1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Objective-C code as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CGDebugInfo.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/StmtObjC.h"
22 #include "clang/Basic/Diagnostic.h"
23 #include "clang/CodeGen/CGFunctionInfo.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 using namespace clang;
29 using namespace CodeGen;
30
31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
32 static TryEmitResult
33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
34 static RValue AdjustObjCObjectType(CodeGenFunction &CGF,
35 QualType ET,
36 RValue Result);
37
38 /// Given the address of a variable of pointer type, find the correct
39 /// null to store into it.
getNullForVariable(Address addr)40 static llvm::Constant *getNullForVariable(Address addr) {
41 llvm::Type *type = addr.getElementType();
42 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
43 }
44
45 /// Emits an instance of NSConstantString representing the object.
EmitObjCStringLiteral(const ObjCStringLiteral * E)46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
47 {
48 llvm::Constant *C =
49 CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer();
50 // FIXME: This bitcast should just be made an invariant on the Runtime.
51 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
52 }
53
54 /// EmitObjCBoxedExpr - This routine generates code to call
55 /// the appropriate expression boxing method. This will either be
56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
57 /// or [NSValue valueWithBytes:objCType:].
58 ///
59 llvm::Value *
EmitObjCBoxedExpr(const ObjCBoxedExpr * E)60 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
61 // Generate the correct selector for this literal's concrete type.
62 // Get the method.
63 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
64 const Expr *SubExpr = E->getSubExpr();
65 assert(BoxingMethod && "BoxingMethod is null");
66 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
67 Selector Sel = BoxingMethod->getSelector();
68
69 // Generate a reference to the class pointer, which will be the receiver.
70 // Assumes that the method was introduced in the class that should be
71 // messaged (avoids pulling it out of the result type).
72 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
73 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
74 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
75
76 CallArgList Args;
77 const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
78 QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
79
80 // ObjCBoxedExpr supports boxing of structs and unions
81 // via [NSValue valueWithBytes:objCType:]
82 const QualType ValueType(SubExpr->getType().getCanonicalType());
83 if (ValueType->isObjCBoxableRecordType()) {
84 // Emit CodeGen for first parameter
85 // and cast value to correct type
86 Address Temporary = CreateMemTemp(SubExpr->getType());
87 EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
88 Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT));
89 Args.add(RValue::get(BitCast.getPointer()), ArgQT);
90
91 // Create char array to store type encoding
92 std::string Str;
93 getContext().getObjCEncodingForType(ValueType, Str);
94 llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
95
96 // Cast type encoding to correct type
97 const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
98 QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
99 llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
100
101 Args.add(RValue::get(Cast), EncodingQT);
102 } else {
103 Args.add(EmitAnyExpr(SubExpr), ArgQT);
104 }
105
106 RValue result = Runtime.GenerateMessageSend(
107 *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
108 Args, ClassDecl, BoxingMethod);
109 return Builder.CreateBitCast(result.getScalarVal(),
110 ConvertType(E->getType()));
111 }
112
EmitObjCCollectionLiteral(const Expr * E,const ObjCMethodDecl * MethodWithObjects)113 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
114 const ObjCMethodDecl *MethodWithObjects) {
115 ASTContext &Context = CGM.getContext();
116 const ObjCDictionaryLiteral *DLE = nullptr;
117 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
118 if (!ALE)
119 DLE = cast<ObjCDictionaryLiteral>(E);
120
121 // Compute the type of the array we're initializing.
122 uint64_t NumElements =
123 ALE ? ALE->getNumElements() : DLE->getNumElements();
124 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
125 NumElements);
126 QualType ElementType = Context.getObjCIdType().withConst();
127 QualType ElementArrayType
128 = Context.getConstantArrayType(ElementType, APNumElements,
129 ArrayType::Normal, /*IndexTypeQuals=*/0);
130
131 // Allocate the temporary array(s).
132 Address Objects = CreateMemTemp(ElementArrayType, "objects");
133 Address Keys = Address::invalid();
134 if (DLE)
135 Keys = CreateMemTemp(ElementArrayType, "keys");
136
137 // In ARC, we may need to do extra work to keep all the keys and
138 // values alive until after the call.
139 SmallVector<llvm::Value *, 16> NeededObjects;
140 bool TrackNeededObjects =
141 (getLangOpts().ObjCAutoRefCount &&
142 CGM.getCodeGenOpts().OptimizationLevel != 0);
143
144 // Perform the actual initialialization of the array(s).
145 for (uint64_t i = 0; i < NumElements; i++) {
146 if (ALE) {
147 // Emit the element and store it to the appropriate array slot.
148 const Expr *Rhs = ALE->getElement(i);
149 LValue LV = MakeAddrLValue(
150 Builder.CreateConstArrayGEP(Objects, i, getPointerSize()),
151 ElementType, AlignmentSource::Decl);
152
153 llvm::Value *value = EmitScalarExpr(Rhs);
154 EmitStoreThroughLValue(RValue::get(value), LV, true);
155 if (TrackNeededObjects) {
156 NeededObjects.push_back(value);
157 }
158 } else {
159 // Emit the key and store it to the appropriate array slot.
160 const Expr *Key = DLE->getKeyValueElement(i).Key;
161 LValue KeyLV = MakeAddrLValue(
162 Builder.CreateConstArrayGEP(Keys, i, getPointerSize()),
163 ElementType, AlignmentSource::Decl);
164 llvm::Value *keyValue = EmitScalarExpr(Key);
165 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
166
167 // Emit the value and store it to the appropriate array slot.
168 const Expr *Value = DLE->getKeyValueElement(i).Value;
169 LValue ValueLV = MakeAddrLValue(
170 Builder.CreateConstArrayGEP(Objects, i, getPointerSize()),
171 ElementType, AlignmentSource::Decl);
172 llvm::Value *valueValue = EmitScalarExpr(Value);
173 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
174 if (TrackNeededObjects) {
175 NeededObjects.push_back(keyValue);
176 NeededObjects.push_back(valueValue);
177 }
178 }
179 }
180
181 // Generate the argument list.
182 CallArgList Args;
183 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
184 const ParmVarDecl *argDecl = *PI++;
185 QualType ArgQT = argDecl->getType().getUnqualifiedType();
186 Args.add(RValue::get(Objects.getPointer()), ArgQT);
187 if (DLE) {
188 argDecl = *PI++;
189 ArgQT = argDecl->getType().getUnqualifiedType();
190 Args.add(RValue::get(Keys.getPointer()), ArgQT);
191 }
192 argDecl = *PI;
193 ArgQT = argDecl->getType().getUnqualifiedType();
194 llvm::Value *Count =
195 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
196 Args.add(RValue::get(Count), ArgQT);
197
198 // Generate a reference to the class pointer, which will be the receiver.
199 Selector Sel = MethodWithObjects->getSelector();
200 QualType ResultType = E->getType();
201 const ObjCObjectPointerType *InterfacePointerType
202 = ResultType->getAsObjCInterfacePointerType();
203 ObjCInterfaceDecl *Class
204 = InterfacePointerType->getObjectType()->getInterface();
205 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
206 llvm::Value *Receiver = Runtime.GetClass(*this, Class);
207
208 // Generate the message send.
209 RValue result = Runtime.GenerateMessageSend(
210 *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
211 Receiver, Args, Class, MethodWithObjects);
212
213 // The above message send needs these objects, but in ARC they are
214 // passed in a buffer that is essentially __unsafe_unretained.
215 // Therefore we must prevent the optimizer from releasing them until
216 // after the call.
217 if (TrackNeededObjects) {
218 EmitARCIntrinsicUse(NeededObjects);
219 }
220
221 return Builder.CreateBitCast(result.getScalarVal(),
222 ConvertType(E->getType()));
223 }
224
EmitObjCArrayLiteral(const ObjCArrayLiteral * E)225 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
226 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
227 }
228
EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral * E)229 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
230 const ObjCDictionaryLiteral *E) {
231 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
232 }
233
234 /// Emit a selector.
EmitObjCSelectorExpr(const ObjCSelectorExpr * E)235 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
236 // Untyped selector.
237 // Note that this implementation allows for non-constant strings to be passed
238 // as arguments to @selector(). Currently, the only thing preventing this
239 // behaviour is the type checking in the front end.
240 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
241 }
242
EmitObjCProtocolExpr(const ObjCProtocolExpr * E)243 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
244 // FIXME: This should pass the Decl not the name.
245 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
246 }
247
248 /// \brief Adjust the type of an Objective-C object that doesn't match up due
249 /// to type erasure at various points, e.g., related result types or the use
250 /// of parameterized classes.
AdjustObjCObjectType(CodeGenFunction & CGF,QualType ExpT,RValue Result)251 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT,
252 RValue Result) {
253 if (!ExpT->isObjCRetainableType())
254 return Result;
255
256 // If the converted types are the same, we're done.
257 llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
258 if (ExpLLVMTy == Result.getScalarVal()->getType())
259 return Result;
260
261 // We have applied a substitution. Cast the rvalue appropriately.
262 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
263 ExpLLVMTy));
264 }
265
266 /// Decide whether to extend the lifetime of the receiver of a
267 /// returns-inner-pointer message.
268 static bool
shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr * message)269 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
270 switch (message->getReceiverKind()) {
271
272 // For a normal instance message, we should extend unless the
273 // receiver is loaded from a variable with precise lifetime.
274 case ObjCMessageExpr::Instance: {
275 const Expr *receiver = message->getInstanceReceiver();
276
277 // Look through OVEs.
278 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
279 if (opaque->getSourceExpr())
280 receiver = opaque->getSourceExpr()->IgnoreParens();
281 }
282
283 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
284 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
285 receiver = ice->getSubExpr()->IgnoreParens();
286
287 // Look through OVEs.
288 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
289 if (opaque->getSourceExpr())
290 receiver = opaque->getSourceExpr()->IgnoreParens();
291 }
292
293 // Only __strong variables.
294 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
295 return true;
296
297 // All ivars and fields have precise lifetime.
298 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
299 return false;
300
301 // Otherwise, check for variables.
302 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
303 if (!declRef) return true;
304 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
305 if (!var) return true;
306
307 // All variables have precise lifetime except local variables with
308 // automatic storage duration that aren't specially marked.
309 return (var->hasLocalStorage() &&
310 !var->hasAttr<ObjCPreciseLifetimeAttr>());
311 }
312
313 case ObjCMessageExpr::Class:
314 case ObjCMessageExpr::SuperClass:
315 // It's never necessary for class objects.
316 return false;
317
318 case ObjCMessageExpr::SuperInstance:
319 // We generally assume that 'self' lives throughout a method call.
320 return false;
321 }
322
323 llvm_unreachable("invalid receiver kind");
324 }
325
326 /// Given an expression of ObjC pointer type, check whether it was
327 /// immediately loaded from an ARC __weak l-value.
findWeakLValue(const Expr * E)328 static const Expr *findWeakLValue(const Expr *E) {
329 assert(E->getType()->isObjCRetainableType());
330 E = E->IgnoreParens();
331 if (auto CE = dyn_cast<CastExpr>(E)) {
332 if (CE->getCastKind() == CK_LValueToRValue) {
333 if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
334 return CE->getSubExpr();
335 }
336 }
337
338 return nullptr;
339 }
340
EmitObjCMessageExpr(const ObjCMessageExpr * E,ReturnValueSlot Return)341 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
342 ReturnValueSlot Return) {
343 // Only the lookup mechanism and first two arguments of the method
344 // implementation vary between runtimes. We can get the receiver and
345 // arguments in generic code.
346
347 bool isDelegateInit = E->isDelegateInitCall();
348
349 const ObjCMethodDecl *method = E->getMethodDecl();
350
351 // If the method is -retain, and the receiver's being loaded from
352 // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
353 if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
354 method->getMethodFamily() == OMF_retain) {
355 if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
356 LValue lvalue = EmitLValue(lvalueExpr);
357 llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress());
358 return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
359 }
360 }
361
362 // We don't retain the receiver in delegate init calls, and this is
363 // safe because the receiver value is always loaded from 'self',
364 // which we zero out. We don't want to Block_copy block receivers,
365 // though.
366 bool retainSelf =
367 (!isDelegateInit &&
368 CGM.getLangOpts().ObjCAutoRefCount &&
369 method &&
370 method->hasAttr<NSConsumesSelfAttr>());
371
372 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
373 bool isSuperMessage = false;
374 bool isClassMessage = false;
375 ObjCInterfaceDecl *OID = nullptr;
376 // Find the receiver
377 QualType ReceiverType;
378 llvm::Value *Receiver = nullptr;
379 switch (E->getReceiverKind()) {
380 case ObjCMessageExpr::Instance:
381 ReceiverType = E->getInstanceReceiver()->getType();
382 if (retainSelf) {
383 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
384 E->getInstanceReceiver());
385 Receiver = ter.getPointer();
386 if (ter.getInt()) retainSelf = false;
387 } else
388 Receiver = EmitScalarExpr(E->getInstanceReceiver());
389 break;
390
391 case ObjCMessageExpr::Class: {
392 ReceiverType = E->getClassReceiver();
393 const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
394 assert(ObjTy && "Invalid Objective-C class message send");
395 OID = ObjTy->getInterface();
396 assert(OID && "Invalid Objective-C class message send");
397 Receiver = Runtime.GetClass(*this, OID);
398 isClassMessage = true;
399 break;
400 }
401
402 case ObjCMessageExpr::SuperInstance:
403 ReceiverType = E->getSuperType();
404 Receiver = LoadObjCSelf();
405 isSuperMessage = true;
406 break;
407
408 case ObjCMessageExpr::SuperClass:
409 ReceiverType = E->getSuperType();
410 Receiver = LoadObjCSelf();
411 isSuperMessage = true;
412 isClassMessage = true;
413 break;
414 }
415
416 if (retainSelf)
417 Receiver = EmitARCRetainNonBlock(Receiver);
418
419 // In ARC, we sometimes want to "extend the lifetime"
420 // (i.e. retain+autorelease) of receivers of returns-inner-pointer
421 // messages.
422 if (getLangOpts().ObjCAutoRefCount && method &&
423 method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
424 shouldExtendReceiverForInnerPointerMessage(E))
425 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
426
427 QualType ResultType = method ? method->getReturnType() : E->getType();
428
429 CallArgList Args;
430 EmitCallArgs(Args, method, E->arguments());
431
432 // For delegate init calls in ARC, do an unsafe store of null into
433 // self. This represents the call taking direct ownership of that
434 // value. We have to do this after emitting the other call
435 // arguments because they might also reference self, but we don't
436 // have to worry about any of them modifying self because that would
437 // be an undefined read and write of an object in unordered
438 // expressions.
439 if (isDelegateInit) {
440 assert(getLangOpts().ObjCAutoRefCount &&
441 "delegate init calls should only be marked in ARC");
442
443 // Do an unsafe store of null into self.
444 Address selfAddr =
445 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
446 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
447 }
448
449 RValue result;
450 if (isSuperMessage) {
451 // super is only valid in an Objective-C method
452 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
453 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
454 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
455 E->getSelector(),
456 OMD->getClassInterface(),
457 isCategoryImpl,
458 Receiver,
459 isClassMessage,
460 Args,
461 method);
462 } else {
463 result = Runtime.GenerateMessageSend(*this, Return, ResultType,
464 E->getSelector(),
465 Receiver, Args, OID,
466 method);
467 }
468
469 // For delegate init calls in ARC, implicitly store the result of
470 // the call back into self. This takes ownership of the value.
471 if (isDelegateInit) {
472 Address selfAddr =
473 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
474 llvm::Value *newSelf = result.getScalarVal();
475
476 // The delegate return type isn't necessarily a matching type; in
477 // fact, it's quite likely to be 'id'.
478 llvm::Type *selfTy = selfAddr.getElementType();
479 newSelf = Builder.CreateBitCast(newSelf, selfTy);
480
481 Builder.CreateStore(newSelf, selfAddr);
482 }
483
484 return AdjustObjCObjectType(*this, E->getType(), result);
485 }
486
487 namespace {
488 struct FinishARCDealloc final : EHScopeStack::Cleanup {
Emit__anon4c747e0d0111::FinishARCDealloc489 void Emit(CodeGenFunction &CGF, Flags flags) override {
490 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
491
492 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
493 const ObjCInterfaceDecl *iface = impl->getClassInterface();
494 if (!iface->getSuperClass()) return;
495
496 bool isCategory = isa<ObjCCategoryImplDecl>(impl);
497
498 // Call [super dealloc] if we have a superclass.
499 llvm::Value *self = CGF.LoadObjCSelf();
500
501 CallArgList args;
502 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
503 CGF.getContext().VoidTy,
504 method->getSelector(),
505 iface,
506 isCategory,
507 self,
508 /*is class msg*/ false,
509 args,
510 method);
511 }
512 };
513 }
514
515 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
516 /// the LLVM function and sets the other context used by
517 /// CodeGenFunction.
StartObjCMethod(const ObjCMethodDecl * OMD,const ObjCContainerDecl * CD)518 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
519 const ObjCContainerDecl *CD) {
520 SourceLocation StartLoc = OMD->getLocStart();
521 FunctionArgList args;
522 // Check if we should generate debug info for this method.
523 if (OMD->hasAttr<NoDebugAttr>())
524 DebugInfo = nullptr; // disable debug info indefinitely for this function
525
526 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
527
528 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
529 CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
530
531 args.push_back(OMD->getSelfDecl());
532 args.push_back(OMD->getCmdDecl());
533
534 args.append(OMD->param_begin(), OMD->param_end());
535
536 CurGD = OMD;
537 CurEHLocation = OMD->getLocEnd();
538
539 StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
540 OMD->getLocation(), StartLoc);
541
542 // In ARC, certain methods get an extra cleanup.
543 if (CGM.getLangOpts().ObjCAutoRefCount &&
544 OMD->isInstanceMethod() &&
545 OMD->getSelector().isUnarySelector()) {
546 const IdentifierInfo *ident =
547 OMD->getSelector().getIdentifierInfoForSlot(0);
548 if (ident->isStr("dealloc"))
549 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
550 }
551 }
552
553 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
554 LValue lvalue, QualType type);
555
556 /// Generate an Objective-C method. An Objective-C method is a C function with
557 /// its pointer, name, and types registered in the class struture.
GenerateObjCMethod(const ObjCMethodDecl * OMD)558 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
559 StartObjCMethod(OMD, OMD->getClassInterface());
560 PGO.assignRegionCounters(GlobalDecl(OMD), CurFn);
561 assert(isa<CompoundStmt>(OMD->getBody()));
562 incrementProfileCounter(OMD->getBody());
563 EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
564 FinishFunction(OMD->getBodyRBrace());
565 }
566
567 /// emitStructGetterCall - Call the runtime function to load a property
568 /// into the return value slot.
emitStructGetterCall(CodeGenFunction & CGF,ObjCIvarDecl * ivar,bool isAtomic,bool hasStrong)569 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
570 bool isAtomic, bool hasStrong) {
571 ASTContext &Context = CGF.getContext();
572
573 Address src =
574 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
575 .getAddress();
576
577 // objc_copyStruct (ReturnValue, &structIvar,
578 // sizeof (Type of Ivar), isAtomic, false);
579 CallArgList args;
580
581 Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
582 args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy);
583
584 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
585 args.add(RValue::get(src.getPointer()), Context.VoidPtrTy);
586
587 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
588 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
589 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
590 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
591
592 llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
593 CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args),
594 fn, ReturnValueSlot(), args);
595 }
596
597 /// Determine whether the given architecture supports unaligned atomic
598 /// accesses. They don't have to be fast, just faster than a function
599 /// call and a mutex.
hasUnalignedAtomics(llvm::Triple::ArchType arch)600 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
601 // FIXME: Allow unaligned atomic load/store on x86. (It is not
602 // currently supported by the backend.)
603 return 0;
604 }
605
606 /// Return the maximum size that permits atomic accesses for the given
607 /// architecture.
getMaxAtomicAccessSize(CodeGenModule & CGM,llvm::Triple::ArchType arch)608 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
609 llvm::Triple::ArchType arch) {
610 // ARM has 8-byte atomic accesses, but it's not clear whether we
611 // want to rely on them here.
612
613 // In the default case, just assume that any size up to a pointer is
614 // fine given adequate alignment.
615 return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
616 }
617
618 namespace {
619 class PropertyImplStrategy {
620 public:
621 enum StrategyKind {
622 /// The 'native' strategy is to use the architecture's provided
623 /// reads and writes.
624 Native,
625
626 /// Use objc_setProperty and objc_getProperty.
627 GetSetProperty,
628
629 /// Use objc_setProperty for the setter, but use expression
630 /// evaluation for the getter.
631 SetPropertyAndExpressionGet,
632
633 /// Use objc_copyStruct.
634 CopyStruct,
635
636 /// The 'expression' strategy is to emit normal assignment or
637 /// lvalue-to-rvalue expressions.
638 Expression
639 };
640
getKind() const641 StrategyKind getKind() const { return StrategyKind(Kind); }
642
hasStrongMember() const643 bool hasStrongMember() const { return HasStrong; }
isAtomic() const644 bool isAtomic() const { return IsAtomic; }
isCopy() const645 bool isCopy() const { return IsCopy; }
646
getIvarSize() const647 CharUnits getIvarSize() const { return IvarSize; }
getIvarAlignment() const648 CharUnits getIvarAlignment() const { return IvarAlignment; }
649
650 PropertyImplStrategy(CodeGenModule &CGM,
651 const ObjCPropertyImplDecl *propImpl);
652
653 private:
654 unsigned Kind : 8;
655 unsigned IsAtomic : 1;
656 unsigned IsCopy : 1;
657 unsigned HasStrong : 1;
658
659 CharUnits IvarSize;
660 CharUnits IvarAlignment;
661 };
662 }
663
664 /// Pick an implementation strategy for the given property synthesis.
PropertyImplStrategy(CodeGenModule & CGM,const ObjCPropertyImplDecl * propImpl)665 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
666 const ObjCPropertyImplDecl *propImpl) {
667 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
668 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
669
670 IsCopy = (setterKind == ObjCPropertyDecl::Copy);
671 IsAtomic = prop->isAtomic();
672 HasStrong = false; // doesn't matter here.
673
674 // Evaluate the ivar's size and alignment.
675 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
676 QualType ivarType = ivar->getType();
677 std::tie(IvarSize, IvarAlignment) =
678 CGM.getContext().getTypeInfoInChars(ivarType);
679
680 // If we have a copy property, we always have to use getProperty/setProperty.
681 // TODO: we could actually use setProperty and an expression for non-atomics.
682 if (IsCopy) {
683 Kind = GetSetProperty;
684 return;
685 }
686
687 // Handle retain.
688 if (setterKind == ObjCPropertyDecl::Retain) {
689 // In GC-only, there's nothing special that needs to be done.
690 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
691 // fallthrough
692
693 // In ARC, if the property is non-atomic, use expression emission,
694 // which translates to objc_storeStrong. This isn't required, but
695 // it's slightly nicer.
696 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
697 // Using standard expression emission for the setter is only
698 // acceptable if the ivar is __strong, which won't be true if
699 // the property is annotated with __attribute__((NSObject)).
700 // TODO: falling all the way back to objc_setProperty here is
701 // just laziness, though; we could still use objc_storeStrong
702 // if we hacked it right.
703 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
704 Kind = Expression;
705 else
706 Kind = SetPropertyAndExpressionGet;
707 return;
708
709 // Otherwise, we need to at least use setProperty. However, if
710 // the property isn't atomic, we can use normal expression
711 // emission for the getter.
712 } else if (!IsAtomic) {
713 Kind = SetPropertyAndExpressionGet;
714 return;
715
716 // Otherwise, we have to use both setProperty and getProperty.
717 } else {
718 Kind = GetSetProperty;
719 return;
720 }
721 }
722
723 // If we're not atomic, just use expression accesses.
724 if (!IsAtomic) {
725 Kind = Expression;
726 return;
727 }
728
729 // Properties on bitfield ivars need to be emitted using expression
730 // accesses even if they're nominally atomic.
731 if (ivar->isBitField()) {
732 Kind = Expression;
733 return;
734 }
735
736 // GC-qualified or ARC-qualified ivars need to be emitted as
737 // expressions. This actually works out to being atomic anyway,
738 // except for ARC __strong, but that should trigger the above code.
739 if (ivarType.hasNonTrivialObjCLifetime() ||
740 (CGM.getLangOpts().getGC() &&
741 CGM.getContext().getObjCGCAttrKind(ivarType))) {
742 Kind = Expression;
743 return;
744 }
745
746 // Compute whether the ivar has strong members.
747 if (CGM.getLangOpts().getGC())
748 if (const RecordType *recordType = ivarType->getAs<RecordType>())
749 HasStrong = recordType->getDecl()->hasObjectMember();
750
751 // We can never access structs with object members with a native
752 // access, because we need to use write barriers. This is what
753 // objc_copyStruct is for.
754 if (HasStrong) {
755 Kind = CopyStruct;
756 return;
757 }
758
759 // Otherwise, this is target-dependent and based on the size and
760 // alignment of the ivar.
761
762 // If the size of the ivar is not a power of two, give up. We don't
763 // want to get into the business of doing compare-and-swaps.
764 if (!IvarSize.isPowerOfTwo()) {
765 Kind = CopyStruct;
766 return;
767 }
768
769 llvm::Triple::ArchType arch =
770 CGM.getTarget().getTriple().getArch();
771
772 // Most architectures require memory to fit within a single cache
773 // line, so the alignment has to be at least the size of the access.
774 // Otherwise we have to grab a lock.
775 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
776 Kind = CopyStruct;
777 return;
778 }
779
780 // If the ivar's size exceeds the architecture's maximum atomic
781 // access size, we have to use CopyStruct.
782 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
783 Kind = CopyStruct;
784 return;
785 }
786
787 // Otherwise, we can use native loads and stores.
788 Kind = Native;
789 }
790
791 /// \brief Generate an Objective-C property getter function.
792 ///
793 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
794 /// is illegal within a category.
GenerateObjCGetter(ObjCImplementationDecl * IMP,const ObjCPropertyImplDecl * PID)795 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
796 const ObjCPropertyImplDecl *PID) {
797 llvm::Constant *AtomicHelperFn =
798 CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
799 const ObjCPropertyDecl *PD = PID->getPropertyDecl();
800 ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
801 assert(OMD && "Invalid call to generate getter (empty method)");
802 StartObjCMethod(OMD, IMP->getClassInterface());
803
804 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
805
806 FinishFunction();
807 }
808
hasTrivialGetExpr(const ObjCPropertyImplDecl * propImpl)809 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
810 const Expr *getter = propImpl->getGetterCXXConstructor();
811 if (!getter) return true;
812
813 // Sema only makes only of these when the ivar has a C++ class type,
814 // so the form is pretty constrained.
815
816 // If the property has a reference type, we might just be binding a
817 // reference, in which case the result will be a gl-value. We should
818 // treat this as a non-trivial operation.
819 if (getter->isGLValue())
820 return false;
821
822 // If we selected a trivial copy-constructor, we're okay.
823 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
824 return (construct->getConstructor()->isTrivial());
825
826 // The constructor might require cleanups (in which case it's never
827 // trivial).
828 assert(isa<ExprWithCleanups>(getter));
829 return false;
830 }
831
832 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
833 /// copy the ivar into the resturn slot.
emitCPPObjectAtomicGetterCall(CodeGenFunction & CGF,llvm::Value * returnAddr,ObjCIvarDecl * ivar,llvm::Constant * AtomicHelperFn)834 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
835 llvm::Value *returnAddr,
836 ObjCIvarDecl *ivar,
837 llvm::Constant *AtomicHelperFn) {
838 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
839 // AtomicHelperFn);
840 CallArgList args;
841
842 // The 1st argument is the return Slot.
843 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
844
845 // The 2nd argument is the address of the ivar.
846 llvm::Value *ivarAddr =
847 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
848 CGF.LoadObjCSelf(), ivar, 0).getPointer();
849 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
850 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
851
852 // Third argument is the helper function.
853 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
854
855 llvm::Value *copyCppAtomicObjectFn =
856 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
857 CGF.EmitCall(
858 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
859 copyCppAtomicObjectFn, ReturnValueSlot(), args);
860 }
861
862 void
generateObjCGetterBody(const ObjCImplementationDecl * classImpl,const ObjCPropertyImplDecl * propImpl,const ObjCMethodDecl * GetterMethodDecl,llvm::Constant * AtomicHelperFn)863 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
864 const ObjCPropertyImplDecl *propImpl,
865 const ObjCMethodDecl *GetterMethodDecl,
866 llvm::Constant *AtomicHelperFn) {
867 // If there's a non-trivial 'get' expression, we just have to emit that.
868 if (!hasTrivialGetExpr(propImpl)) {
869 if (!AtomicHelperFn) {
870 ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(),
871 /*nrvo*/ nullptr);
872 EmitReturnStmt(ret);
873 }
874 else {
875 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
876 emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(),
877 ivar, AtomicHelperFn);
878 }
879 return;
880 }
881
882 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
883 QualType propType = prop->getType();
884 ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
885
886 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
887
888 // Pick an implementation strategy.
889 PropertyImplStrategy strategy(CGM, propImpl);
890 switch (strategy.getKind()) {
891 case PropertyImplStrategy::Native: {
892 // We don't need to do anything for a zero-size struct.
893 if (strategy.getIvarSize().isZero())
894 return;
895
896 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
897
898 // Currently, all atomic accesses have to be through integer
899 // types, so there's no point in trying to pick a prettier type.
900 uint64_t ivarSize = getContext().toBits(strategy.getIvarSize());
901 llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize);
902 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
903
904 // Perform an atomic load. This does not impose ordering constraints.
905 Address ivarAddr = LV.getAddress();
906 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
907 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
908 load->setAtomic(llvm::AtomicOrdering::Unordered);
909
910 // Store that value into the return address. Doing this with a
911 // bitcast is likely to produce some pretty ugly IR, but it's not
912 // the *most* terrible thing in the world.
913 llvm::Type *retTy = ConvertType(getterMethod->getReturnType());
914 uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy);
915 llvm::Value *ivarVal = load;
916 if (ivarSize > retTySize) {
917 llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize);
918 ivarVal = Builder.CreateTrunc(load, newTy);
919 bitcastType = newTy->getPointerTo();
920 }
921 Builder.CreateStore(ivarVal,
922 Builder.CreateBitCast(ReturnValue, bitcastType));
923
924 // Make sure we don't do an autorelease.
925 AutoreleaseResult = false;
926 return;
927 }
928
929 case PropertyImplStrategy::GetSetProperty: {
930 llvm::Value *getPropertyFn =
931 CGM.getObjCRuntime().GetPropertyGetFunction();
932 if (!getPropertyFn) {
933 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
934 return;
935 }
936
937 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
938 // FIXME: Can't this be simpler? This might even be worse than the
939 // corresponding gcc code.
940 llvm::Value *cmd =
941 Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd");
942 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
943 llvm::Value *ivarOffset =
944 EmitIvarOffset(classImpl->getClassInterface(), ivar);
945
946 CallArgList args;
947 args.add(RValue::get(self), getContext().getObjCIdType());
948 args.add(RValue::get(cmd), getContext().getObjCSelType());
949 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
950 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
951 getContext().BoolTy);
952
953 // FIXME: We shouldn't need to get the function info here, the
954 // runtime already should have computed it to build the function.
955 llvm::Instruction *CallInstruction;
956 RValue RV = EmitCall(
957 getTypes().arrangeBuiltinFunctionCall(propType, args),
958 getPropertyFn, ReturnValueSlot(), args, CGCalleeInfo(),
959 &CallInstruction);
960 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
961 call->setTailCall();
962
963 // We need to fix the type here. Ivars with copy & retain are
964 // always objects so we don't need to worry about complex or
965 // aggregates.
966 RV = RValue::get(Builder.CreateBitCast(
967 RV.getScalarVal(),
968 getTypes().ConvertType(getterMethod->getReturnType())));
969
970 EmitReturnOfRValue(RV, propType);
971
972 // objc_getProperty does an autorelease, so we should suppress ours.
973 AutoreleaseResult = false;
974
975 return;
976 }
977
978 case PropertyImplStrategy::CopyStruct:
979 emitStructGetterCall(*this, ivar, strategy.isAtomic(),
980 strategy.hasStrongMember());
981 return;
982
983 case PropertyImplStrategy::Expression:
984 case PropertyImplStrategy::SetPropertyAndExpressionGet: {
985 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
986
987 QualType ivarType = ivar->getType();
988 switch (getEvaluationKind(ivarType)) {
989 case TEK_Complex: {
990 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
991 EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType),
992 /*init*/ true);
993 return;
994 }
995 case TEK_Aggregate:
996 // The return value slot is guaranteed to not be aliased, but
997 // that's not necessarily the same as "on the stack", so
998 // we still potentially need objc_memmove_collectable.
999 EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType);
1000 return;
1001 case TEK_Scalar: {
1002 llvm::Value *value;
1003 if (propType->isReferenceType()) {
1004 value = LV.getAddress().getPointer();
1005 } else {
1006 // We want to load and autoreleaseReturnValue ARC __weak ivars.
1007 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1008 if (getLangOpts().ObjCAutoRefCount) {
1009 value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
1010 } else {
1011 value = EmitARCLoadWeak(LV.getAddress());
1012 }
1013
1014 // Otherwise we want to do a simple load, suppressing the
1015 // final autorelease.
1016 } else {
1017 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
1018 AutoreleaseResult = false;
1019 }
1020
1021 value = Builder.CreateBitCast(
1022 value, ConvertType(GetterMethodDecl->getReturnType()));
1023 }
1024
1025 EmitReturnOfRValue(RValue::get(value), propType);
1026 return;
1027 }
1028 }
1029 llvm_unreachable("bad evaluation kind");
1030 }
1031
1032 }
1033 llvm_unreachable("bad @property implementation strategy!");
1034 }
1035
1036 /// emitStructSetterCall - Call the runtime function to store the value
1037 /// from the first formal parameter into the given ivar.
emitStructSetterCall(CodeGenFunction & CGF,ObjCMethodDecl * OMD,ObjCIvarDecl * ivar)1038 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
1039 ObjCIvarDecl *ivar) {
1040 // objc_copyStruct (&structIvar, &Arg,
1041 // sizeof (struct something), true, false);
1042 CallArgList args;
1043
1044 // The first argument is the address of the ivar.
1045 llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
1046 CGF.LoadObjCSelf(), ivar, 0)
1047 .getPointer();
1048 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1049 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1050
1051 // The second argument is the address of the parameter variable.
1052 ParmVarDecl *argVar = *OMD->param_begin();
1053 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
1054 VK_LValue, SourceLocation());
1055 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer();
1056 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1057 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1058
1059 // The third argument is the sizeof the type.
1060 llvm::Value *size =
1061 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1062 args.add(RValue::get(size), CGF.getContext().getSizeType());
1063
1064 // The fourth argument is the 'isAtomic' flag.
1065 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1066
1067 // The fifth argument is the 'hasStrong' flag.
1068 // FIXME: should this really always be false?
1069 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1070
1071 llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1072 CGF.EmitCall(
1073 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1074 copyStructFn, ReturnValueSlot(), args);
1075 }
1076
1077 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1078 /// the value from the first formal parameter into the given ivar, using
1079 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
emitCPPObjectAtomicSetterCall(CodeGenFunction & CGF,ObjCMethodDecl * OMD,ObjCIvarDecl * ivar,llvm::Constant * AtomicHelperFn)1080 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1081 ObjCMethodDecl *OMD,
1082 ObjCIvarDecl *ivar,
1083 llvm::Constant *AtomicHelperFn) {
1084 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1085 // AtomicHelperFn);
1086 CallArgList args;
1087
1088 // The first argument is the address of the ivar.
1089 llvm::Value *ivarAddr =
1090 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
1091 CGF.LoadObjCSelf(), ivar, 0).getPointer();
1092 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1093 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1094
1095 // The second argument is the address of the parameter variable.
1096 ParmVarDecl *argVar = *OMD->param_begin();
1097 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
1098 VK_LValue, SourceLocation());
1099 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer();
1100 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1101 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1102
1103 // Third argument is the helper function.
1104 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1105
1106 llvm::Value *copyCppAtomicObjectFn =
1107 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1108 CGF.EmitCall(
1109 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1110 copyCppAtomicObjectFn, ReturnValueSlot(), args);
1111 }
1112
1113
hasTrivialSetExpr(const ObjCPropertyImplDecl * PID)1114 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1115 Expr *setter = PID->getSetterCXXAssignment();
1116 if (!setter) return true;
1117
1118 // Sema only makes only of these when the ivar has a C++ class type,
1119 // so the form is pretty constrained.
1120
1121 // An operator call is trivial if the function it calls is trivial.
1122 // This also implies that there's nothing non-trivial going on with
1123 // the arguments, because operator= can only be trivial if it's a
1124 // synthesized assignment operator and therefore both parameters are
1125 // references.
1126 if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1127 if (const FunctionDecl *callee
1128 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1129 if (callee->isTrivial())
1130 return true;
1131 return false;
1132 }
1133
1134 assert(isa<ExprWithCleanups>(setter));
1135 return false;
1136 }
1137
UseOptimizedSetter(CodeGenModule & CGM)1138 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1139 if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1140 return false;
1141 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1142 }
1143
1144 void
generateObjCSetterBody(const ObjCImplementationDecl * classImpl,const ObjCPropertyImplDecl * propImpl,llvm::Constant * AtomicHelperFn)1145 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1146 const ObjCPropertyImplDecl *propImpl,
1147 llvm::Constant *AtomicHelperFn) {
1148 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1149 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1150 ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
1151
1152 // Just use the setter expression if Sema gave us one and it's
1153 // non-trivial.
1154 if (!hasTrivialSetExpr(propImpl)) {
1155 if (!AtomicHelperFn)
1156 // If non-atomic, assignment is called directly.
1157 EmitStmt(propImpl->getSetterCXXAssignment());
1158 else
1159 // If atomic, assignment is called via a locking api.
1160 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1161 AtomicHelperFn);
1162 return;
1163 }
1164
1165 PropertyImplStrategy strategy(CGM, propImpl);
1166 switch (strategy.getKind()) {
1167 case PropertyImplStrategy::Native: {
1168 // We don't need to do anything for a zero-size struct.
1169 if (strategy.getIvarSize().isZero())
1170 return;
1171
1172 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1173
1174 LValue ivarLValue =
1175 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1176 Address ivarAddr = ivarLValue.getAddress();
1177
1178 // Currently, all atomic accesses have to be through integer
1179 // types, so there's no point in trying to pick a prettier type.
1180 llvm::Type *bitcastType =
1181 llvm::Type::getIntNTy(getLLVMContext(),
1182 getContext().toBits(strategy.getIvarSize()));
1183
1184 // Cast both arguments to the chosen operation type.
1185 argAddr = Builder.CreateElementBitCast(argAddr, bitcastType);
1186 ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType);
1187
1188 // This bitcast load is likely to cause some nasty IR.
1189 llvm::Value *load = Builder.CreateLoad(argAddr);
1190
1191 // Perform an atomic store. There are no memory ordering requirements.
1192 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1193 store->setAtomic(llvm::AtomicOrdering::Unordered);
1194 return;
1195 }
1196
1197 case PropertyImplStrategy::GetSetProperty:
1198 case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1199
1200 llvm::Value *setOptimizedPropertyFn = nullptr;
1201 llvm::Value *setPropertyFn = nullptr;
1202 if (UseOptimizedSetter(CGM)) {
1203 // 10.8 and iOS 6.0 code and GC is off
1204 setOptimizedPropertyFn =
1205 CGM.getObjCRuntime()
1206 .GetOptimizedPropertySetFunction(strategy.isAtomic(),
1207 strategy.isCopy());
1208 if (!setOptimizedPropertyFn) {
1209 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1210 return;
1211 }
1212 }
1213 else {
1214 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1215 if (!setPropertyFn) {
1216 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1217 return;
1218 }
1219 }
1220
1221 // Emit objc_setProperty((id) self, _cmd, offset, arg,
1222 // <is-atomic>, <is-copy>).
1223 llvm::Value *cmd =
1224 Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl()));
1225 llvm::Value *self =
1226 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1227 llvm::Value *ivarOffset =
1228 EmitIvarOffset(classImpl->getClassInterface(), ivar);
1229 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1230 llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
1231 arg = Builder.CreateBitCast(arg, VoidPtrTy);
1232
1233 CallArgList args;
1234 args.add(RValue::get(self), getContext().getObjCIdType());
1235 args.add(RValue::get(cmd), getContext().getObjCSelType());
1236 if (setOptimizedPropertyFn) {
1237 args.add(RValue::get(arg), getContext().getObjCIdType());
1238 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1239 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1240 setOptimizedPropertyFn, ReturnValueSlot(), args);
1241 } else {
1242 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1243 args.add(RValue::get(arg), getContext().getObjCIdType());
1244 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1245 getContext().BoolTy);
1246 args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1247 getContext().BoolTy);
1248 // FIXME: We shouldn't need to get the function info here, the runtime
1249 // already should have computed it to build the function.
1250 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1251 setPropertyFn, ReturnValueSlot(), args);
1252 }
1253
1254 return;
1255 }
1256
1257 case PropertyImplStrategy::CopyStruct:
1258 emitStructSetterCall(*this, setterMethod, ivar);
1259 return;
1260
1261 case PropertyImplStrategy::Expression:
1262 break;
1263 }
1264
1265 // Otherwise, fake up some ASTs and emit a normal assignment.
1266 ValueDecl *selfDecl = setterMethod->getSelfDecl();
1267 DeclRefExpr self(selfDecl, false, selfDecl->getType(),
1268 VK_LValue, SourceLocation());
1269 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
1270 selfDecl->getType(), CK_LValueToRValue, &self,
1271 VK_RValue);
1272 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1273 SourceLocation(), SourceLocation(),
1274 &selfLoad, true, true);
1275
1276 ParmVarDecl *argDecl = *setterMethod->param_begin();
1277 QualType argType = argDecl->getType().getNonReferenceType();
1278 DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation());
1279 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1280 argType.getUnqualifiedType(), CK_LValueToRValue,
1281 &arg, VK_RValue);
1282
1283 // The property type can differ from the ivar type in some situations with
1284 // Objective-C pointer types, we can always bit cast the RHS in these cases.
1285 // The following absurdity is just to ensure well-formed IR.
1286 CastKind argCK = CK_NoOp;
1287 if (ivarRef.getType()->isObjCObjectPointerType()) {
1288 if (argLoad.getType()->isObjCObjectPointerType())
1289 argCK = CK_BitCast;
1290 else if (argLoad.getType()->isBlockPointerType())
1291 argCK = CK_BlockPointerToObjCPointerCast;
1292 else
1293 argCK = CK_CPointerToObjCPointerCast;
1294 } else if (ivarRef.getType()->isBlockPointerType()) {
1295 if (argLoad.getType()->isBlockPointerType())
1296 argCK = CK_BitCast;
1297 else
1298 argCK = CK_AnyPointerToBlockPointerCast;
1299 } else if (ivarRef.getType()->isPointerType()) {
1300 argCK = CK_BitCast;
1301 }
1302 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
1303 ivarRef.getType(), argCK, &argLoad,
1304 VK_RValue);
1305 Expr *finalArg = &argLoad;
1306 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1307 argLoad.getType()))
1308 finalArg = &argCast;
1309
1310
1311 BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
1312 ivarRef.getType(), VK_RValue, OK_Ordinary,
1313 SourceLocation(), false);
1314 EmitStmt(&assign);
1315 }
1316
1317 /// \brief Generate an Objective-C property setter function.
1318 ///
1319 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1320 /// is illegal within a category.
GenerateObjCSetter(ObjCImplementationDecl * IMP,const ObjCPropertyImplDecl * PID)1321 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1322 const ObjCPropertyImplDecl *PID) {
1323 llvm::Constant *AtomicHelperFn =
1324 CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
1325 const ObjCPropertyDecl *PD = PID->getPropertyDecl();
1326 ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
1327 assert(OMD && "Invalid call to generate setter (empty method)");
1328 StartObjCMethod(OMD, IMP->getClassInterface());
1329
1330 generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1331
1332 FinishFunction();
1333 }
1334
1335 namespace {
1336 struct DestroyIvar final : EHScopeStack::Cleanup {
1337 private:
1338 llvm::Value *addr;
1339 const ObjCIvarDecl *ivar;
1340 CodeGenFunction::Destroyer *destroyer;
1341 bool useEHCleanupForArray;
1342 public:
DestroyIvar__anon4c747e0d0311::DestroyIvar1343 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1344 CodeGenFunction::Destroyer *destroyer,
1345 bool useEHCleanupForArray)
1346 : addr(addr), ivar(ivar), destroyer(destroyer),
1347 useEHCleanupForArray(useEHCleanupForArray) {}
1348
Emit__anon4c747e0d0311::DestroyIvar1349 void Emit(CodeGenFunction &CGF, Flags flags) override {
1350 LValue lvalue
1351 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1352 CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1353 flags.isForNormalCleanup() && useEHCleanupForArray);
1354 }
1355 };
1356 }
1357
1358 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
destroyARCStrongWithStore(CodeGenFunction & CGF,Address addr,QualType type)1359 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1360 Address addr,
1361 QualType type) {
1362 llvm::Value *null = getNullForVariable(addr);
1363 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1364 }
1365
emitCXXDestructMethod(CodeGenFunction & CGF,ObjCImplementationDecl * impl)1366 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1367 ObjCImplementationDecl *impl) {
1368 CodeGenFunction::RunCleanupsScope scope(CGF);
1369
1370 llvm::Value *self = CGF.LoadObjCSelf();
1371
1372 const ObjCInterfaceDecl *iface = impl->getClassInterface();
1373 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1374 ivar; ivar = ivar->getNextIvar()) {
1375 QualType type = ivar->getType();
1376
1377 // Check whether the ivar is a destructible type.
1378 QualType::DestructionKind dtorKind = type.isDestructedType();
1379 if (!dtorKind) continue;
1380
1381 CodeGenFunction::Destroyer *destroyer = nullptr;
1382
1383 // Use a call to objc_storeStrong to destroy strong ivars, for the
1384 // general benefit of the tools.
1385 if (dtorKind == QualType::DK_objc_strong_lifetime) {
1386 destroyer = destroyARCStrongWithStore;
1387
1388 // Otherwise use the default for the destruction kind.
1389 } else {
1390 destroyer = CGF.getDestroyer(dtorKind);
1391 }
1392
1393 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1394
1395 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1396 cleanupKind & EHCleanup);
1397 }
1398
1399 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1400 }
1401
GenerateObjCCtorDtorMethod(ObjCImplementationDecl * IMP,ObjCMethodDecl * MD,bool ctor)1402 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1403 ObjCMethodDecl *MD,
1404 bool ctor) {
1405 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1406 StartObjCMethod(MD, IMP->getClassInterface());
1407
1408 // Emit .cxx_construct.
1409 if (ctor) {
1410 // Suppress the final autorelease in ARC.
1411 AutoreleaseResult = false;
1412
1413 for (const auto *IvarInit : IMP->inits()) {
1414 FieldDecl *Field = IvarInit->getAnyMember();
1415 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1416 LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1417 LoadObjCSelf(), Ivar, 0);
1418 EmitAggExpr(IvarInit->getInit(),
1419 AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1420 AggValueSlot::DoesNotNeedGCBarriers,
1421 AggValueSlot::IsNotAliased));
1422 }
1423 // constructor returns 'self'.
1424 CodeGenTypes &Types = CGM.getTypes();
1425 QualType IdTy(CGM.getContext().getObjCIdType());
1426 llvm::Value *SelfAsId =
1427 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1428 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1429
1430 // Emit .cxx_destruct.
1431 } else {
1432 emitCXXDestructMethod(*this, IMP);
1433 }
1434 FinishFunction();
1435 }
1436
LoadObjCSelf()1437 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1438 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1439 DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1440 Self->getType(), VK_LValue, SourceLocation());
1441 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1442 }
1443
TypeOfSelfObject()1444 QualType CodeGenFunction::TypeOfSelfObject() {
1445 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1446 ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1447 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1448 getContext().getCanonicalType(selfDecl->getType()));
1449 return PTy->getPointeeType();
1450 }
1451
EmitObjCForCollectionStmt(const ObjCForCollectionStmt & S)1452 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1453 llvm::Constant *EnumerationMutationFn =
1454 CGM.getObjCRuntime().EnumerationMutationFunction();
1455
1456 if (!EnumerationMutationFn) {
1457 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1458 return;
1459 }
1460
1461 CGDebugInfo *DI = getDebugInfo();
1462 if (DI)
1463 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1464
1465 // The local variable comes into scope immediately.
1466 AutoVarEmission variable = AutoVarEmission::invalid();
1467 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1468 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1469
1470 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1471
1472 // Fast enumeration state.
1473 QualType StateTy = CGM.getObjCFastEnumerationStateType();
1474 Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
1475 EmitNullInitialization(StatePtr, StateTy);
1476
1477 // Number of elements in the items array.
1478 static const unsigned NumItems = 16;
1479
1480 // Fetch the countByEnumeratingWithState:objects:count: selector.
1481 IdentifierInfo *II[] = {
1482 &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1483 &CGM.getContext().Idents.get("objects"),
1484 &CGM.getContext().Idents.get("count")
1485 };
1486 Selector FastEnumSel =
1487 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1488
1489 QualType ItemsTy =
1490 getContext().getConstantArrayType(getContext().getObjCIdType(),
1491 llvm::APInt(32, NumItems),
1492 ArrayType::Normal, 0);
1493 Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1494
1495 RunCleanupsScope ForScope(*this);
1496
1497 // Emit the collection pointer. In ARC, we do a retain.
1498 llvm::Value *Collection;
1499 if (getLangOpts().ObjCAutoRefCount) {
1500 Collection = EmitARCRetainScalarExpr(S.getCollection());
1501
1502 // Enter a cleanup to do the release.
1503 EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1504 } else {
1505 Collection = EmitScalarExpr(S.getCollection());
1506 }
1507
1508 // The 'continue' label needs to appear within the cleanup for the
1509 // collection object.
1510 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1511
1512 // Send it our message:
1513 CallArgList Args;
1514
1515 // The first argument is a temporary of the enumeration-state type.
1516 Args.add(RValue::get(StatePtr.getPointer()),
1517 getContext().getPointerType(StateTy));
1518
1519 // The second argument is a temporary array with space for NumItems
1520 // pointers. We'll actually be loading elements from the array
1521 // pointer written into the control state; this buffer is so that
1522 // collections that *aren't* backed by arrays can still queue up
1523 // batches of elements.
1524 Args.add(RValue::get(ItemsPtr.getPointer()),
1525 getContext().getPointerType(ItemsTy));
1526
1527 // The third argument is the capacity of that temporary array.
1528 llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy);
1529 llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems);
1530 Args.add(RValue::get(Count), getContext().UnsignedLongTy);
1531
1532 // Start the enumeration.
1533 RValue CountRV =
1534 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1535 getContext().UnsignedLongTy,
1536 FastEnumSel,
1537 Collection, Args);
1538
1539 // The initial number of objects that were returned in the buffer.
1540 llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1541
1542 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1543 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1544
1545 llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy);
1546
1547 // If the limit pointer was zero to begin with, the collection is
1548 // empty; skip all this. Set the branch weight assuming this has the same
1549 // probability of exiting the loop as any other loop exit.
1550 uint64_t EntryCount = getCurrentProfileCount();
1551 Builder.CreateCondBr(
1552 Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1553 LoopInitBB,
1554 createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1555
1556 // Otherwise, initialize the loop.
1557 EmitBlock(LoopInitBB);
1558
1559 // Save the initial mutations value. This is the value at an
1560 // address that was written into the state object by
1561 // countByEnumeratingWithState:objects:count:.
1562 Address StateMutationsPtrPtr = Builder.CreateStructGEP(
1563 StatePtr, 2, 2 * getPointerSize(), "mutationsptr.ptr");
1564 llvm::Value *StateMutationsPtr
1565 = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1566
1567 llvm::Value *initialMutations =
1568 Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1569 "forcoll.initial-mutations");
1570
1571 // Start looping. This is the point we return to whenever we have a
1572 // fresh, non-empty batch of objects.
1573 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1574 EmitBlock(LoopBodyBB);
1575
1576 // The current index into the buffer.
1577 llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index");
1578 index->addIncoming(zero, LoopInitBB);
1579
1580 // The current buffer size.
1581 llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count");
1582 count->addIncoming(initialBufferLimit, LoopInitBB);
1583
1584 incrementProfileCounter(&S);
1585
1586 // Check whether the mutations value has changed from where it was
1587 // at start. StateMutationsPtr should actually be invariant between
1588 // refreshes.
1589 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1590 llvm::Value *currentMutations
1591 = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1592 "statemutations");
1593
1594 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1595 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1596
1597 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1598 WasNotMutatedBB, WasMutatedBB);
1599
1600 // If so, call the enumeration-mutation function.
1601 EmitBlock(WasMutatedBB);
1602 llvm::Value *V =
1603 Builder.CreateBitCast(Collection,
1604 ConvertType(getContext().getObjCIdType()));
1605 CallArgList Args2;
1606 Args2.add(RValue::get(V), getContext().getObjCIdType());
1607 // FIXME: We shouldn't need to get the function info here, the runtime already
1608 // should have computed it to build the function.
1609 EmitCall(
1610 CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2),
1611 EnumerationMutationFn, ReturnValueSlot(), Args2);
1612
1613 // Otherwise, or if the mutation function returns, just continue.
1614 EmitBlock(WasNotMutatedBB);
1615
1616 // Initialize the element variable.
1617 RunCleanupsScope elementVariableScope(*this);
1618 bool elementIsVariable;
1619 LValue elementLValue;
1620 QualType elementType;
1621 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1622 // Initialize the variable, in case it's a __block variable or something.
1623 EmitAutoVarInit(variable);
1624
1625 const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
1626 DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(),
1627 VK_LValue, SourceLocation());
1628 elementLValue = EmitLValue(&tempDRE);
1629 elementType = D->getType();
1630 elementIsVariable = true;
1631
1632 if (D->isARCPseudoStrong())
1633 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1634 } else {
1635 elementLValue = LValue(); // suppress warning
1636 elementType = cast<Expr>(S.getElement())->getType();
1637 elementIsVariable = false;
1638 }
1639 llvm::Type *convertedElementType = ConvertType(elementType);
1640
1641 // Fetch the buffer out of the enumeration state.
1642 // TODO: this pointer should actually be invariant between
1643 // refreshes, which would help us do certain loop optimizations.
1644 Address StateItemsPtr = Builder.CreateStructGEP(
1645 StatePtr, 1, getPointerSize(), "stateitems.ptr");
1646 llvm::Value *EnumStateItems =
1647 Builder.CreateLoad(StateItemsPtr, "stateitems");
1648
1649 // Fetch the value at the current index from the buffer.
1650 llvm::Value *CurrentItemPtr =
1651 Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1652 llvm::Value *CurrentItem =
1653 Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign());
1654
1655 // Cast that value to the right type.
1656 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1657 "currentitem");
1658
1659 // Make sure we have an l-value. Yes, this gets evaluated every
1660 // time through the loop.
1661 if (!elementIsVariable) {
1662 elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1663 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1664 } else {
1665 EmitScalarInit(CurrentItem, elementLValue);
1666 }
1667
1668 // If we do have an element variable, this assignment is the end of
1669 // its initialization.
1670 if (elementIsVariable)
1671 EmitAutoVarCleanups(variable);
1672
1673 // Perform the loop body, setting up break and continue labels.
1674 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1675 {
1676 RunCleanupsScope Scope(*this);
1677 EmitStmt(S.getBody());
1678 }
1679 BreakContinueStack.pop_back();
1680
1681 // Destroy the element variable now.
1682 elementVariableScope.ForceCleanup();
1683
1684 // Check whether there are more elements.
1685 EmitBlock(AfterBody.getBlock());
1686
1687 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1688
1689 // First we check in the local buffer.
1690 llvm::Value *indexPlusOne
1691 = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1));
1692
1693 // If we haven't overrun the buffer yet, we can continue.
1694 // Set the branch weights based on the simplifying assumption that this is
1695 // like a while-loop, i.e., ignoring that the false branch fetches more
1696 // elements and then returns to the loop.
1697 Builder.CreateCondBr(
1698 Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
1699 createProfileWeights(getProfileCount(S.getBody()), EntryCount));
1700
1701 index->addIncoming(indexPlusOne, AfterBody.getBlock());
1702 count->addIncoming(count, AfterBody.getBlock());
1703
1704 // Otherwise, we have to fetch more elements.
1705 EmitBlock(FetchMoreBB);
1706
1707 CountRV =
1708 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1709 getContext().UnsignedLongTy,
1710 FastEnumSel,
1711 Collection, Args);
1712
1713 // If we got a zero count, we're done.
1714 llvm::Value *refetchCount = CountRV.getScalarVal();
1715
1716 // (note that the message send might split FetchMoreBB)
1717 index->addIncoming(zero, Builder.GetInsertBlock());
1718 count->addIncoming(refetchCount, Builder.GetInsertBlock());
1719
1720 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1721 EmptyBB, LoopBodyBB);
1722
1723 // No more elements.
1724 EmitBlock(EmptyBB);
1725
1726 if (!elementIsVariable) {
1727 // If the element was not a declaration, set it to be null.
1728
1729 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1730 elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1731 EmitStoreThroughLValue(RValue::get(null), elementLValue);
1732 }
1733
1734 if (DI)
1735 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1736
1737 ForScope.ForceCleanup();
1738 EmitBlock(LoopEnd.getBlock());
1739 }
1740
EmitObjCAtTryStmt(const ObjCAtTryStmt & S)1741 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1742 CGM.getObjCRuntime().EmitTryStmt(*this, S);
1743 }
1744
EmitObjCAtThrowStmt(const ObjCAtThrowStmt & S)1745 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1746 CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1747 }
1748
EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt & S)1749 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1750 const ObjCAtSynchronizedStmt &S) {
1751 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1752 }
1753
1754 namespace {
1755 struct CallObjCRelease final : EHScopeStack::Cleanup {
CallObjCRelease__anon4c747e0d0411::CallObjCRelease1756 CallObjCRelease(llvm::Value *object) : object(object) {}
1757 llvm::Value *object;
1758
Emit__anon4c747e0d0411::CallObjCRelease1759 void Emit(CodeGenFunction &CGF, Flags flags) override {
1760 // Releases at the end of the full-expression are imprecise.
1761 CGF.EmitARCRelease(object, ARCImpreciseLifetime);
1762 }
1763 };
1764 }
1765
1766 /// Produce the code for a CK_ARCConsumeObject. Does a primitive
1767 /// release at the end of the full-expression.
EmitObjCConsumeObject(QualType type,llvm::Value * object)1768 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1769 llvm::Value *object) {
1770 // If we're in a conditional branch, we need to make the cleanup
1771 // conditional.
1772 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1773 return object;
1774 }
1775
EmitObjCExtendObjectLifetime(QualType type,llvm::Value * value)1776 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1777 llvm::Value *value) {
1778 return EmitARCRetainAutorelease(type, value);
1779 }
1780
1781 /// Given a number of pointers, inform the optimizer that they're
1782 /// being intrinsically used up until this point in the program.
EmitARCIntrinsicUse(ArrayRef<llvm::Value * > values)1783 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
1784 llvm::Constant *&fn = CGM.getObjCEntrypoints().clang_arc_use;
1785 if (!fn) {
1786 llvm::FunctionType *fnType =
1787 llvm::FunctionType::get(CGM.VoidTy, None, true);
1788 fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use");
1789 }
1790
1791 // This isn't really a "runtime" function, but as an intrinsic it
1792 // doesn't really matter as long as we align things up.
1793 EmitNounwindRuntimeCall(fn, values);
1794 }
1795
1796
createARCRuntimeFunction(CodeGenModule & CGM,llvm::FunctionType * type,StringRef fnName)1797 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
1798 llvm::FunctionType *type,
1799 StringRef fnName) {
1800 llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName);
1801
1802 if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) {
1803 // If the target runtime doesn't naturally support ARC, emit weak
1804 // references to the runtime support library. We don't really
1805 // permit this to fail, but we need a particular relocation style.
1806 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
1807 f->setLinkage(llvm::Function::ExternalWeakLinkage);
1808 } else if (fnName == "objc_retain" || fnName == "objc_release") {
1809 // If we have Native ARC, set nonlazybind attribute for these APIs for
1810 // performance.
1811 f->addFnAttr(llvm::Attribute::NonLazyBind);
1812 }
1813 }
1814
1815 return fn;
1816 }
1817
1818 /// Perform an operation having the signature
1819 /// i8* (i8*)
1820 /// where a null input causes a no-op and returns null.
emitARCValueOperation(CodeGenFunction & CGF,llvm::Value * value,llvm::Constant * & fn,StringRef fnName,bool isTailCall=false)1821 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
1822 llvm::Value *value,
1823 llvm::Constant *&fn,
1824 StringRef fnName,
1825 bool isTailCall = false) {
1826 if (isa<llvm::ConstantPointerNull>(value)) return value;
1827
1828 if (!fn) {
1829 llvm::FunctionType *fnType =
1830 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
1831 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1832 }
1833
1834 // Cast the argument to 'id'.
1835 llvm::Type *origType = value->getType();
1836 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1837
1838 // Call the function.
1839 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
1840 if (isTailCall)
1841 call->setTailCall();
1842
1843 // Cast the result back to the original type.
1844 return CGF.Builder.CreateBitCast(call, origType);
1845 }
1846
1847 /// Perform an operation having the following signature:
1848 /// i8* (i8**)
emitARCLoadOperation(CodeGenFunction & CGF,Address addr,llvm::Constant * & fn,StringRef fnName)1849 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
1850 Address addr,
1851 llvm::Constant *&fn,
1852 StringRef fnName) {
1853 if (!fn) {
1854 llvm::FunctionType *fnType =
1855 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false);
1856 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1857 }
1858
1859 // Cast the argument to 'id*'.
1860 llvm::Type *origType = addr.getElementType();
1861 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1862
1863 // Call the function.
1864 llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer());
1865
1866 // Cast the result back to a dereference of the original type.
1867 if (origType != CGF.Int8PtrTy)
1868 result = CGF.Builder.CreateBitCast(result, origType);
1869
1870 return result;
1871 }
1872
1873 /// Perform an operation having the following signature:
1874 /// i8* (i8**, i8*)
emitARCStoreOperation(CodeGenFunction & CGF,Address addr,llvm::Value * value,llvm::Constant * & fn,StringRef fnName,bool ignored)1875 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
1876 Address addr,
1877 llvm::Value *value,
1878 llvm::Constant *&fn,
1879 StringRef fnName,
1880 bool ignored) {
1881 assert(addr.getElementType() == value->getType());
1882
1883 if (!fn) {
1884 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
1885
1886 llvm::FunctionType *fnType
1887 = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
1888 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1889 }
1890
1891 llvm::Type *origType = value->getType();
1892
1893 llvm::Value *args[] = {
1894 CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy),
1895 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
1896 };
1897 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
1898
1899 if (ignored) return nullptr;
1900
1901 return CGF.Builder.CreateBitCast(result, origType);
1902 }
1903
1904 /// Perform an operation having the following signature:
1905 /// void (i8**, i8**)
emitARCCopyOperation(CodeGenFunction & CGF,Address dst,Address src,llvm::Constant * & fn,StringRef fnName)1906 static void emitARCCopyOperation(CodeGenFunction &CGF,
1907 Address dst,
1908 Address src,
1909 llvm::Constant *&fn,
1910 StringRef fnName) {
1911 assert(dst.getType() == src.getType());
1912
1913 if (!fn) {
1914 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy };
1915
1916 llvm::FunctionType *fnType
1917 = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
1918 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1919 }
1920
1921 llvm::Value *args[] = {
1922 CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy),
1923 CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy)
1924 };
1925 CGF.EmitNounwindRuntimeCall(fn, args);
1926 }
1927
1928 /// Produce the code to do a retain. Based on the type, calls one of:
1929 /// call i8* \@objc_retain(i8* %value)
1930 /// call i8* \@objc_retainBlock(i8* %value)
EmitARCRetain(QualType type,llvm::Value * value)1931 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
1932 if (type->isBlockPointerType())
1933 return EmitARCRetainBlock(value, /*mandatory*/ false);
1934 else
1935 return EmitARCRetainNonBlock(value);
1936 }
1937
1938 /// Retain the given object, with normal retain semantics.
1939 /// call i8* \@objc_retain(i8* %value)
EmitARCRetainNonBlock(llvm::Value * value)1940 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
1941 return emitARCValueOperation(*this, value,
1942 CGM.getObjCEntrypoints().objc_retain,
1943 "objc_retain");
1944 }
1945
1946 /// Retain the given block, with _Block_copy semantics.
1947 /// call i8* \@objc_retainBlock(i8* %value)
1948 ///
1949 /// \param mandatory - If false, emit the call with metadata
1950 /// indicating that it's okay for the optimizer to eliminate this call
1951 /// if it can prove that the block never escapes except down the stack.
EmitARCRetainBlock(llvm::Value * value,bool mandatory)1952 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
1953 bool mandatory) {
1954 llvm::Value *result
1955 = emitARCValueOperation(*this, value,
1956 CGM.getObjCEntrypoints().objc_retainBlock,
1957 "objc_retainBlock");
1958
1959 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
1960 // tell the optimizer that it doesn't need to do this copy if the
1961 // block doesn't escape, where being passed as an argument doesn't
1962 // count as escaping.
1963 if (!mandatory && isa<llvm::Instruction>(result)) {
1964 llvm::CallInst *call
1965 = cast<llvm::CallInst>(result->stripPointerCasts());
1966 assert(call->getCalledValue() == CGM.getObjCEntrypoints().objc_retainBlock);
1967
1968 call->setMetadata("clang.arc.copy_on_escape",
1969 llvm::MDNode::get(Builder.getContext(), None));
1970 }
1971
1972 return result;
1973 }
1974
emitAutoreleasedReturnValueMarker(CodeGenFunction & CGF)1975 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) {
1976 // Fetch the void(void) inline asm which marks that we're going to
1977 // do something with the autoreleased return value.
1978 llvm::InlineAsm *&marker
1979 = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker;
1980 if (!marker) {
1981 StringRef assembly
1982 = CGF.CGM.getTargetCodeGenInfo()
1983 .getARCRetainAutoreleasedReturnValueMarker();
1984
1985 // If we have an empty assembly string, there's nothing to do.
1986 if (assembly.empty()) {
1987
1988 // Otherwise, at -O0, build an inline asm that we're going to call
1989 // in a moment.
1990 } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
1991 llvm::FunctionType *type =
1992 llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false);
1993
1994 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
1995
1996 // If we're at -O1 and above, we don't want to litter the code
1997 // with this marker yet, so leave a breadcrumb for the ARC
1998 // optimizer to pick up.
1999 } else {
2000 llvm::NamedMDNode *metadata =
2001 CGF.CGM.getModule().getOrInsertNamedMetadata(
2002 "clang.arc.retainAutoreleasedReturnValueMarker");
2003 assert(metadata->getNumOperands() <= 1);
2004 if (metadata->getNumOperands() == 0) {
2005 auto &ctx = CGF.getLLVMContext();
2006 metadata->addOperand(llvm::MDNode::get(ctx,
2007 llvm::MDString::get(ctx, assembly)));
2008 }
2009 }
2010 }
2011
2012 // Call the marker asm if we made one, which we do only at -O0.
2013 if (marker)
2014 CGF.Builder.CreateCall(marker);
2015 }
2016
2017 /// Retain the given object which is the result of a function call.
2018 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2019 ///
2020 /// Yes, this function name is one character away from a different
2021 /// call with completely different semantics.
2022 llvm::Value *
EmitARCRetainAutoreleasedReturnValue(llvm::Value * value)2023 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
2024 emitAutoreleasedReturnValueMarker(*this);
2025 return emitARCValueOperation(*this, value,
2026 CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue,
2027 "objc_retainAutoreleasedReturnValue");
2028 }
2029
2030 /// Claim a possibly-autoreleased return value at +0. This is only
2031 /// valid to do in contexts which do not rely on the retain to keep
2032 /// the object valid for for all of its uses; for example, when
2033 /// the value is ignored, or when it is being assigned to an
2034 /// __unsafe_unretained variable.
2035 ///
2036 /// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2037 llvm::Value *
EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value * value)2038 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) {
2039 emitAutoreleasedReturnValueMarker(*this);
2040 return emitARCValueOperation(*this, value,
2041 CGM.getObjCEntrypoints().objc_unsafeClaimAutoreleasedReturnValue,
2042 "objc_unsafeClaimAutoreleasedReturnValue");
2043 }
2044
2045 /// Release the given object.
2046 /// call void \@objc_release(i8* %value)
EmitARCRelease(llvm::Value * value,ARCPreciseLifetime_t precise)2047 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2048 ARCPreciseLifetime_t precise) {
2049 if (isa<llvm::ConstantPointerNull>(value)) return;
2050
2051 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_release;
2052 if (!fn) {
2053 llvm::FunctionType *fnType =
2054 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2055 fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
2056 }
2057
2058 // Cast the argument to 'id'.
2059 value = Builder.CreateBitCast(value, Int8PtrTy);
2060
2061 // Call objc_release.
2062 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2063
2064 if (precise == ARCImpreciseLifetime) {
2065 call->setMetadata("clang.imprecise_release",
2066 llvm::MDNode::get(Builder.getContext(), None));
2067 }
2068 }
2069
2070 /// Destroy a __strong variable.
2071 ///
2072 /// At -O0, emit a call to store 'null' into the address;
2073 /// instrumenting tools prefer this because the address is exposed,
2074 /// but it's relatively cumbersome to optimize.
2075 ///
2076 /// At -O1 and above, just load and call objc_release.
2077 ///
2078 /// call void \@objc_storeStrong(i8** %addr, i8* null)
EmitARCDestroyStrong(Address addr,ARCPreciseLifetime_t precise)2079 void CodeGenFunction::EmitARCDestroyStrong(Address addr,
2080 ARCPreciseLifetime_t precise) {
2081 if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2082 llvm::Value *null = getNullForVariable(addr);
2083 EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2084 return;
2085 }
2086
2087 llvm::Value *value = Builder.CreateLoad(addr);
2088 EmitARCRelease(value, precise);
2089 }
2090
2091 /// Store into a strong object. Always calls this:
2092 /// call void \@objc_storeStrong(i8** %addr, i8* %value)
EmitARCStoreStrongCall(Address addr,llvm::Value * value,bool ignored)2093 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr,
2094 llvm::Value *value,
2095 bool ignored) {
2096 assert(addr.getElementType() == value->getType());
2097
2098 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
2099 if (!fn) {
2100 llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
2101 llvm::FunctionType *fnType
2102 = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
2103 fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
2104 }
2105
2106 llvm::Value *args[] = {
2107 Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy),
2108 Builder.CreateBitCast(value, Int8PtrTy)
2109 };
2110 EmitNounwindRuntimeCall(fn, args);
2111
2112 if (ignored) return nullptr;
2113 return value;
2114 }
2115
2116 /// Store into a strong object. Sometimes calls this:
2117 /// call void \@objc_storeStrong(i8** %addr, i8* %value)
2118 /// Other times, breaks it down into components.
EmitARCStoreStrong(LValue dst,llvm::Value * newValue,bool ignored)2119 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2120 llvm::Value *newValue,
2121 bool ignored) {
2122 QualType type = dst.getType();
2123 bool isBlock = type->isBlockPointerType();
2124
2125 // Use a store barrier at -O0 unless this is a block type or the
2126 // lvalue is inadequately aligned.
2127 if (shouldUseFusedARCCalls() &&
2128 !isBlock &&
2129 (dst.getAlignment().isZero() ||
2130 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2131 return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
2132 }
2133
2134 // Otherwise, split it out.
2135
2136 // Retain the new value.
2137 newValue = EmitARCRetain(type, newValue);
2138
2139 // Read the old value.
2140 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2141
2142 // Store. We do this before the release so that any deallocs won't
2143 // see the old value.
2144 EmitStoreOfScalar(newValue, dst);
2145
2146 // Finally, release the old value.
2147 EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2148
2149 return newValue;
2150 }
2151
2152 /// Autorelease the given object.
2153 /// call i8* \@objc_autorelease(i8* %value)
EmitARCAutorelease(llvm::Value * value)2154 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2155 return emitARCValueOperation(*this, value,
2156 CGM.getObjCEntrypoints().objc_autorelease,
2157 "objc_autorelease");
2158 }
2159
2160 /// Autorelease the given object.
2161 /// call i8* \@objc_autoreleaseReturnValue(i8* %value)
2162 llvm::Value *
EmitARCAutoreleaseReturnValue(llvm::Value * value)2163 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2164 return emitARCValueOperation(*this, value,
2165 CGM.getObjCEntrypoints().objc_autoreleaseReturnValue,
2166 "objc_autoreleaseReturnValue",
2167 /*isTailCall*/ true);
2168 }
2169
2170 /// Do a fused retain/autorelease of the given object.
2171 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2172 llvm::Value *
EmitARCRetainAutoreleaseReturnValue(llvm::Value * value)2173 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2174 return emitARCValueOperation(*this, value,
2175 CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue,
2176 "objc_retainAutoreleaseReturnValue",
2177 /*isTailCall*/ true);
2178 }
2179
2180 /// Do a fused retain/autorelease of the given object.
2181 /// call i8* \@objc_retainAutorelease(i8* %value)
2182 /// or
2183 /// %retain = call i8* \@objc_retainBlock(i8* %value)
2184 /// call i8* \@objc_autorelease(i8* %retain)
EmitARCRetainAutorelease(QualType type,llvm::Value * value)2185 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2186 llvm::Value *value) {
2187 if (!type->isBlockPointerType())
2188 return EmitARCRetainAutoreleaseNonBlock(value);
2189
2190 if (isa<llvm::ConstantPointerNull>(value)) return value;
2191
2192 llvm::Type *origType = value->getType();
2193 value = Builder.CreateBitCast(value, Int8PtrTy);
2194 value = EmitARCRetainBlock(value, /*mandatory*/ true);
2195 value = EmitARCAutorelease(value);
2196 return Builder.CreateBitCast(value, origType);
2197 }
2198
2199 /// Do a fused retain/autorelease of the given object.
2200 /// call i8* \@objc_retainAutorelease(i8* %value)
2201 llvm::Value *
EmitARCRetainAutoreleaseNonBlock(llvm::Value * value)2202 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2203 return emitARCValueOperation(*this, value,
2204 CGM.getObjCEntrypoints().objc_retainAutorelease,
2205 "objc_retainAutorelease");
2206 }
2207
2208 /// i8* \@objc_loadWeak(i8** %addr)
2209 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
EmitARCLoadWeak(Address addr)2210 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) {
2211 return emitARCLoadOperation(*this, addr,
2212 CGM.getObjCEntrypoints().objc_loadWeak,
2213 "objc_loadWeak");
2214 }
2215
2216 /// i8* \@objc_loadWeakRetained(i8** %addr)
EmitARCLoadWeakRetained(Address addr)2217 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) {
2218 return emitARCLoadOperation(*this, addr,
2219 CGM.getObjCEntrypoints().objc_loadWeakRetained,
2220 "objc_loadWeakRetained");
2221 }
2222
2223 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2224 /// Returns %value.
EmitARCStoreWeak(Address addr,llvm::Value * value,bool ignored)2225 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr,
2226 llvm::Value *value,
2227 bool ignored) {
2228 return emitARCStoreOperation(*this, addr, value,
2229 CGM.getObjCEntrypoints().objc_storeWeak,
2230 "objc_storeWeak", ignored);
2231 }
2232
2233 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2234 /// Returns %value. %addr is known to not have a current weak entry.
2235 /// Essentially equivalent to:
2236 /// *addr = nil; objc_storeWeak(addr, value);
EmitARCInitWeak(Address addr,llvm::Value * value)2237 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) {
2238 // If we're initializing to null, just write null to memory; no need
2239 // to get the runtime involved. But don't do this if optimization
2240 // is enabled, because accounting for this would make the optimizer
2241 // much more complicated.
2242 if (isa<llvm::ConstantPointerNull>(value) &&
2243 CGM.getCodeGenOpts().OptimizationLevel == 0) {
2244 Builder.CreateStore(value, addr);
2245 return;
2246 }
2247
2248 emitARCStoreOperation(*this, addr, value,
2249 CGM.getObjCEntrypoints().objc_initWeak,
2250 "objc_initWeak", /*ignored*/ true);
2251 }
2252
2253 /// void \@objc_destroyWeak(i8** %addr)
2254 /// Essentially objc_storeWeak(addr, nil).
EmitARCDestroyWeak(Address addr)2255 void CodeGenFunction::EmitARCDestroyWeak(Address addr) {
2256 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
2257 if (!fn) {
2258 llvm::FunctionType *fnType =
2259 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false);
2260 fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
2261 }
2262
2263 // Cast the argument to 'id*'.
2264 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2265
2266 EmitNounwindRuntimeCall(fn, addr.getPointer());
2267 }
2268
2269 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2270 /// Disregards the current value in %dest. Leaves %src pointing to nothing.
2271 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
EmitARCMoveWeak(Address dst,Address src)2272 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) {
2273 emitARCCopyOperation(*this, dst, src,
2274 CGM.getObjCEntrypoints().objc_moveWeak,
2275 "objc_moveWeak");
2276 }
2277
2278 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2279 /// Disregards the current value in %dest. Essentially
2280 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
EmitARCCopyWeak(Address dst,Address src)2281 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) {
2282 emitARCCopyOperation(*this, dst, src,
2283 CGM.getObjCEntrypoints().objc_copyWeak,
2284 "objc_copyWeak");
2285 }
2286
2287 /// Produce the code to do a objc_autoreleasepool_push.
2288 /// call i8* \@objc_autoreleasePoolPush(void)
EmitObjCAutoreleasePoolPush()2289 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2290 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
2291 if (!fn) {
2292 llvm::FunctionType *fnType =
2293 llvm::FunctionType::get(Int8PtrTy, false);
2294 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
2295 }
2296
2297 return EmitNounwindRuntimeCall(fn);
2298 }
2299
2300 /// Produce the code to do a primitive release.
2301 /// call void \@objc_autoreleasePoolPop(i8* %ptr)
EmitObjCAutoreleasePoolPop(llvm::Value * value)2302 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2303 assert(value->getType() == Int8PtrTy);
2304
2305 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
2306 if (!fn) {
2307 llvm::FunctionType *fnType =
2308 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2309
2310 // We don't want to use a weak import here; instead we should not
2311 // fall into this path.
2312 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
2313 }
2314
2315 // objc_autoreleasePoolPop can throw.
2316 EmitRuntimeCallOrInvoke(fn, value);
2317 }
2318
2319 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2320 /// Which is: [[NSAutoreleasePool alloc] init];
2321 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2322 /// init is declared as: - (id) init; in its NSObject super class.
2323 ///
EmitObjCMRRAutoreleasePoolPush()2324 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2325 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2326 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2327 // [NSAutoreleasePool alloc]
2328 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2329 Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2330 CallArgList Args;
2331 RValue AllocRV =
2332 Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2333 getContext().getObjCIdType(),
2334 AllocSel, Receiver, Args);
2335
2336 // [Receiver init]
2337 Receiver = AllocRV.getScalarVal();
2338 II = &CGM.getContext().Idents.get("init");
2339 Selector InitSel = getContext().Selectors.getSelector(0, &II);
2340 RValue InitRV =
2341 Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2342 getContext().getObjCIdType(),
2343 InitSel, Receiver, Args);
2344 return InitRV.getScalarVal();
2345 }
2346
2347 /// Produce the code to do a primitive release.
2348 /// [tmp drain];
EmitObjCMRRAutoreleasePoolPop(llvm::Value * Arg)2349 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2350 IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2351 Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2352 CallArgList Args;
2353 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2354 getContext().VoidTy, DrainSel, Arg, Args);
2355 }
2356
destroyARCStrongPrecise(CodeGenFunction & CGF,Address addr,QualType type)2357 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2358 Address addr,
2359 QualType type) {
2360 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2361 }
2362
destroyARCStrongImprecise(CodeGenFunction & CGF,Address addr,QualType type)2363 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2364 Address addr,
2365 QualType type) {
2366 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2367 }
2368
destroyARCWeak(CodeGenFunction & CGF,Address addr,QualType type)2369 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2370 Address addr,
2371 QualType type) {
2372 CGF.EmitARCDestroyWeak(addr);
2373 }
2374
2375 namespace {
2376 struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2377 llvm::Value *Token;
2378
CallObjCAutoreleasePoolObject__anon4c747e0d0511::CallObjCAutoreleasePoolObject2379 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2380
Emit__anon4c747e0d0511::CallObjCAutoreleasePoolObject2381 void Emit(CodeGenFunction &CGF, Flags flags) override {
2382 CGF.EmitObjCAutoreleasePoolPop(Token);
2383 }
2384 };
2385 struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2386 llvm::Value *Token;
2387
CallObjCMRRAutoreleasePoolObject__anon4c747e0d0511::CallObjCMRRAutoreleasePoolObject2388 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2389
Emit__anon4c747e0d0511::CallObjCMRRAutoreleasePoolObject2390 void Emit(CodeGenFunction &CGF, Flags flags) override {
2391 CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2392 }
2393 };
2394 }
2395
EmitObjCAutoreleasePoolCleanup(llvm::Value * Ptr)2396 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2397 if (CGM.getLangOpts().ObjCAutoRefCount)
2398 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2399 else
2400 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2401 }
2402
tryEmitARCRetainLoadOfScalar(CodeGenFunction & CGF,LValue lvalue,QualType type)2403 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2404 LValue lvalue,
2405 QualType type) {
2406 switch (type.getObjCLifetime()) {
2407 case Qualifiers::OCL_None:
2408 case Qualifiers::OCL_ExplicitNone:
2409 case Qualifiers::OCL_Strong:
2410 case Qualifiers::OCL_Autoreleasing:
2411 return TryEmitResult(CGF.EmitLoadOfLValue(lvalue,
2412 SourceLocation()).getScalarVal(),
2413 false);
2414
2415 case Qualifiers::OCL_Weak:
2416 return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
2417 true);
2418 }
2419
2420 llvm_unreachable("impossible lifetime!");
2421 }
2422
tryEmitARCRetainLoadOfScalar(CodeGenFunction & CGF,const Expr * e)2423 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2424 const Expr *e) {
2425 e = e->IgnoreParens();
2426 QualType type = e->getType();
2427
2428 // If we're loading retained from a __strong xvalue, we can avoid
2429 // an extra retain/release pair by zeroing out the source of this
2430 // "move" operation.
2431 if (e->isXValue() &&
2432 !type.isConstQualified() &&
2433 type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2434 // Emit the lvalue.
2435 LValue lv = CGF.EmitLValue(e);
2436
2437 // Load the object pointer.
2438 llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2439 SourceLocation()).getScalarVal();
2440
2441 // Set the source pointer to NULL.
2442 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
2443
2444 return TryEmitResult(result, true);
2445 }
2446
2447 // As a very special optimization, in ARC++, if the l-value is the
2448 // result of a non-volatile assignment, do a simple retain of the
2449 // result of the call to objc_storeWeak instead of reloading.
2450 if (CGF.getLangOpts().CPlusPlus &&
2451 !type.isVolatileQualified() &&
2452 type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2453 isa<BinaryOperator>(e) &&
2454 cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2455 return TryEmitResult(CGF.EmitScalarExpr(e), false);
2456
2457 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2458 }
2459
2460 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
2461 llvm::Value *value)>
2462 ValueTransform;
2463
2464 /// Insert code immediately after a call.
emitARCOperationAfterCall(CodeGenFunction & CGF,llvm::Value * value,ValueTransform doAfterCall,ValueTransform doFallback)2465 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF,
2466 llvm::Value *value,
2467 ValueTransform doAfterCall,
2468 ValueTransform doFallback) {
2469 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2470 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2471
2472 // Place the retain immediately following the call.
2473 CGF.Builder.SetInsertPoint(call->getParent(),
2474 ++llvm::BasicBlock::iterator(call));
2475 value = doAfterCall(CGF, value);
2476
2477 CGF.Builder.restoreIP(ip);
2478 return value;
2479 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2480 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2481
2482 // Place the retain at the beginning of the normal destination block.
2483 llvm::BasicBlock *BB = invoke->getNormalDest();
2484 CGF.Builder.SetInsertPoint(BB, BB->begin());
2485 value = doAfterCall(CGF, value);
2486
2487 CGF.Builder.restoreIP(ip);
2488 return value;
2489
2490 // Bitcasts can arise because of related-result returns. Rewrite
2491 // the operand.
2492 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2493 llvm::Value *operand = bitcast->getOperand(0);
2494 operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback);
2495 bitcast->setOperand(0, operand);
2496 return bitcast;
2497
2498 // Generic fall-back case.
2499 } else {
2500 // Retain using the non-block variant: we never need to do a copy
2501 // of a block that's been returned to us.
2502 return doFallback(CGF, value);
2503 }
2504 }
2505
2506 /// Given that the given expression is some sort of call (which does
2507 /// not return retained), emit a retain following it.
emitARCRetainCallResult(CodeGenFunction & CGF,const Expr * e)2508 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF,
2509 const Expr *e) {
2510 llvm::Value *value = CGF.EmitScalarExpr(e);
2511 return emitARCOperationAfterCall(CGF, value,
2512 [](CodeGenFunction &CGF, llvm::Value *value) {
2513 return CGF.EmitARCRetainAutoreleasedReturnValue(value);
2514 },
2515 [](CodeGenFunction &CGF, llvm::Value *value) {
2516 return CGF.EmitARCRetainNonBlock(value);
2517 });
2518 }
2519
2520 /// Given that the given expression is some sort of call (which does
2521 /// not return retained), perform an unsafeClaim following it.
emitARCUnsafeClaimCallResult(CodeGenFunction & CGF,const Expr * e)2522 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF,
2523 const Expr *e) {
2524 llvm::Value *value = CGF.EmitScalarExpr(e);
2525 return emitARCOperationAfterCall(CGF, value,
2526 [](CodeGenFunction &CGF, llvm::Value *value) {
2527 return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value);
2528 },
2529 [](CodeGenFunction &CGF, llvm::Value *value) {
2530 return value;
2531 });
2532 }
2533
EmitARCReclaimReturnedObject(const Expr * E,bool allowUnsafeClaim)2534 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E,
2535 bool allowUnsafeClaim) {
2536 if (allowUnsafeClaim &&
2537 CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) {
2538 return emitARCUnsafeClaimCallResult(*this, E);
2539 } else {
2540 llvm::Value *value = emitARCRetainCallResult(*this, E);
2541 return EmitObjCConsumeObject(E->getType(), value);
2542 }
2543 }
2544
2545 /// Determine whether it might be important to emit a separate
2546 /// objc_retain_block on the result of the given expression, or
2547 /// whether it's okay to just emit it in a +1 context.
shouldEmitSeparateBlockRetain(const Expr * e)2548 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2549 assert(e->getType()->isBlockPointerType());
2550 e = e->IgnoreParens();
2551
2552 // For future goodness, emit block expressions directly in +1
2553 // contexts if we can.
2554 if (isa<BlockExpr>(e))
2555 return false;
2556
2557 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2558 switch (cast->getCastKind()) {
2559 // Emitting these operations in +1 contexts is goodness.
2560 case CK_LValueToRValue:
2561 case CK_ARCReclaimReturnedObject:
2562 case CK_ARCConsumeObject:
2563 case CK_ARCProduceObject:
2564 return false;
2565
2566 // These operations preserve a block type.
2567 case CK_NoOp:
2568 case CK_BitCast:
2569 return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2570
2571 // These operations are known to be bad (or haven't been considered).
2572 case CK_AnyPointerToBlockPointerCast:
2573 default:
2574 return true;
2575 }
2576 }
2577
2578 return true;
2579 }
2580
2581 namespace {
2582 /// A CRTP base class for emitting expressions of retainable object
2583 /// pointer type in ARC.
2584 template <typename Impl, typename Result> class ARCExprEmitter {
2585 protected:
2586 CodeGenFunction &CGF;
asImpl()2587 Impl &asImpl() { return *static_cast<Impl*>(this); }
2588
ARCExprEmitter(CodeGenFunction & CGF)2589 ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {}
2590
2591 public:
2592 Result visit(const Expr *e);
2593 Result visitCastExpr(const CastExpr *e);
2594 Result visitPseudoObjectExpr(const PseudoObjectExpr *e);
2595 Result visitBinaryOperator(const BinaryOperator *e);
2596 Result visitBinAssign(const BinaryOperator *e);
2597 Result visitBinAssignUnsafeUnretained(const BinaryOperator *e);
2598 Result visitBinAssignAutoreleasing(const BinaryOperator *e);
2599 Result visitBinAssignWeak(const BinaryOperator *e);
2600 Result visitBinAssignStrong(const BinaryOperator *e);
2601
2602 // Minimal implementation:
2603 // Result visitLValueToRValue(const Expr *e)
2604 // Result visitConsumeObject(const Expr *e)
2605 // Result visitExtendBlockObject(const Expr *e)
2606 // Result visitReclaimReturnedObject(const Expr *e)
2607 // Result visitCall(const Expr *e)
2608 // Result visitExpr(const Expr *e)
2609 //
2610 // Result emitBitCast(Result result, llvm::Type *resultType)
2611 // llvm::Value *getValueOfResult(Result result)
2612 };
2613 }
2614
2615 /// Try to emit a PseudoObjectExpr under special ARC rules.
2616 ///
2617 /// This massively duplicates emitPseudoObjectRValue.
2618 template <typename Impl, typename Result>
2619 Result
visitPseudoObjectExpr(const PseudoObjectExpr * E)2620 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) {
2621 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2622
2623 // Find the result expression.
2624 const Expr *resultExpr = E->getResultExpr();
2625 assert(resultExpr);
2626 Result result;
2627
2628 for (PseudoObjectExpr::const_semantics_iterator
2629 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2630 const Expr *semantic = *i;
2631
2632 // If this semantic expression is an opaque value, bind it
2633 // to the result of its source expression.
2634 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2635 typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2636 OVMA opaqueData;
2637
2638 // If this semantic is the result of the pseudo-object
2639 // expression, try to evaluate the source as +1.
2640 if (ov == resultExpr) {
2641 assert(!OVMA::shouldBindAsLValue(ov));
2642 result = asImpl().visit(ov->getSourceExpr());
2643 opaqueData = OVMA::bind(CGF, ov,
2644 RValue::get(asImpl().getValueOfResult(result)));
2645
2646 // Otherwise, just bind it.
2647 } else {
2648 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2649 }
2650 opaques.push_back(opaqueData);
2651
2652 // Otherwise, if the expression is the result, evaluate it
2653 // and remember the result.
2654 } else if (semantic == resultExpr) {
2655 result = asImpl().visit(semantic);
2656
2657 // Otherwise, evaluate the expression in an ignored context.
2658 } else {
2659 CGF.EmitIgnoredExpr(semantic);
2660 }
2661 }
2662
2663 // Unbind all the opaques now.
2664 for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2665 opaques[i].unbind(CGF);
2666
2667 return result;
2668 }
2669
2670 template <typename Impl, typename Result>
visitCastExpr(const CastExpr * e)2671 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) {
2672 switch (e->getCastKind()) {
2673
2674 // No-op casts don't change the type, so we just ignore them.
2675 case CK_NoOp:
2676 return asImpl().visit(e->getSubExpr());
2677
2678 // These casts can change the type.
2679 case CK_CPointerToObjCPointerCast:
2680 case CK_BlockPointerToObjCPointerCast:
2681 case CK_AnyPointerToBlockPointerCast:
2682 case CK_BitCast: {
2683 llvm::Type *resultType = CGF.ConvertType(e->getType());
2684 assert(e->getSubExpr()->getType()->hasPointerRepresentation());
2685 Result result = asImpl().visit(e->getSubExpr());
2686 return asImpl().emitBitCast(result, resultType);
2687 }
2688
2689 // Handle some casts specially.
2690 case CK_LValueToRValue:
2691 return asImpl().visitLValueToRValue(e->getSubExpr());
2692 case CK_ARCConsumeObject:
2693 return asImpl().visitConsumeObject(e->getSubExpr());
2694 case CK_ARCExtendBlockObject:
2695 return asImpl().visitExtendBlockObject(e->getSubExpr());
2696 case CK_ARCReclaimReturnedObject:
2697 return asImpl().visitReclaimReturnedObject(e->getSubExpr());
2698
2699 // Otherwise, use the default logic.
2700 default:
2701 return asImpl().visitExpr(e);
2702 }
2703 }
2704
2705 template <typename Impl, typename Result>
2706 Result
visitBinaryOperator(const BinaryOperator * e)2707 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) {
2708 switch (e->getOpcode()) {
2709 case BO_Comma:
2710 CGF.EmitIgnoredExpr(e->getLHS());
2711 CGF.EnsureInsertPoint();
2712 return asImpl().visit(e->getRHS());
2713
2714 case BO_Assign:
2715 return asImpl().visitBinAssign(e);
2716
2717 default:
2718 return asImpl().visitExpr(e);
2719 }
2720 }
2721
2722 template <typename Impl, typename Result>
visitBinAssign(const BinaryOperator * e)2723 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) {
2724 switch (e->getLHS()->getType().getObjCLifetime()) {
2725 case Qualifiers::OCL_ExplicitNone:
2726 return asImpl().visitBinAssignUnsafeUnretained(e);
2727
2728 case Qualifiers::OCL_Weak:
2729 return asImpl().visitBinAssignWeak(e);
2730
2731 case Qualifiers::OCL_Autoreleasing:
2732 return asImpl().visitBinAssignAutoreleasing(e);
2733
2734 case Qualifiers::OCL_Strong:
2735 return asImpl().visitBinAssignStrong(e);
2736
2737 case Qualifiers::OCL_None:
2738 return asImpl().visitExpr(e);
2739 }
2740 llvm_unreachable("bad ObjC ownership qualifier");
2741 }
2742
2743 /// The default rule for __unsafe_unretained emits the RHS recursively,
2744 /// stores into the unsafe variable, and propagates the result outward.
2745 template <typename Impl, typename Result>
2746 Result ARCExprEmitter<Impl,Result>::
visitBinAssignUnsafeUnretained(const BinaryOperator * e)2747 visitBinAssignUnsafeUnretained(const BinaryOperator *e) {
2748 // Recursively emit the RHS.
2749 // For __block safety, do this before emitting the LHS.
2750 Result result = asImpl().visit(e->getRHS());
2751
2752 // Perform the store.
2753 LValue lvalue =
2754 CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store);
2755 CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)),
2756 lvalue);
2757
2758 return result;
2759 }
2760
2761 template <typename Impl, typename Result>
2762 Result
visitBinAssignAutoreleasing(const BinaryOperator * e)2763 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) {
2764 return asImpl().visitExpr(e);
2765 }
2766
2767 template <typename Impl, typename Result>
2768 Result
visitBinAssignWeak(const BinaryOperator * e)2769 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) {
2770 return asImpl().visitExpr(e);
2771 }
2772
2773 template <typename Impl, typename Result>
2774 Result
visitBinAssignStrong(const BinaryOperator * e)2775 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) {
2776 return asImpl().visitExpr(e);
2777 }
2778
2779 /// The general expression-emission logic.
2780 template <typename Impl, typename Result>
visit(const Expr * e)2781 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) {
2782 // We should *never* see a nested full-expression here, because if
2783 // we fail to emit at +1, our caller must not retain after we close
2784 // out the full-expression. This isn't as important in the unsafe
2785 // emitter.
2786 assert(!isa<ExprWithCleanups>(e));
2787
2788 // Look through parens, __extension__, generic selection, etc.
2789 e = e->IgnoreParens();
2790
2791 // Handle certain kinds of casts.
2792 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
2793 return asImpl().visitCastExpr(ce);
2794
2795 // Handle the comma operator.
2796 } else if (auto op = dyn_cast<BinaryOperator>(e)) {
2797 return asImpl().visitBinaryOperator(op);
2798
2799 // TODO: handle conditional operators here
2800
2801 // For calls and message sends, use the retained-call logic.
2802 // Delegate inits are a special case in that they're the only
2803 // returns-retained expression that *isn't* surrounded by
2804 // a consume.
2805 } else if (isa<CallExpr>(e) ||
2806 (isa<ObjCMessageExpr>(e) &&
2807 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
2808 return asImpl().visitCall(e);
2809
2810 // Look through pseudo-object expressions.
2811 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
2812 return asImpl().visitPseudoObjectExpr(pseudo);
2813 }
2814
2815 return asImpl().visitExpr(e);
2816 }
2817
2818 namespace {
2819
2820 /// An emitter for +1 results.
2821 struct ARCRetainExprEmitter :
2822 public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> {
2823
ARCRetainExprEmitter__anon4c747e0d0b11::ARCRetainExprEmitter2824 ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
2825
getValueOfResult__anon4c747e0d0b11::ARCRetainExprEmitter2826 llvm::Value *getValueOfResult(TryEmitResult result) {
2827 return result.getPointer();
2828 }
2829
emitBitCast__anon4c747e0d0b11::ARCRetainExprEmitter2830 TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) {
2831 llvm::Value *value = result.getPointer();
2832 value = CGF.Builder.CreateBitCast(value, resultType);
2833 result.setPointer(value);
2834 return result;
2835 }
2836
visitLValueToRValue__anon4c747e0d0b11::ARCRetainExprEmitter2837 TryEmitResult visitLValueToRValue(const Expr *e) {
2838 return tryEmitARCRetainLoadOfScalar(CGF, e);
2839 }
2840
2841 /// For consumptions, just emit the subexpression and thus elide
2842 /// the retain/release pair.
visitConsumeObject__anon4c747e0d0b11::ARCRetainExprEmitter2843 TryEmitResult visitConsumeObject(const Expr *e) {
2844 llvm::Value *result = CGF.EmitScalarExpr(e);
2845 return TryEmitResult(result, true);
2846 }
2847
2848 /// Block extends are net +0. Naively, we could just recurse on
2849 /// the subexpression, but actually we need to ensure that the
2850 /// value is copied as a block, so there's a little filter here.
visitExtendBlockObject__anon4c747e0d0b11::ARCRetainExprEmitter2851 TryEmitResult visitExtendBlockObject(const Expr *e) {
2852 llvm::Value *result; // will be a +0 value
2853
2854 // If we can't safely assume the sub-expression will produce a
2855 // block-copied value, emit the sub-expression at +0.
2856 if (shouldEmitSeparateBlockRetain(e)) {
2857 result = CGF.EmitScalarExpr(e);
2858
2859 // Otherwise, try to emit the sub-expression at +1 recursively.
2860 } else {
2861 TryEmitResult subresult = asImpl().visit(e);
2862
2863 // If that produced a retained value, just use that.
2864 if (subresult.getInt()) {
2865 return subresult;
2866 }
2867
2868 // Otherwise it's +0.
2869 result = subresult.getPointer();
2870 }
2871
2872 // Retain the object as a block.
2873 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
2874 return TryEmitResult(result, true);
2875 }
2876
2877 /// For reclaims, emit the subexpression as a retained call and
2878 /// skip the consumption.
visitReclaimReturnedObject__anon4c747e0d0b11::ARCRetainExprEmitter2879 TryEmitResult visitReclaimReturnedObject(const Expr *e) {
2880 llvm::Value *result = emitARCRetainCallResult(CGF, e);
2881 return TryEmitResult(result, true);
2882 }
2883
2884 /// When we have an undecorated call, retroactively do a claim.
visitCall__anon4c747e0d0b11::ARCRetainExprEmitter2885 TryEmitResult visitCall(const Expr *e) {
2886 llvm::Value *result = emitARCRetainCallResult(CGF, e);
2887 return TryEmitResult(result, true);
2888 }
2889
2890 // TODO: maybe special-case visitBinAssignWeak?
2891
visitExpr__anon4c747e0d0b11::ARCRetainExprEmitter2892 TryEmitResult visitExpr(const Expr *e) {
2893 // We didn't find an obvious production, so emit what we've got and
2894 // tell the caller that we didn't manage to retain.
2895 llvm::Value *result = CGF.EmitScalarExpr(e);
2896 return TryEmitResult(result, false);
2897 }
2898 };
2899 }
2900
2901 static TryEmitResult
tryEmitARCRetainScalarExpr(CodeGenFunction & CGF,const Expr * e)2902 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
2903 return ARCRetainExprEmitter(CGF).visit(e);
2904 }
2905
emitARCRetainLoadOfScalar(CodeGenFunction & CGF,LValue lvalue,QualType type)2906 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2907 LValue lvalue,
2908 QualType type) {
2909 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
2910 llvm::Value *value = result.getPointer();
2911 if (!result.getInt())
2912 value = CGF.EmitARCRetain(type, value);
2913 return value;
2914 }
2915
2916 /// EmitARCRetainScalarExpr - Semantically equivalent to
2917 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
2918 /// best-effort attempt to peephole expressions that naturally produce
2919 /// retained objects.
EmitARCRetainScalarExpr(const Expr * e)2920 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
2921 // The retain needs to happen within the full-expression.
2922 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2923 enterFullExpression(cleanups);
2924 RunCleanupsScope scope(*this);
2925 return EmitARCRetainScalarExpr(cleanups->getSubExpr());
2926 }
2927
2928 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2929 llvm::Value *value = result.getPointer();
2930 if (!result.getInt())
2931 value = EmitARCRetain(e->getType(), value);
2932 return value;
2933 }
2934
2935 llvm::Value *
EmitARCRetainAutoreleaseScalarExpr(const Expr * e)2936 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
2937 // The retain needs to happen within the full-expression.
2938 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2939 enterFullExpression(cleanups);
2940 RunCleanupsScope scope(*this);
2941 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
2942 }
2943
2944 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2945 llvm::Value *value = result.getPointer();
2946 if (result.getInt())
2947 value = EmitARCAutorelease(value);
2948 else
2949 value = EmitARCRetainAutorelease(e->getType(), value);
2950 return value;
2951 }
2952
EmitARCExtendBlockObject(const Expr * e)2953 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
2954 llvm::Value *result;
2955 bool doRetain;
2956
2957 if (shouldEmitSeparateBlockRetain(e)) {
2958 result = EmitScalarExpr(e);
2959 doRetain = true;
2960 } else {
2961 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
2962 result = subresult.getPointer();
2963 doRetain = !subresult.getInt();
2964 }
2965
2966 if (doRetain)
2967 result = EmitARCRetainBlock(result, /*mandatory*/ true);
2968 return EmitObjCConsumeObject(e->getType(), result);
2969 }
2970
EmitObjCThrowOperand(const Expr * expr)2971 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
2972 // In ARC, retain and autorelease the expression.
2973 if (getLangOpts().ObjCAutoRefCount) {
2974 // Do so before running any cleanups for the full-expression.
2975 // EmitARCRetainAutoreleaseScalarExpr does this for us.
2976 return EmitARCRetainAutoreleaseScalarExpr(expr);
2977 }
2978
2979 // Otherwise, use the normal scalar-expression emission. The
2980 // exception machinery doesn't do anything special with the
2981 // exception like retaining it, so there's no safety associated with
2982 // only running cleanups after the throw has started, and when it
2983 // matters it tends to be substantially inferior code.
2984 return EmitScalarExpr(expr);
2985 }
2986
2987 namespace {
2988
2989 /// An emitter for assigning into an __unsafe_unretained context.
2990 struct ARCUnsafeUnretainedExprEmitter :
2991 public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> {
2992
ARCUnsafeUnretainedExprEmitter__anon4c747e0d0c11::ARCUnsafeUnretainedExprEmitter2993 ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
2994
getValueOfResult__anon4c747e0d0c11::ARCUnsafeUnretainedExprEmitter2995 llvm::Value *getValueOfResult(llvm::Value *value) {
2996 return value;
2997 }
2998
emitBitCast__anon4c747e0d0c11::ARCUnsafeUnretainedExprEmitter2999 llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) {
3000 return CGF.Builder.CreateBitCast(value, resultType);
3001 }
3002
visitLValueToRValue__anon4c747e0d0c11::ARCUnsafeUnretainedExprEmitter3003 llvm::Value *visitLValueToRValue(const Expr *e) {
3004 return CGF.EmitScalarExpr(e);
3005 }
3006
3007 /// For consumptions, just emit the subexpression and perform the
3008 /// consumption like normal.
visitConsumeObject__anon4c747e0d0c11::ARCUnsafeUnretainedExprEmitter3009 llvm::Value *visitConsumeObject(const Expr *e) {
3010 llvm::Value *value = CGF.EmitScalarExpr(e);
3011 return CGF.EmitObjCConsumeObject(e->getType(), value);
3012 }
3013
3014 /// No special logic for block extensions. (This probably can't
3015 /// actually happen in this emitter, though.)
visitExtendBlockObject__anon4c747e0d0c11::ARCUnsafeUnretainedExprEmitter3016 llvm::Value *visitExtendBlockObject(const Expr *e) {
3017 return CGF.EmitARCExtendBlockObject(e);
3018 }
3019
3020 /// For reclaims, perform an unsafeClaim if that's enabled.
visitReclaimReturnedObject__anon4c747e0d0c11::ARCUnsafeUnretainedExprEmitter3021 llvm::Value *visitReclaimReturnedObject(const Expr *e) {
3022 return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true);
3023 }
3024
3025 /// When we have an undecorated call, just emit it without adding
3026 /// the unsafeClaim.
visitCall__anon4c747e0d0c11::ARCUnsafeUnretainedExprEmitter3027 llvm::Value *visitCall(const Expr *e) {
3028 return CGF.EmitScalarExpr(e);
3029 }
3030
3031 /// Just do normal scalar emission in the default case.
visitExpr__anon4c747e0d0c11::ARCUnsafeUnretainedExprEmitter3032 llvm::Value *visitExpr(const Expr *e) {
3033 return CGF.EmitScalarExpr(e);
3034 }
3035 };
3036 }
3037
emitARCUnsafeUnretainedScalarExpr(CodeGenFunction & CGF,const Expr * e)3038 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF,
3039 const Expr *e) {
3040 return ARCUnsafeUnretainedExprEmitter(CGF).visit(e);
3041 }
3042
3043 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3044 /// immediately releasing the resut of EmitARCRetainScalarExpr, but
3045 /// avoiding any spurious retains, including by performing reclaims
3046 /// with objc_unsafeClaimAutoreleasedReturnValue.
EmitARCUnsafeUnretainedScalarExpr(const Expr * e)3047 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) {
3048 // Look through full-expressions.
3049 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3050 enterFullExpression(cleanups);
3051 RunCleanupsScope scope(*this);
3052 return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr());
3053 }
3054
3055 return emitARCUnsafeUnretainedScalarExpr(*this, e);
3056 }
3057
3058 std::pair<LValue,llvm::Value*>
EmitARCStoreUnsafeUnretained(const BinaryOperator * e,bool ignored)3059 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e,
3060 bool ignored) {
3061 // Evaluate the RHS first. If we're ignoring the result, assume
3062 // that we can emit at an unsafe +0.
3063 llvm::Value *value;
3064 if (ignored) {
3065 value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS());
3066 } else {
3067 value = EmitScalarExpr(e->getRHS());
3068 }
3069
3070 // Emit the LHS and perform the store.
3071 LValue lvalue = EmitLValue(e->getLHS());
3072 EmitStoreOfScalar(value, lvalue);
3073
3074 return std::pair<LValue,llvm::Value*>(std::move(lvalue), value);
3075 }
3076
3077 std::pair<LValue,llvm::Value*>
EmitARCStoreStrong(const BinaryOperator * e,bool ignored)3078 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
3079 bool ignored) {
3080 // Evaluate the RHS first.
3081 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
3082 llvm::Value *value = result.getPointer();
3083
3084 bool hasImmediateRetain = result.getInt();
3085
3086 // If we didn't emit a retained object, and the l-value is of block
3087 // type, then we need to emit the block-retain immediately in case
3088 // it invalidates the l-value.
3089 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
3090 value = EmitARCRetainBlock(value, /*mandatory*/ false);
3091 hasImmediateRetain = true;
3092 }
3093
3094 LValue lvalue = EmitLValue(e->getLHS());
3095
3096 // If the RHS was emitted retained, expand this.
3097 if (hasImmediateRetain) {
3098 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
3099 EmitStoreOfScalar(value, lvalue);
3100 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
3101 } else {
3102 value = EmitARCStoreStrong(lvalue, value, ignored);
3103 }
3104
3105 return std::pair<LValue,llvm::Value*>(lvalue, value);
3106 }
3107
3108 std::pair<LValue,llvm::Value*>
EmitARCStoreAutoreleasing(const BinaryOperator * e)3109 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
3110 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
3111 LValue lvalue = EmitLValue(e->getLHS());
3112
3113 EmitStoreOfScalar(value, lvalue);
3114
3115 return std::pair<LValue,llvm::Value*>(lvalue, value);
3116 }
3117
EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt & ARPS)3118 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
3119 const ObjCAutoreleasePoolStmt &ARPS) {
3120 const Stmt *subStmt = ARPS.getSubStmt();
3121 const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
3122
3123 CGDebugInfo *DI = getDebugInfo();
3124 if (DI)
3125 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
3126
3127 // Keep track of the current cleanup stack depth.
3128 RunCleanupsScope Scope(*this);
3129 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
3130 llvm::Value *token = EmitObjCAutoreleasePoolPush();
3131 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
3132 } else {
3133 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
3134 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
3135 }
3136
3137 for (const auto *I : S.body())
3138 EmitStmt(I);
3139
3140 if (DI)
3141 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
3142 }
3143
3144 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3145 /// make sure it survives garbage collection until this point.
EmitExtendGCLifetime(llvm::Value * object)3146 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
3147 // We just use an inline assembly.
3148 llvm::FunctionType *extenderType
3149 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
3150 llvm::Value *extender
3151 = llvm::InlineAsm::get(extenderType,
3152 /* assembly */ "",
3153 /* constraints */ "r",
3154 /* side effects */ true);
3155
3156 object = Builder.CreateBitCast(object, VoidPtrTy);
3157 EmitNounwindRuntimeCall(extender, object);
3158 }
3159
3160 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3161 /// non-trivial copy assignment function, produce following helper function.
3162 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3163 ///
3164 llvm::Constant *
GenerateObjCAtomicSetterCopyHelperFunction(const ObjCPropertyImplDecl * PID)3165 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
3166 const ObjCPropertyImplDecl *PID) {
3167 if (!getLangOpts().CPlusPlus ||
3168 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3169 return nullptr;
3170 QualType Ty = PID->getPropertyIvarDecl()->getType();
3171 if (!Ty->isRecordType())
3172 return nullptr;
3173 const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3174 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
3175 return nullptr;
3176 llvm::Constant *HelperFn = nullptr;
3177 if (hasTrivialSetExpr(PID))
3178 return nullptr;
3179 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
3180 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
3181 return HelperFn;
3182
3183 ASTContext &C = getContext();
3184 IdentifierInfo *II
3185 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
3186 FunctionDecl *FD = FunctionDecl::Create(C,
3187 C.getTranslationUnitDecl(),
3188 SourceLocation(),
3189 SourceLocation(), II, C.VoidTy,
3190 nullptr, SC_Static,
3191 false,
3192 false);
3193
3194 QualType DestTy = C.getPointerType(Ty);
3195 QualType SrcTy = Ty;
3196 SrcTy.addConst();
3197 SrcTy = C.getPointerType(SrcTy);
3198
3199 FunctionArgList args;
3200 ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy);
3201 args.push_back(&dstDecl);
3202 ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy);
3203 args.push_back(&srcDecl);
3204
3205 const CGFunctionInfo &FI =
3206 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, args);
3207
3208 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3209
3210 llvm::Function *Fn =
3211 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3212 "__assign_helper_atomic_property_",
3213 &CGM.getModule());
3214
3215 CGM.SetInternalFunctionAttributes(nullptr, Fn, FI);
3216
3217 StartFunction(FD, C.VoidTy, Fn, FI, args);
3218
3219 DeclRefExpr DstExpr(&dstDecl, false, DestTy,
3220 VK_RValue, SourceLocation());
3221 UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
3222 VK_LValue, OK_Ordinary, SourceLocation());
3223
3224 DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
3225 VK_RValue, SourceLocation());
3226 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3227 VK_LValue, OK_Ordinary, SourceLocation());
3228
3229 Expr *Args[2] = { &DST, &SRC };
3230 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
3231 CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(),
3232 Args, DestTy->getPointeeType(),
3233 VK_LValue, SourceLocation(), false);
3234
3235 EmitStmt(&TheCall);
3236
3237 FinishFunction();
3238 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3239 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
3240 return HelperFn;
3241 }
3242
3243 llvm::Constant *
GenerateObjCAtomicGetterCopyHelperFunction(const ObjCPropertyImplDecl * PID)3244 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
3245 const ObjCPropertyImplDecl *PID) {
3246 if (!getLangOpts().CPlusPlus ||
3247 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3248 return nullptr;
3249 const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3250 QualType Ty = PD->getType();
3251 if (!Ty->isRecordType())
3252 return nullptr;
3253 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
3254 return nullptr;
3255 llvm::Constant *HelperFn = nullptr;
3256
3257 if (hasTrivialGetExpr(PID))
3258 return nullptr;
3259 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
3260 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
3261 return HelperFn;
3262
3263
3264 ASTContext &C = getContext();
3265 IdentifierInfo *II
3266 = &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
3267 FunctionDecl *FD = FunctionDecl::Create(C,
3268 C.getTranslationUnitDecl(),
3269 SourceLocation(),
3270 SourceLocation(), II, C.VoidTy,
3271 nullptr, SC_Static,
3272 false,
3273 false);
3274
3275 QualType DestTy = C.getPointerType(Ty);
3276 QualType SrcTy = Ty;
3277 SrcTy.addConst();
3278 SrcTy = C.getPointerType(SrcTy);
3279
3280 FunctionArgList args;
3281 ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy);
3282 args.push_back(&dstDecl);
3283 ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy);
3284 args.push_back(&srcDecl);
3285
3286 const CGFunctionInfo &FI =
3287 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, args);
3288
3289 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3290
3291 llvm::Function *Fn =
3292 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3293 "__copy_helper_atomic_property_", &CGM.getModule());
3294
3295 CGM.SetInternalFunctionAttributes(nullptr, Fn, FI);
3296
3297 StartFunction(FD, C.VoidTy, Fn, FI, args);
3298
3299 DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
3300 VK_RValue, SourceLocation());
3301
3302 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3303 VK_LValue, OK_Ordinary, SourceLocation());
3304
3305 CXXConstructExpr *CXXConstExpr =
3306 cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3307
3308 SmallVector<Expr*, 4> ConstructorArgs;
3309 ConstructorArgs.push_back(&SRC);
3310 ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3311 CXXConstExpr->arg_end());
3312
3313 CXXConstructExpr *TheCXXConstructExpr =
3314 CXXConstructExpr::Create(C, Ty, SourceLocation(),
3315 CXXConstExpr->getConstructor(),
3316 CXXConstExpr->isElidable(),
3317 ConstructorArgs,
3318 CXXConstExpr->hadMultipleCandidates(),
3319 CXXConstExpr->isListInitialization(),
3320 CXXConstExpr->isStdInitListInitialization(),
3321 CXXConstExpr->requiresZeroInitialization(),
3322 CXXConstExpr->getConstructionKind(),
3323 SourceRange());
3324
3325 DeclRefExpr DstExpr(&dstDecl, false, DestTy,
3326 VK_RValue, SourceLocation());
3327
3328 RValue DV = EmitAnyExpr(&DstExpr);
3329 CharUnits Alignment
3330 = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3331 EmitAggExpr(TheCXXConstructExpr,
3332 AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment),
3333 Qualifiers(),
3334 AggValueSlot::IsDestructed,
3335 AggValueSlot::DoesNotNeedGCBarriers,
3336 AggValueSlot::IsNotAliased));
3337
3338 FinishFunction();
3339 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3340 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3341 return HelperFn;
3342 }
3343
3344 llvm::Value *
EmitBlockCopyAndAutorelease(llvm::Value * Block,QualType Ty)3345 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3346 // Get selectors for retain/autorelease.
3347 IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3348 Selector CopySelector =
3349 getContext().Selectors.getNullarySelector(CopyID);
3350 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3351 Selector AutoreleaseSelector =
3352 getContext().Selectors.getNullarySelector(AutoreleaseID);
3353
3354 // Emit calls to retain/autorelease.
3355 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3356 llvm::Value *Val = Block;
3357 RValue Result;
3358 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3359 Ty, CopySelector,
3360 Val, CallArgList(), nullptr, nullptr);
3361 Val = Result.getScalarVal();
3362 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3363 Ty, AutoreleaseSelector,
3364 Val, CallArgList(), nullptr, nullptr);
3365 Val = Result.getScalarVal();
3366 return Val;
3367 }
3368
3369
~CGObjCRuntime()3370 CGObjCRuntime::~CGObjCRuntime() {}
3371