false;
588   }
589 
590   results.PrintWithBytes(name, chunk_len);
591   return true;
592 }
593 
SpeedHash(const EVP_MD * md,const std::string & name,const std::string & selected)594 static bool SpeedHash(const EVP_MD *md, const std::string &name,
595                       const std::string &selected) {
596   if (!selected.empty() && name.find(selected) == std::string::npos) {
597     return true;
598   }
599 
600   for (size_t chunk_len : g_chunk_lengths) {
601     if (!SpeedHashChunk(md, name, chunk_len)) {
602       return false;
603     }
604   }
605 
606   return true;
607 }
608 
SpeedRandomChunk(std::string name,size_t chunk_len)609 static bool SpeedRandomChunk(std::string name, size_t chunk_len) {
610   uint8_t scratch[16384];
611 
612   if (chunk_len > sizeof(scratch)) {
613     return false;
614   }
615 
616   name += ChunkLenSuffix(chunk_len);
617   TimeResults results;
618   if (!TimeFunction(&results, [chunk_len, &scratch]() -> bool {
619         RAND_bytes(scratch, chunk_len);
620         return true;
621       })) {
622     return false;
623   }
624 
625   results.PrintWithBytes(name, chunk_len);
626   return true;
627 }
628 
SpeedRandom(const std::string & selected)629 static bool SpeedRandom(const std::string &selected) {
630   if (!selected.empty() && selected != "RNG") {
631     return true;
632   }
633 
634   for (size_t chunk_len : g_chunk_lengths) {
635     if (!SpeedRandomChunk("RNG", chunk_len)) {
636       return false;
637     }
638   }
639 
640   return true;
641 }
642 
SpeedECDHCurve(const std::string & name,int nid,const std::string & selected)643 static bool SpeedECDHCurve(const std::string &name, int nid,
644                            const std::string &selected) {
645   if (!selected.empty() && name.find(selected) == std::string::npos) {
646     return true;
647   }
648 
649   bssl::UniquePtr<EC_KEY> peer_key(EC_KEY_new_by_curve_name(nid));
650   if (!peer_key ||
651       !EC_KEY_generate_key(peer_key.get())) {
652     return false;
653   }
654 
655   size_t peer_value_len = EC_POINT_point2oct(
656       EC_KEY_get0_group(peer_key.get()), EC_KEY_get0_public_key(peer_key.get()),
657       POINT_CONVERSION_UNCOMPRESSED, nullptr, 0, nullptr);
658   if (peer_value_len == 0) {
659     return false;
660   }
661   std::unique_ptr<uint8_t[]> peer_value(new uint8_t[peer_value_len]);
662   peer_value_len = EC_POINT_point2oct(
663       EC_KEY_get0_group(peer_key.get()), EC_KEY_get0_public_key(peer_key.get()),
664       POINT_CONVERSION_UNCOMPRESSED, peer_value.get(), peer_value_len, nullptr);
665   if (peer_value_len == 0) {
666     return false;
667   }
668 
669   TimeResults results;
670   if (!TimeFunction(&results, [nid, peer_value_len, &peer_value]() -> bool {
671         bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(nid));
672         if (!key ||
673             !EC_KEY_generate_key(key.get())) {
674           return false;
675         }
676         const EC_GROUP *const group = EC_KEY_get0_group(key.get());
677         bssl::UniquePtr<EC_POINT> point(EC_POINT_new(group));
678         bssl::UniquePtr<EC_POINT> peer_point(EC_POINT_new(group));
679         bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new());
680         bssl::UniquePtr<BIGNUM> x(BN_new());
681         if (!point || !peer_point || !ctx || !x ||
682             !EC_POINT_oct2point(group, peer_point.get(), peer_value.get(),
683                                 peer_value_len, ctx.get()) ||
684             !EC_POINT_mul(group, point.get(), nullptr, peer_point.get(),
685                           EC_KEY_get0_private_key(key.get()), ctx.get()) ||
686             !EC_POINT_get_affine_coordinates_GFp(group, point.get(), x.get(),
687                                                  nullptr, ctx.get())) {
688           return false;
689         }
690 
691         return true;
692       })) {
693     return false;
694   }
695 
696   results.Print(name);
697   return true;
698 }
699 
SpeedECDSACurve(const std::string & name,int nid,const std::string & selected)700 static bool SpeedECDSACurve(const std::string &name, int nid,
701                             const std::string &selected) {
702   if (!selected.empty() && name.find(selected) == std::string::npos) {
703     return true;
704   }
705 
706   bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(nid));
707   if (!key ||
708       !EC_KEY_generate_key(key.get())) {
709     return false;
710   }
711 
712   uint8_t signature[256];
713   if (ECDSA_size(key.get()) > sizeof(signature)) {
714     return false;
715   }
716   uint8_t digest[20];
717   OPENSSL_memset(digest, 42, sizeof(digest));
718   unsigned sig_len;
719 
720   TimeResults results;
721   if (!TimeFunction(&results, [&key, &signature, &digest, &sig_len]() -> bool {
722         return ECDSA_sign(0, digest, sizeof(digest), signature, &sig_len,
723                           key.get()) == 1;
724       })) {
725     return false;
726   }
727 
728   results.Print(name + " signing");
729 
730   if (!TimeFunction(&results, [&key, &signature, &digest, sig_len]() -> bool {
731         return ECDSA_verify(0, digest, sizeof(digest), signature, sig_len,
732                             key.get()) == 1;
733       })) {
734     return false;
735   }
736 
737   results.Print(name + " verify");
738 
739   return true;
740 }
741 
SpeedECDH(const std::string & selected)742 static bool SpeedECDH(const std::string &selected) {
743   return SpeedECDHCurve("ECDH P-224", NID_secp224r1, selected) &&
744          SpeedECDHCurve("ECDH P-256", NID_X9_62_prime256v1, selected) &&
745          SpeedECDHCurve("ECDH P-384", NID_secp384r1, selected) &&
746          SpeedECDHCurve("ECDH P-521", NID_secp521r1, selected);
747 }
748 
SpeedECDSA(const std::string & selected)749 static bool SpeedECDSA(const std::string &selected) {
750   return SpeedECDSACurve("ECDSA P-224", NID_secp224r1, selected) &&
751          SpeedECDSACurve("ECDSA P-256", NID_X9_62_prime256v1, selected) &&
752          SpeedECDSACurve("ECDSA P-384", NID_secp384r1, selected) &&
753          SpeedECDSACurve("ECDSA P-521", NID_secp521r1, selected);
754 }
755 
Speed25519(const std::string & selected)756 static bool Speed25519(const std::string &selected) {
757   if (!selected.empty() && selected.find("25519") == std::string::npos) {
758     return true;
759   }
760 
761   TimeResults results;
762 
763   uint8_t public_key[32], private_key[64];
764 
765   if (!TimeFunction(&results, [&public_key, &private_key]() -> bool {
766         ED25519_keypair(public_key, private_key);
767         return true;
768       })) {
769     return false;
770   }
771 
772   results.Print("Ed25519 key generation");
773 
774   static const uint8_t kMessage[] = {0, 1, 2, 3, 4, 5};
775   uint8_t signature[64];
776 
777   if (!TimeFunction(&results, [&private_key, &signature]() -> bool {
778         return ED25519_sign(signature, kMessage, sizeof(kMessage),
779                             private_key) == 1;
780       })) {
781     return false;
782   }
783 
784   results.Print("Ed25519 signing");
785 
786   if (!TimeFunction(&results, [&public_key, &signature]() -> bool {
787         return ED25519_verify(kMessage, sizeof(kMessage), signature,
788                               public_key) == 1;
789       })) {
790     fprintf(stderr, "Ed25519 verify failed.\n");
791     return false;
792   }
793 
794   results.Print("Ed25519 verify");
795 
796   if (!TimeFunction(&results, []() -> bool {
797         uint8_t out[32], in[32];
798         OPENSSL_memset(in, 0, sizeof(in));
799         X25519_public_from_private(out, in);
800         return true;
801       })) {
802     fprintf(stderr, "Curve25519 base-point multiplication failed.\n");
803     return false;
804   }
805 
806   results.Print("Curve25519 base-point multiplication");
807 
808   if (!TimeFunction(&results, []() -> bool {
809         uint8_t out[32], in1[32], in2[32];
810         OPENSSL_memset(in1, 0, sizeof(in1));
811         OPENSSL_memset(in2, 0, sizeof(in2));
812         in1[0] = 1;
813         in2[0] = 9;
814         return X25519(out, in1, in2) == 1;
815       })) {
816     fprintf(stderr, "Curve25519 arbitrary point multiplication failed.\n");
817     return false;
818   }
819 
820   results.Print("Curve25519 arbitrary point multiplication");
821 
822   return true;
823 }
824 
SpeedSPAKE2(const std::string & selected)825 static bool SpeedSPAKE2(const std::string &selected) {
826   if (!selected.empty() && selected.find("SPAKE2") == std::string::npos) {
827     return true;
828   }
829 
830   TimeResults results;
831 
832   static const uint8_t kAliceName[] = {'A'};
833   static const uint8_t kBobName[] = {'B'};
834   static const uint8_t kPassword[] = "password";
835   bssl::UniquePtr<SPAKE2_CTX> alice(SPAKE2_CTX_new(spake2_role_alice,
836                                     kAliceName, sizeof(kAliceName), kBobName,
837                                     sizeof(kBobName)));
838   uint8_t alice_msg[SPAKE2_MAX_MSG_SIZE];
839   size_t alice_msg_len;
840 
841   if (!SPAKE2_generate_msg(alice.get(), alice_msg, &alice_msg_len,
842                            sizeof(alice_msg),
843                            kPassword, sizeof(kPassword))) {
844     fprintf(stderr, "SPAKE2_generate_msg failed.\n");
845     return false;
846   }
847 
848   if (!TimeFunction(&results, [&alice_msg, alice_msg_len]() -> bool {
849         bssl::UniquePtr<SPAKE2_CTX> bob(SPAKE2_CTX_new(spake2_role_bob,
850                                         kBobName, sizeof(kBobName), kAliceName,
851                                         sizeof(kAliceName)));
852         uint8_t bob_msg[SPAKE2_MAX_MSG_SIZE], bob_key[64];
853         size_t bob_msg_len, bob_key_len;
854         if (!SPAKE2_generate_msg(bob.get(), bob_msg, &bob_msg_len,
855                                  sizeof(bob_msg), kPassword,
856                                  sizeof(kPassword)) ||
857             !SPAKE2_process_msg(bob.get(), bob_key, &bob_key_len,
858                                 sizeof(bob_key), alice_msg, alice_msg_len)) {
859           return false;
860         }
861 
862         return true;
863       })) {
864     fprintf(stderr, "SPAKE2 failed.\n");
865   }
866 
867   results.Print("SPAKE2 over Ed25519");
868 
869   return true;
870 }
871 
SpeedScrypt(const std::string & selected)872 static bool SpeedScrypt(const std::string &selected) {
873   if (!selected.empty() && selected.find("scrypt") == std::string::npos) {
874     return true;
875   }
876 
877   TimeResults results;
878 
879   static const char kPassword[] = "password";
880   static const uint8_t kSalt[] = "NaCl";
881 
882   if (!TimeFunction(&results, [&]() -> bool {
883         uint8_t out[64];
884         return !!EVP_PBE_scrypt(kPassword, sizeof(kPassword) - 1, kSalt,
885                                 sizeof(kSalt) - 1, 1024, 8, 16, 0 /* max_mem */,
886                                 out, sizeof(out));
887       })) {
888     fprintf(stderr, "scrypt failed.\n");
889     return false;
890   }
891   results.Print("scrypt (N = 1024, r = 8, p = 16)");
892 
893   if (!TimeFunction(&results, [&]() -> bool {
894         uint8_t out[64];
895         return !!EVP_PBE_scrypt(kPassword, sizeof(kPassword) - 1, kSalt,
896                                 sizeof(kSalt) - 1, 16384, 8, 1, 0 /* max_mem */,
897                                 out, sizeof(out));
898       })) {
899     fprintf(stderr, "scrypt failed.\n");
900     return false;
901   }
902   results.Print("scrypt (N = 16384, r = 8, p = 1)");
903 
904   return true;
905 }
906 
SpeedHRSS(const std::string & selected)907 static bool SpeedHRSS(const std::string &selected) {
908   if (!selected.empty() && selected != "HRSS") {
909     return true;
910   }
911 
912   TimeResults results;
913 
914   if (!TimeFunction(&results, []() -> bool {
915         struct HRSS_public_key pub;
916         struct HRSS_private_key priv;
917         uint8_t entropy[HRSS_GENERATE_KEY_BYTES];
918         RAND_bytes(entropy, sizeof(entropy));
919         return HRSS_generate_key(&pub, &priv, entropy);
920       })) {
921     fprintf(stderr, "Failed to time HRSS_generate_key.\n");
922     return false;
923   }
924 
925   results.Print("HRSS generate");
926 
927   struct HRSS_public_key pub;
928   struct HRSS_private_key priv;
929   uint8_t key_entropy[HRSS_GENERATE_KEY_BYTES];
930   RAND_bytes(key_entropy, sizeof(key_entropy));
931   if (!HRSS_generate_key(&pub, &priv, key_entropy)) {
932     return false;
933   }
934 
935   uint8_t ciphertext[HRSS_CIPHERTEXT_BYTES];
936   if (!TimeFunction(&results, [&pub, &ciphertext]() -> bool {
937         uint8_t entropy[HRSS_ENCAP_BYTES];
938         uint8_t shared_key[HRSS_KEY_BYTES];
939         RAND_bytes(entropy, sizeof(entropy));
940         return HRSS_encap(ciphertext, shared_key, &pub, entropy);
941       })) {
942     fprintf(stderr, "Failed to time HRSS_encap.\n");
943     return false;
944   }
945 
946   results.Print("HRSS encap");
947 
948   if (!TimeFunction(&results, [&priv, &ciphertext]() -> bool {
949         uint8_t shared_key[HRSS_KEY_BYTES];
950         return HRSS_decap(shared_key, &priv, ciphertext, sizeof(ciphertext));
951       })) {
952     fprintf(stderr, "Failed to time HRSS_encap.\n");
953     return false;
954   }
955 
956   results.Print("HRSS decap");
957 
958   return true;
959 }
960 
SpeedKyber(const std::string & selected)961 static bool SpeedKyber(const std::string &selected) {
962   if (!selected.empty() && selected != "Kyber") {
963     return true;
964   }
965 
966   TimeResults results;
967 
968   KYBER_private_key priv;
969   uint8_t encoded_public_key[KYBER_PUBLIC_KEY_BYTES];
970   uint8_t ciphertext[KYBER_CIPHERTEXT_BYTES];
971   // This ciphertext is nonsense, but Kyber decap is constant-time so, for the
972   // purposes of timing, it's fine.
973   memset(ciphertext, 42, sizeof(ciphertext));
974   if (!TimeFunction(&results,
975                     [&priv, &encoded_public_key, &ciphertext]() -> bool {
976                       uint8_t shared_secret[32];
977                       KYBER_generate_key(encoded_public_key, &priv);
978                       KYBER_decap(shared_secret, sizeof(shared_secret),
979                                   ciphertext, &priv);
980                       return true;
981                     })) {
982     fprintf(stderr, "Failed to time KYBER_generate_key + KYBER_decap.\n");
983     return false;
984   }
985 
986   results.Print("Kyber generate + decap");
987 
988   KYBER_public_key pub;
989   if (!TimeFunction(
990           &results, [&pub, &ciphertext, &encoded_public_key]() -> bool {
991             CBS encoded_public_key_cbs;
992             CBS_init(&encoded_public_key_cbs, encoded_public_key,
993                      sizeof(encoded_public_key));
994             if (!KYBER_parse_public_key(&pub, &encoded_public_key_cbs)) {
995               return false;
996             }
997             uint8_t shared_secret[32];
998             KYBER_encap(ciphertext, shared_secret, sizeof(shared_secret), &pub);
999             return true;
1000           })) {
1001     fprintf(stderr, "Failed to time KYBER_encap.\n");
1002     return false;
1003   }
1004 
1005   results.Print("Kyber parse + encap");
1006 
1007   return true;
1008 }
1009 
SpeedHashToCurve(const std::string & selected)1010 static bool SpeedHashToCurve(const std::string &selected) {
1011   if (!selected.empty() && selected.find("hashtocurve") == std::string::npos) {
1012     return true;
1013   }
1014 
1015   uint8_t input[64];
1016   RAND_bytes(input, sizeof(input));
1017 
1018   static const uint8_t kLabel[] = "label";
1019 
1020   TimeResults results;
1021   {
1022     const EC_GROUP *p256 = EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1);
1023     if (p256 == NULL) {
1024       return false;
1025     }
1026     if (!TimeFunction(&results, [&]() -> bool {
1027           EC_RAW_POINT out;
1028           return ec_hash_to_curve_p256_xmd_sha256_sswu(
1029               p256, &out, kLabel, sizeof(kLabel), input, sizeof(input));
1030         })) {
1031       fprintf(stderr, "hash-to-curve failed.\n");
1032       return false;
1033     }
1034     results.Print("hash-to-curve P256_XMD:SHA-256_SSWU_RO_");
1035 
1036     const EC_GROUP *p384 = EC_GROUP_new_by_curve_name(NID_secp384r1);
1037     if (p384 == NULL) {
1038       return false;
1039     }
1040     if (!TimeFunction(&results, [&]() -> bool {
1041           EC_RAW_POINT out;
1042           return ec_hash_to_curve_p384_xmd_sha384_sswu(
1043               p384, &out, kLabel, sizeof(kLabel), input, sizeof(input));
1044         })) {
1045       fprintf(stderr, "hash-to-curve failed.\n");
1046       return false;
1047     }
1048     results.Print("hash-to-curve P384_XMD:SHA-384_SSWU_RO_");
1049 
1050     if (!TimeFunction(&results, [&]() -> bool {
1051           EC_SCALAR out;
1052           return ec_hash_to_scalar_p384_xmd_sha512_draft07(
1053               p384, &out, kLabel, sizeof(kLabel), input, sizeof(input));
1054         })) {
1055       fprintf(stderr, "hash-to-scalar failed.\n");
1056       return false;
1057     }
1058     results.Print("hash-to-scalar P384_XMD:SHA-512");
1059   }
1060 
1061   return true;
1062 }
1063 
SpeedBase64(const std::string & selected)1064 static bool SpeedBase64(const std::string &selected) {
1065   if (!selected.empty() && selected.find("base64") == std::string::npos) {
1066     return true;
1067   }
1068 
1069   static const char kInput[] =
1070     "MIIDtTCCAp2gAwIBAgIJALW2IrlaBKUhMA0GCSqGSIb3DQEBCwUAMEUxCzAJBgNV"
1071     "BAYTAkFVMRMwEQYDVQQIEwpTb21lLVN0YXRlMSEwHwYDVQQKExhJbnRlcm5ldCBX"
1072     "aWRnaXRzIFB0eSBMdGQwHhcNMTYwNzA5MDQzODA5WhcNMTYwODA4MDQzODA5WjBF"
1073     "MQswCQYDVQQGEwJBVTETMBEGA1UECBMKU29tZS1TdGF0ZTEhMB8GA1UEChMYSW50"
1074     "ZXJuZXQgV2lkZ2l0cyBQdHkgTHRkMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIB"
1075     "CgKCAQEAugvahBkSAUF1fC49vb1bvlPrcl80kop1iLpiuYoz4Qptwy57+EWssZBc"
1076     "HprZ5BkWf6PeGZ7F5AX1PyJbGHZLqvMCvViP6pd4MFox/igESISEHEixoiXCzepB"
1077     "rhtp5UQSjHD4D4hKtgdMgVxX+LRtwgW3mnu/vBu7rzpr/DS8io99p3lqZ1Aky+aN"
1078     "lcMj6MYy8U+YFEevb/V0lRY9oqwmW7BHnXikm/vi6sjIS350U8zb/mRzYeIs2R65"
1079     "LUduTL50+UMgat9ocewI2dv8aO9Dph+8NdGtg8LFYyTTHcUxJoMr1PTOgnmET19W"
1080     "JH4PrFwk7ZE1QJQQ1L4iKmPeQistuQIDAQABo4GnMIGkMB0GA1UdDgQWBBT5m6Vv"
1081     "zYjVYHG30iBE+j2XDhUE8jB1BgNVHSMEbjBsgBT5m6VvzYjVYHG30iBE+j2XDhUE"
1082     "8qFJpEcwRTELMAkGA1UEBhMCQVUxEzARBgNVBAgTClNvbWUtU3RhdGUxITAfBgNV"
1083     "BAoTGEludGVybmV0IFdpZGdpdHMgUHR5IEx0ZIIJALW2IrlaBKUhMAwGA1UdEwQF"
1084     "MAMBAf8wDQYJKoZIhvcNAQELBQADggEBAD7Jg68SArYWlcoHfZAB90Pmyrt5H6D8"
1085     "LRi+W2Ri1fBNxREELnezWJ2scjl4UMcsKYp4Pi950gVN+62IgrImcCNvtb5I1Cfy"
1086     "/MNNur9ffas6X334D0hYVIQTePyFk3umI+2mJQrtZZyMPIKSY/sYGQHhGGX6wGK+"
1087     "GO/og0PQk/Vu6D+GU2XRnDV0YZg1lsAsHd21XryK6fDmNkEMwbIWrts4xc7scRrG"
1088     "HWy+iMf6/7p/Ak/SIicM4XSwmlQ8pPxAZPr+E2LoVd9pMpWUwpW2UbtO5wsGTrY5"
1089     "sO45tFNN/y+jtUheB1C2ijObG/tXELaiyCdM+S/waeuv0MXtI4xnn1A=";
1090 
1091   std::vector<uint8_t> out(strlen(kInput));
1092   size_t len;
1093   TimeResults results;
1094   if (!TimeFunction(&results, [&]() -> bool {
1095         return EVP_DecodeBase64(out.data(), &len, out.size(),
1096                                 reinterpret_cast<const uint8_t *>(kInput),
1097                                 strlen(kInput));
1098       })) {
1099     fprintf(stderr, "base64 decode failed.\n");
1100     return false;
1101   }
1102   results.PrintWithBytes("base64 decode", strlen(kInput));
1103   return true;
1104 }
1105 
SpeedSipHash(const std::string & selected)1106 static bool SpeedSipHash(const std::string &selected) {
1107   if (!selected.empty() && selected.find("siphash") == std::string::npos) {
1108     return true;
1109   }
1110 
1111   uint64_t key[2] = {0};
1112   for (size_t len : g_chunk_lengths) {
1113     std::vector<uint8_t> input(len);
1114     TimeResults results;
1115     if (!TimeFunction(&results, [&]() -> bool {
1116           SIPHASH_24(key, input.data(), input.size());
1117           return true;
1118         })) {
1119       fprintf(stderr, "SIPHASH_24 failed.\n");
1120       ERR_print_errors_fp(stderr);
1121       return false;
1122     }
1123     results.PrintWithBytes("SipHash-2-4" + ChunkLenSuffix(len), len);
1124   }
1125 
1126   return true;
1127 }
1128 
trust_token_pretoken_dup(const TRUST_TOKEN_PRETOKEN * in)1129 static TRUST_TOKEN_PRETOKEN *trust_token_pretoken_dup(
1130     const TRUST_TOKEN_PRETOKEN *in) {
1131   return static_cast<TRUST_TOKEN_PRETOKEN *>(
1132       OPENSSL_memdup(in, sizeof(TRUST_TOKEN_PRETOKEN)));
1133 }
1134 
SpeedTrustToken(std::string name,const TRUST_TOKEN_METHOD * method,size_t batchsize,const std::string & selected)1135 static bool SpeedTrustToken(std::string name, const TRUST_TOKEN_METHOD *method,
1136                             size_t batchsize, const std::string &selected) {
1137   if (!selected.empty() && selected.find("trusttoken") == std::string::npos) {
1138     return true;
1139   }
1140 
1141   TimeResults results;
1142   if (!TimeFunction(&results, [&]() -> bool {
1143         uint8_t priv_key[TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE];
1144         uint8_t pub_key[TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE];
1145         size_t priv_key_len, pub_key_len;
1146         return TRUST_TOKEN_generate_key(
1147             method, priv_key, &priv_key_len, TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE,
1148             pub_key, &pub_key_len, TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE, 0);
1149       })) {
1150     fprintf(stderr, "TRUST_TOKEN_generate_key failed.\n");
1151     return false;
1152   }
1153   results.Print(name + " generate_key");
1154 
1155   bssl::UniquePtr<TRUST_TOKEN_CLIENT> client(
1156       TRUST_TOKEN_CLIENT_new(method, batchsize));
1157   bssl::UniquePtr<TRUST_TOKEN_ISSUER> issuer(
1158       TRUST_TOKEN_ISSUER_new(method, batchsize));
1159   uint8_t priv_key[TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE];
1160   uint8_t pub_key[TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE];
1161   size_t priv_key_len, pub_key_len, key_index;
1162   if (!client || !issuer ||
1163       !TRUST_TOKEN_generate_key(
1164           method, priv_key, &priv_key_len, TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE,
1165           pub_key, &pub_key_len, TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE, 0) ||
1166       !TRUST_TOKEN_CLIENT_add_key(client.get(), &key_index, pub_key,
1167                                   pub_key_len) ||
1168       !TRUST_TOKEN_ISSUER_add_key(issuer.get(), priv_key, priv_key_len)) {
1169     fprintf(stderr, "failed to generate trust token key.\n");
1170     return false;
1171   }
1172 
1173   uint8_t public_key[32], private_key[64];
1174   ED25519_keypair(public_key, private_key);
1175   bssl::UniquePtr<EVP_PKEY> priv(
1176       EVP_PKEY_new_raw_private_key(EVP_PKEY_ED25519, nullptr, private_key, 32));
1177   bssl::UniquePtr<EVP_PKEY> pub(
1178       EVP_PKEY_new_raw_public_key(EVP_PKEY_ED25519, nullptr, public_key, 32));
1179   if (!priv || !pub) {
1180     fprintf(stderr, "failed to generate trust token SRR key.\n");
1181     return false;
1182   }
1183 
1184   TRUST_TOKEN_CLIENT_set_srr_key(client.get(), pub.get());
1185   TRUST_TOKEN_ISSUER_set_srr_key(issuer.get(), priv.get());
1186   uint8_t metadata_key[32];
1187   RAND_bytes(metadata_key, sizeof(metadata_key));
1188   if (!TRUST_TOKEN_ISSUER_set_metadata_key(issuer.get(), metadata_key,
1189                                            sizeof(metadata_key))) {
1190     fprintf(stderr, "failed to generate trust token metadata key.\n");
1191     return false;
1192   }
1193 
1194   if (!TimeFunction(&results, [&]() -> bool {
1195         uint8_t *issue_msg = NULL;
1196         size_t msg_len;
1197         int ok = TRUST_TOKEN_CLIENT_begin_issuance(client.get(), &issue_msg,
1198                                                    &msg_len, batchsize);
1199         OPENSSL_free(issue_msg);
1200         // Clear pretokens.
1201         sk_TRUST_TOKEN_PRETOKEN_pop_free(client->pretokens,
1202                                          TRUST_TOKEN_PRETOKEN_free);
1203         client->pretokens = sk_TRUST_TOKEN_PRETOKEN_new_null();
1204         return ok;
1205       })) {
1206     fprintf(stderr, "TRUST_TOKEN_CLIENT_begin_issuance failed.\n");
1207     return false;
1208   }
1209   results.Print(name + " begin_issuance");
1210 
1211   uint8_t *issue_msg = NULL;
1212   size_t msg_len;
1213   if (!TRUST_TOKEN_CLIENT_begin_issuance(client.get(), &issue_msg, &msg_len,
1214                                          batchsize)) {
1215     fprintf(stderr, "TRUST_TOKEN_CLIENT_begin_issuance failed.\n");
1216     return false;
1217   }
1218   bssl::UniquePtr<uint8_t> free_issue_msg(issue_msg);
1219 
1220   bssl::UniquePtr<STACK_OF(TRUST_TOKEN_PRETOKEN)> pretokens(
1221       sk_TRUST_TOKEN_PRETOKEN_deep_copy(client->pretokens,
1222                                         trust_token_pretoken_dup,
1223                                         TRUST_TOKEN_PRETOKEN_free));
1224 
1225   if (!TimeFunction(&results, [&]() -> bool {
1226         uint8_t *issue_resp = NULL;
1227         size_t resp_len, tokens_issued;
1228         int ok = TRUST_TOKEN_ISSUER_issue(issuer.get(), &issue_resp, &resp_len,
1229                                           &tokens_issued, issue_msg, msg_len,
1230                                           /*public_metadata=*/0,
1231                                           /*private_metadata=*/0,
1232                                           /*max_issuance=*/batchsize);
1233         OPENSSL_free(issue_resp);
1234         return ok;
1235       })) {
1236     fprintf(stderr, "TRUST_TOKEN_ISSUER_issue failed.\n");
1237     return false;
1238   }
1239   results.Print(name + " issue");
1240 
1241   uint8_t *issue_resp = NULL;
1242   size_t resp_len, tokens_issued;
1243   if (!TRUST_TOKEN_ISSUER_issue(issuer.get(), &issue_resp, &resp_len,
1244                                 &tokens_issued, issue_msg, msg_len,
1245                                 /*public_metadata=*/0, /*private_metadata=*/0,
1246                                 /*max_issuance=*/batchsize)) {
1247     fprintf(stderr, "TRUST_TOKEN_ISSUER_issue failed.\n");
1248     return false;
1249   }
1250   bssl::UniquePtr<uint8_t> free_issue_resp(issue_resp);
1251 
1252   if (!TimeFunction(&results, [&]() -> bool {
1253         size_t key_index2;
1254         bssl::UniquePtr<STACK_OF(TRUST_TOKEN)> tokens(
1255             TRUST_TOKEN_CLIENT_finish_issuance(client.get(), &key_index2,
1256                                                issue_resp, resp_len));
1257 
1258         // Reset pretokens.
1259         client->pretokens = sk_TRUST_TOKEN_PRETOKEN_deep_copy(
1260             pretokens.get(), trust_token_pretoken_dup,
1261             TRUST_TOKEN_PRETOKEN_free);
1262         return !!tokens;
1263       })) {
1264     fprintf(stderr, "TRUST_TOKEN_CLIENT_finish_issuance failed.\n");
1265     return false;
1266   }
1267   results.Print(name + " finish_issuance");
1268 
1269   bssl::UniquePtr<STACK_OF(TRUST_TOKEN)> tokens(
1270       TRUST_TOKEN_CLIENT_finish_issuance(client.get(), &key_index, issue_resp,
1271                                          resp_len));
1272   if (!tokens || sk_TRUST_TOKEN_num(tokens.get()) < 1) {
1273     fprintf(stderr, "TRUST_TOKEN_CLIENT_finish_issuance failed.\n");
1274     return false;
1275   }
1276 
1277   const TRUST_TOKEN *token = sk_TRUST_TOKEN_value(tokens.get(), 0);
1278 
1279   const uint8_t kClientData[] = "\x70TEST CLIENT DATA";
1280   uint64_t kRedemptionTime = 13374242;
1281 
1282   if (!TimeFunction(&results, [&]() -> bool {
1283         uint8_t *redeem_msg = NULL;
1284         size_t redeem_msg_len;
1285         int ok = TRUST_TOKEN_CLIENT_begin_redemption(
1286             client.get(), &redeem_msg, &redeem_msg_len, token, kClientData,
1287             sizeof(kClientData) - 1, kRedemptionTime);
1288         OPENSSL_free(redeem_msg);
1289         return ok;
1290       })) {
1291     fprintf(stderr, "TRUST_TOKEN_CLIENT_begin_redemption failed.\n");
1292     return false;
1293   }
1294   results.Print(name + " begin_redemption");
1295 
1296   uint8_t *redeem_msg = NULL;
1297   size_t redeem_msg_len;
1298   if (!TRUST_TOKEN_CLIENT_begin_redemption(
1299           client.get(), &redeem_msg, &redeem_msg_len, token, kClientData,
1300           sizeof(kClientData) - 1, kRedemptionTime)) {
1301     fprintf(stderr, "TRUST_TOKEN_CLIENT_begin_redemption failed.\n");
1302     return false;
1303   }
1304   bssl::UniquePtr<uint8_t> free_redeem_msg(redeem_msg);
1305 
1306   if (!TimeFunction(&results, [&]() -> bool {
1307         uint32_t public_value;
1308         uint8_t private_value;
1309         TRUST_TOKEN *rtoken;
1310         uint8_t *client_data = NULL;
1311         size_t client_data_len;
1312         int ok = TRUST_TOKEN_ISSUER_redeem(
1313             issuer.get(), &public_value, &private_value, &rtoken, &client_data,
1314             &client_data_len, redeem_msg, redeem_msg_len);
1315         OPENSSL_free(client_data);
1316         TRUST_TOKEN_free(rtoken);
1317         return ok;
1318       })) {
1319     fprintf(stderr, "TRUST_TOKEN_ISSUER_redeem failed.\n");
1320     return false;
1321   }
1322   results.Print(name + " redeem");
1323 
1324   uint32_t public_value;
1325   uint8_t private_value;
1326   TRUST_TOKEN *rtoken;
1327   uint8_t *client_data = NULL;
1328   size_t client_data_len;
1329   if (!TRUST_TOKEN_ISSUER_redeem(issuer.get(), &public_value, &private_value,
1330                                  &rtoken, &client_data, &client_data_len,
1331                                  redeem_msg, redeem_msg_len)) {
1332     fprintf(stderr, "TRUST_TOKEN_ISSUER_redeem failed.\n");
1333     return false;
1334   }
1335   bssl::UniquePtr<uint8_t> free_client_data(client_data);
1336   bssl::UniquePtr<TRUST_TOKEN> free_rtoken(rtoken);
1337 
1338   return true;
1339 }
1340 
1341 #if defined(BORINGSSL_FIPS)
SpeedSelfTest(const std::string & selected)1342 static bool SpeedSelfTest(const std::string &selected) {
1343   if (!selected.empty() && selected.find("self-test") == std::string::npos) {
1344     return true;
1345   }
1346 
1347   TimeResults results;
1348   if (!TimeFunction(&results, []() -> bool { return BORINGSSL_self_test(); })) {
1349     fprintf(stderr, "BORINGSSL_self_test faileid.\n");
1350     ERR_print_errors_fp(stderr);
1351     return false;
1352   }
1353 
1354   results.Print("self-test");
1355   return true;
1356 }
1357 #endif
1358 
1359 static const struct argument kArguments[] = {
1360     {
1361         "-filter",
1362         kOptionalArgument,
1363         "A filter on the speed tests to run",
1364     },
1365     {
1366         "-timeout",
1367         kOptionalArgument,
1368         "The number of seconds to run each test for (default is 1)",
1369     },
1370     {
1371         "-chunks",
1372         kOptionalArgument,
1373         "A comma-separated list of input sizes to run tests at (default is "
1374         "16,256,1350,8192,16384)",
1375     },
1376     {
1377         "-json",
1378         kBooleanArgument,
1379         "If this flag is set, speed will print the output of each benchmark in "
1380         "JSON format as follows: \"{\"description\": "
1381         "\"descriptionOfOperation\", \"numCalls\": 1234, "
1382         "\"timeInMicroseconds\": 1234567, \"bytesPerCall\": 1234}\". When "
1383         "there is no information about the bytes per call for an  operation, "
1384         "the JSON field for bytesPerCall will be omitted.",
1385     },
1386     {
1387         "",
1388         kOptionalArgument,
1389         "",
1390     },
1391 };
1392 
Speed(const std::vector<std::string> & args)1393 bool Speed(const std::vector<std::string> &args) {
1394   std::map<std::string, std::string> args_map;
1395   if (!ParseKeyValueArguments(&args_map, args, kArguments)) {
1396     PrintUsage(kArguments);
1397     return false;
1398   }
1399 
1400   std::string selected;
1401   if (args_map.count("-filter") != 0) {
1402     selected = args_map["-filter"];
1403   }
1404 
1405   if (args_map.count("-json") != 0) {
1406     g_print_json = true;
1407   }
1408 
1409   if (args_map.count("-timeout") != 0) {
1410     g_timeout_seconds = atoi(args_map["-timeout"].c_str());
1411   }
1412 
1413   if (args_map.count("-chunks") != 0) {
1414     g_chunk_lengths.clear();
1415     const char *start = args_map["-chunks"].data();
1416     const char *end = start + args_map["-chunks"].size();
1417     while (start != end) {
1418       errno = 0;
1419       char *ptr;
1420       unsigned long long val = strtoull(start, &ptr, 10);
1421       if (ptr == start /* no numeric characters found */ ||
1422           errno == ERANGE /* overflow */ ||
1423           static_cast<size_t>(val) != val) {
1424         fprintf(stderr, "Error parsing -chunks argument\n");
1425         return false;
1426       }
1427       g_chunk_lengths.push_back(static_cast<size_t>(val));
1428       start = ptr;
1429       if (start != end) {
1430         if (*start != ',') {
1431           fprintf(stderr, "Error parsing -chunks argument\n");
1432           return false;
1433         }
1434         start++;
1435       }
1436     }
1437   }
1438 
1439   // kTLSADLen is the number of bytes of additional data that TLS passes to
1440   // AEADs.
1441   static const size_t kTLSADLen = 13;
1442   // kLegacyADLen is the number of bytes that TLS passes to the "legacy" AEADs.
1443   // These are AEADs that weren't originally defined as AEADs, but which we use
1444   // via the AEAD interface. In order for that to work, they have some TLS
1445   // knowledge in them and construct a couple of the AD bytes internally.
1446   static const size_t kLegacyADLen = kTLSADLen - 2;
1447 
1448   if (g_print_json) {
1449     puts("[");
1450   }
1451   if (!SpeedRSA(selected) ||
1452       !SpeedAEAD(EVP_aead_aes_128_gcm(), "AES-128-GCM", kTLSADLen, selected) ||
1453       !SpeedAEAD(EVP_aead_aes_256_gcm(), "AES-256-GCM", kTLSADLen, selected) ||
1454       !SpeedAEAD(EVP_aead_chacha20_poly1305(), "ChaCha20-Poly1305", kTLSADLen,
1455                  selected) ||
1456       !SpeedAEAD(EVP_aead_des_ede3_cbc_sha1_tls(), "DES-EDE3-CBC-SHA1",
1457                  kLegacyADLen, selected) ||
1458       !SpeedAEAD(EVP_aead_aes_128_cbc_sha1_tls(), "AES-128-CBC-SHA1",
1459                  kLegacyADLen, selected) ||
1460       !SpeedAEAD(EVP_aead_aes_256_cbc_sha1_tls(), "AES-256-CBC-SHA1",
1461                  kLegacyADLen, selected) ||
1462       !SpeedAEADOpen(EVP_aead_aes_128_cbc_sha1_tls(), "AES-128-CBC-SHA1",
1463                      kLegacyADLen, selected) ||
1464       !SpeedAEADOpen(EVP_aead_aes_256_cbc_sha1_tls(), "AES-256-CBC-SHA1",
1465                      kLegacyADLen, selected) ||
1466       !SpeedAEAD(EVP_aead_aes_128_gcm_siv(), "AES-128-GCM-SIV", kTLSADLen,
1467                  selected) ||
1468       !SpeedAEAD(EVP_aead_aes_256_gcm_siv(), "AES-256-GCM-SIV", kTLSADLen,
1469                  selected) ||
1470       !SpeedAEADOpen(EVP_aead_aes_128_gcm_siv(), "AES-128-GCM-SIV", kTLSADLen,
1471                      selected) ||
1472       !SpeedAEADOpen(EVP_aead_aes_256_gcm_siv(), "AES-256-GCM-SIV", kTLSADLen,
1473                      selected) ||
1474       !SpeedAEAD(EVP_aead_aes_128_ccm_bluetooth(), "AES-128-CCM-Bluetooth",
1475                  kTLSADLen, selected) ||
1476       !SpeedAESBlock("AES-128", 128, selected) ||
1477       !SpeedAESBlock("AES-256", 256, selected) ||
1478       !SpeedHash(EVP_sha1(), "SHA-1", selected) ||
1479       !SpeedHash(EVP_sha256(), "SHA-256", selected) ||
1480       !SpeedHash(EVP_sha512(), "SHA-512", selected) ||
1481       !SpeedHash(EVP_blake2b256(), "BLAKE2b-256", selected) ||
1482       !SpeedRandom(selected) ||
1483       !SpeedECDH(selected) ||
1484       !SpeedECDSA(selected) ||
1485       !Speed25519(selected) ||
1486       !SpeedSPAKE2(selected) ||
1487       !SpeedScrypt(selected) ||
1488       !SpeedRSAKeyGen(selected) ||
1489       !SpeedHRSS(selected) ||
1490       !SpeedKyber(selected) ||
1491       !SpeedHashToCurve(selected) ||
1492       !SpeedTrustToken("TrustToken-Exp1-Batch1", TRUST_TOKEN_experiment_v1(), 1,
1493                        selected) ||
1494       !SpeedTrustToken("TrustToken-Exp1-Batch10", TRUST_TOKEN_experiment_v1(),
1495                        10, selected) ||
1496       !SpeedTrustToken("TrustToken-Exp2VOPRF-Batch1",
1497                        TRUST_TOKEN_experiment_v2_voprf(), 1, selected) ||
1498       !SpeedTrustToken("TrustToken-Exp2VOPRF-Batch10",
1499                        TRUST_TOKEN_experiment_v2_voprf(), 10, selected) ||
1500       !SpeedTrustToken("TrustToken-Exp2PMB-Batch1",
1501                        TRUST_TOKEN_experiment_v2_pmb(), 1, selected) ||
1502       !SpeedTrustToken("TrustToken-Exp2PMB-Batch10",
1503                        TRUST_TOKEN_experiment_v2_pmb(), 10, selected) ||
1504       !SpeedBase64(selected) ||
1505       !SpeedSipHash(selected)) {
1506     return false;
1507   }
1508 #if defined(BORINGSSL_FIPS)
1509   if (!SpeedSelfTest(selected)) {
1510     return false;
1511   }
1512 #endif
1513   if (g_print_json) {
1514     puts("\n]");
1515   }
1516 
1517   return true;
1518 }
1519