• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 The Chromium Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include <windows.h>
6 
7 #include <mmsystem.h>
8 #include <process.h>
9 #include <stdint.h>
10 #include <windows.foundation.h>
11 
12 #include <algorithm>
13 #include <cmath>
14 #include <limits>
15 #include <vector>
16 
17 #include "base/strings/string_piece.h"
18 #include "base/threading/platform_thread.h"
19 #include "base/time/time.h"
20 #include "base/win/registry.h"
21 #include "build/build_config.h"
22 #include "testing/gtest/include/gtest/gtest.h"
23 
24 namespace base {
25 namespace {
26 
27 // For TimeDelta::ConstexprInitialization
28 constexpr int kExpectedDeltaInMilliseconds = 10;
29 constexpr TimeDelta kConstexprTimeDelta =
30     Milliseconds(kExpectedDeltaInMilliseconds);
31 
32 class MockTimeTicks : public TimeTicks {
33  public:
Ticker()34   static DWORD Ticker() {
35     return static_cast<int>(InterlockedIncrement(&ticker_));
36   }
37 
InstallTicker()38   static void InstallTicker() {
39     old_tick_function_ = SetMockTickFunction(&Ticker);
40     ticker_ = -5;
41   }
42 
UninstallTicker()43   static void UninstallTicker() { SetMockTickFunction(old_tick_function_); }
44 
45  private:
46   static volatile LONG ticker_;
47   static TickFunctionType old_tick_function_;
48 };
49 
50 volatile LONG MockTimeTicks::ticker_;
51 MockTimeTicks::TickFunctionType MockTimeTicks::old_tick_function_;
52 
53 HANDLE g_rollover_test_start;
54 
RolloverTestThreadMain(void * param)55 unsigned __stdcall RolloverTestThreadMain(void* param) {
56   int64_t counter = reinterpret_cast<int64_t>(param);
57   DWORD rv = WaitForSingleObject(g_rollover_test_start, INFINITE);
58   EXPECT_EQ(rv, WAIT_OBJECT_0);
59 
60   TimeTicks last = TimeTicks::Now();
61   for (int index = 0; index < counter; index++) {
62     TimeTicks now = TimeTicks::Now();
63     int64_t milliseconds = (now - last).InMilliseconds();
64     // This is a tight loop; we could have looped faster than our
65     // measurements, so the time might be 0 millis.
66     EXPECT_GE(milliseconds, 0);
67     EXPECT_LT(milliseconds, 250);
68     last = now;
69   }
70   return 0;
71 }
72 
73 #if defined(_M_ARM64) && defined(__clang__)
74 #define ReadCycleCounter() _ReadStatusReg(ARM64_PMCCNTR_EL0)
75 #else
76 #define ReadCycleCounter() __rdtsc()
77 #endif
78 
79 // Measure the performance of the CPU cycle counter so that we can compare it to
80 // the overhead of QueryPerformanceCounter. A hard-coded frequency is used
81 // because we don't care about the accuracy of the results, we just need to do
82 // the work. The amount of work is not exactly the same as in TimeTicks::Now
83 // (some steps are skipped) but that doesn't seem to materially affect the
84 // results.
GetTSC()85 TimeTicks GetTSC() {
86   // Using a fake cycle counter frequency for test purposes.
87   return TimeTicks() + Microseconds(ReadCycleCounter() *
88                                     Time::kMicrosecondsPerSecond / 10000000);
89 }
90 
91 }  // namespace
92 
93 // This test spawns many threads, and can occasionally fail due to resource
94 // exhaustion in the presence of ASan.
95 #if defined(ADDRESS_SANITIZER)
96 #define MAYBE_WinRollover DISABLED_WinRollover
97 #else
98 #define MAYBE_WinRollover WinRollover
99 #endif
TEST(TimeTicks,MAYBE_WinRollover)100 TEST(TimeTicks, MAYBE_WinRollover) {
101   // The internal counter rolls over at ~49days.  We'll use a mock
102   // timer to test this case.
103   // Basic test algorithm:
104   //   1) Set clock to rollover - N
105   //   2) Create N threads
106   //   3) Start the threads
107   //   4) Each thread loops through TimeTicks() N times
108   //   5) Each thread verifies integrity of result.
109 
110   const int kThreads = 8;
111   // Use int64_t so we can cast into a void* without a compiler warning.
112   const int64_t kChecks = 10;
113 
114   // It takes a lot of iterations to reproduce the bug!
115   // (See bug 1081395)
116   for (int loop = 0; loop < 4096; loop++) {
117     // Setup
118     MockTimeTicks::InstallTicker();
119     g_rollover_test_start = CreateEvent(0, TRUE, FALSE, 0);
120     HANDLE threads[kThreads];
121 
122     for (int index = 0; index < kThreads; index++) {
123       void* argument = reinterpret_cast<void*>(kChecks);
124       unsigned thread_id;
125       threads[index] = reinterpret_cast<HANDLE>(_beginthreadex(
126           NULL, 0, RolloverTestThreadMain, argument, 0, &thread_id));
127       EXPECT_NE((HANDLE)NULL, threads[index]);
128     }
129 
130     // Start!
131     SetEvent(g_rollover_test_start);
132 
133     // Wait for threads to finish
134     for (int index = 0; index < kThreads; index++) {
135       DWORD rv = WaitForSingleObject(threads[index], INFINITE);
136       EXPECT_EQ(rv, WAIT_OBJECT_0);
137       // Since using _beginthreadex() (as opposed to _beginthread),
138       // an explicit CloseHandle() is supposed to be called.
139       CloseHandle(threads[index]);
140     }
141 
142     CloseHandle(g_rollover_test_start);
143 
144     // Teardown
145     MockTimeTicks::UninstallTicker();
146   }
147 }
148 
TEST(TimeTicks,SubMillisecondTimers)149 TEST(TimeTicks, SubMillisecondTimers) {
150   // IsHighResolution() is false on some systems.  Since the product still works
151   // even if it's false, it makes this entire test questionable.
152   if (!TimeTicks::IsHighResolution())
153     return;
154 
155   // Run kRetries attempts to see a sub-millisecond timer.
156   constexpr int kRetries = 1000;
157   for (int index = 0; index < kRetries; index++) {
158     const TimeTicks start_time = TimeTicks::Now();
159     TimeDelta delta;
160     // Spin until the clock has detected a change.
161     do {
162       delta = TimeTicks::Now() - start_time;
163     } while (delta.is_zero());
164     if (!delta.InMilliseconds())
165       return;
166   }
167   ADD_FAILURE() << "Never saw a sub-millisecond timer.";
168 }
169 
TEST(TimeTicks,TimeGetTimeCaps)170 TEST(TimeTicks, TimeGetTimeCaps) {
171   // Test some basic assumptions that we expect about how timeGetDevCaps works.
172 
173   TIMECAPS caps;
174   MMRESULT status = timeGetDevCaps(&caps, sizeof(caps));
175   ASSERT_EQ(static_cast<MMRESULT>(MMSYSERR_NOERROR), status);
176 
177   EXPECT_GE(static_cast<int>(caps.wPeriodMin), 1);
178   EXPECT_GT(static_cast<int>(caps.wPeriodMax), 1);
179   EXPECT_GE(static_cast<int>(caps.wPeriodMin), 1);
180   EXPECT_GT(static_cast<int>(caps.wPeriodMax), 1);
181   printf("timeGetTime range is %d to %dms\n", caps.wPeriodMin, caps.wPeriodMax);
182 }
183 
TEST(TimeTicks,QueryPerformanceFrequency)184 TEST(TimeTicks, QueryPerformanceFrequency) {
185   // Test some basic assumptions that we expect about QPC.
186 
187   LARGE_INTEGER frequency;
188   BOOL rv = QueryPerformanceFrequency(&frequency);
189   EXPECT_EQ(TRUE, rv);
190   EXPECT_GT(frequency.QuadPart, 1000000);  // Expect at least 1MHz
191   printf("QueryPerformanceFrequency is %5.2fMHz\n",
192          frequency.QuadPart / 1000000.0);
193 }
194 
TEST(TimeTicks,TimerPerformance)195 TEST(TimeTicks, TimerPerformance) {
196   // Verify that various timer mechanisms can always complete quickly.
197   // Note:  This is a somewhat arbitrary test.
198   const int kLoops = 500000;
199 
200   typedef TimeTicks (*TestFunc)();
201   struct TestCase {
202     TestFunc func;
203     const char* description;
204   };
205   // Cheating a bit here:  assumes sizeof(TimeTicks) == sizeof(Time)
206   // in order to create a single test case list.
207   static_assert(sizeof(TimeTicks) == sizeof(Time),
208                 "TimeTicks and Time must be the same size");
209   std::vector<TestCase> cases;
210   cases.push_back({reinterpret_cast<TestFunc>(&Time::Now), "Time::Now"});
211   cases.push_back({&TimeTicks::Now, "TimeTicks::Now"});
212   cases.push_back({&GetTSC, "CPUCycleCounter"});
213 
214   if (ThreadTicks::IsSupported()) {
215     ThreadTicks::WaitUntilInitialized();
216     cases.push_back(
217         {reinterpret_cast<TestFunc>(&ThreadTicks::Now), "ThreadTicks::Now"});
218   }
219 
220   // Warm up the CPU to its full clock rate so that we get accurate timing
221   // information.
222   DWORD start_tick = GetTickCount();
223   const DWORD kWarmupMs = 50;
224   for (;;) {
225     DWORD elapsed = GetTickCount() - start_tick;
226     if (elapsed > kWarmupMs)
227       break;
228   }
229 
230   for (const auto& test_case : cases) {
231     TimeTicks start = TimeTicks::Now();
232     for (int index = 0; index < kLoops; index++)
233       test_case.func();
234     TimeTicks stop = TimeTicks::Now();
235     // Turning off the check for acceptible delays.  Without this check,
236     // the test really doesn't do much other than measure.  But the
237     // measurements are still useful for testing timers on various platforms.
238     // The reason to remove the check is because the tests run on many
239     // buildbots, some of which are VMs.  These machines can run horribly
240     // slow, and there is really no value for checking against a max timer.
241     // const int kMaxTime = 35;  // Maximum acceptible milliseconds for test.
242     // EXPECT_LT((stop - start).InMilliseconds(), kMaxTime);
243     printf("%s: %1.2fus per call\n", test_case.description,
244            (stop - start).InMillisecondsF() * 1000 / kLoops);
245   }
246 }
247 
248 #if !defined(ARCH_CPU_ARM64)
249 // This test is disabled on Windows ARM64 systems because TSCTicksPerSecond is
250 // only used in Chromium for QueryThreadCycleTime, and QueryThreadCycleTime
251 // doesn't use a constant-rate timer on ARM64.
TEST(TimeTicks,TSCTicksPerSecond)252 TEST(TimeTicks, TSCTicksPerSecond) {
253   if (time_internal::HasConstantRateTSC()) {
254     ThreadTicks::WaitUntilInitialized();
255 
256     // Read the CPU frequency from the registry.
257     base::win::RegKey processor_key(
258         HKEY_LOCAL_MACHINE,
259         L"Hardware\\Description\\System\\CentralProcessor\\0", KEY_QUERY_VALUE);
260     ASSERT_TRUE(processor_key.Valid());
261     DWORD processor_mhz_from_registry;
262     ASSERT_EQ(ERROR_SUCCESS,
263               processor_key.ReadValueDW(L"~MHz", &processor_mhz_from_registry));
264 
265     // Expect the measured TSC frequency to be similar to the processor
266     // frequency from the registry (0.5% error).
267     double tsc_mhz_measured = time_internal::TSCTicksPerSecond() / 1e6;
268     EXPECT_NEAR(tsc_mhz_measured, processor_mhz_from_registry,
269                 0.005 * processor_mhz_from_registry);
270   }
271 }
272 #endif
273 
TEST(TimeTicks,FromQPCValue)274 TEST(TimeTicks, FromQPCValue) {
275   if (!TimeTicks::IsHighResolution())
276     return;
277 
278   LARGE_INTEGER frequency;
279   ASSERT_TRUE(QueryPerformanceFrequency(&frequency));
280   const int64_t ticks_per_second = frequency.QuadPart;
281   ASSERT_GT(ticks_per_second, 0);
282 
283   // Generate the tick values to convert, advancing the tick count by varying
284   // amounts.  These values will ensure that both the fast and overflow-safe
285   // conversion logic in FromQPCValue() is tested, and across the entire range
286   // of possible QPC tick values.
287   std::vector<int64_t> test_cases;
288   test_cases.push_back(0);
289 
290   // Build the test cases.
291   {
292     const int kNumAdvancements = 100;
293     int64_t ticks = 0;
294     int64_t ticks_increment = 10;
295     for (int i = 0; i < kNumAdvancements; ++i) {
296       test_cases.push_back(ticks);
297       ticks += ticks_increment;
298       ticks_increment = ticks_increment * 6 / 5;
299     }
300     test_cases.push_back(Time::kQPCOverflowThreshold - 1);
301     test_cases.push_back(Time::kQPCOverflowThreshold);
302     test_cases.push_back(Time::kQPCOverflowThreshold + 1);
303     ticks = Time::kQPCOverflowThreshold + 10;
304     ticks_increment = 10;
305     for (int i = 0; i < kNumAdvancements; ++i) {
306       test_cases.push_back(ticks);
307       ticks += ticks_increment;
308       ticks_increment = ticks_increment * 6 / 5;
309     }
310     test_cases.push_back(std::numeric_limits<int64_t>::max());
311   }
312 
313   // Test that the conversions using FromQPCValue() match those computed here
314   // using simple floating-point arithmetic.  The floating-point math provides
315   // enough precision for all reasonable values to confirm that the
316   // implementation is correct to the microsecond, and for "very large" values
317   // it confirms that the answer is very close to correct.
318   for (int64_t ticks : test_cases) {
319     const double expected_microseconds_since_origin =
320         (static_cast<double>(ticks) * Time::kMicrosecondsPerSecond) /
321         ticks_per_second;
322     const TimeTicks converted_value = TimeTicks::FromQPCValue(ticks);
323     const double converted_microseconds_since_origin =
324         (converted_value - TimeTicks()).InMicrosecondsF();
325     // When we test with very large numbers we end up in a range where adjacent
326     // double values are far apart - 512.0 apart in one test failure. In that
327     // situation it makes no sense for our epsilon to be 1.0 - it should be
328     // the difference between adjacent doubles.
329     double epsilon = nextafter(expected_microseconds_since_origin, INFINITY) -
330                      expected_microseconds_since_origin;
331     // Epsilon must be at least 1.0 because converted_microseconds_since_origin
332     // comes from an integral value, and expected_microseconds_since_origin is
333     // a double that is expected to be up to 0.999 larger. In addition, due to
334     // multiple roundings in the double calculation the actual error can be
335     // slightly larger than 1.0, even when the converted value is perfect. This
336     // epsilon value was chosen because it is slightly larger than the error
337     // seen in a test failure caused by the double rounding.
338     epsilon = std::max(epsilon, 1.002);
339     EXPECT_NEAR(expected_microseconds_since_origin,
340                 converted_microseconds_since_origin, epsilon)
341         << "ticks=" << ticks << ", to be converted via logic path: "
342         << (ticks < Time::kQPCOverflowThreshold ? "FAST" : "SAFE");
343   }
344 }
345 
TEST(TimeDelta,ConstexprInitialization)346 TEST(TimeDelta, ConstexprInitialization) {
347   // Make sure that TimeDelta works around crbug.com/635974
348   EXPECT_EQ(kExpectedDeltaInMilliseconds, kConstexprTimeDelta.InMilliseconds());
349 }
350 
TEST(TimeDelta,FromFileTime)351 TEST(TimeDelta, FromFileTime) {
352   FILETIME ft;
353   ft.dwLowDateTime = 1001;
354   ft.dwHighDateTime = 0;
355 
356   // 100100 ns ~= 100 us.
357   EXPECT_EQ(Microseconds(100), TimeDelta::FromFileTime(ft));
358 
359   ft.dwLowDateTime = 0;
360   ft.dwHighDateTime = 1;
361 
362   // 2^32 * 100 ns ~= 2^32 * 10 us.
363   EXPECT_EQ(Microseconds((1ull << 32) / 10), TimeDelta::FromFileTime(ft));
364 }
365 
TEST(TimeDelta,FromWinrtDateTime)366 TEST(TimeDelta, FromWinrtDateTime) {
367   ABI::Windows::Foundation::DateTime dt;
368   dt.UniversalTime = 0;
369 
370   // 0 UniversalTime = no delta since epoch.
371   EXPECT_EQ(TimeDelta(), TimeDelta::FromWinrtDateTime(dt));
372 
373   dt.UniversalTime = 101;
374 
375   // 101 * 100 ns ~= 10.1 microseconds.
376   EXPECT_EQ(Microseconds(10.1), TimeDelta::FromWinrtDateTime(dt));
377 }
378 
TEST(TimeDelta,ToWinrtDateTime)379 TEST(TimeDelta, ToWinrtDateTime) {
380   auto time_delta = Seconds(0);
381 
382   // No delta since epoch = 0 DateTime.
383   EXPECT_EQ(0, time_delta.ToWinrtDateTime().UniversalTime);
384 
385   time_delta = Microseconds(10);
386 
387   // 10 microseconds = 100 * 100 ns.
388   EXPECT_EQ(100, time_delta.ToWinrtDateTime().UniversalTime);
389 }
390 
TEST(TimeDelta,FromWinrtTimeSpan)391 TEST(TimeDelta, FromWinrtTimeSpan) {
392   ABI::Windows::Foundation::TimeSpan ts;
393   ts.Duration = 0;
394 
395   // 0.
396   EXPECT_EQ(TimeDelta(), TimeDelta::FromWinrtTimeSpan(ts));
397 
398   ts.Duration = 101;
399 
400   // 101 * 100 ns ~= 10.1 microseconds.
401   EXPECT_EQ(Microseconds(10.1), TimeDelta::FromWinrtTimeSpan(ts));
402 }
403 
TEST(TimeDelta,ToWinrtTimeSpan)404 TEST(TimeDelta, ToWinrtTimeSpan) {
405   auto time_delta = Seconds(0);
406 
407   // 0.
408   EXPECT_EQ(0, time_delta.ToWinrtTimeSpan().Duration);
409 
410   time_delta = Microseconds(10);
411 
412   // 10 microseconds = 100 * 100 ns.
413   EXPECT_EQ(100, time_delta.ToWinrtTimeSpan().Duration);
414 }
415 
TEST(HighResolutionTimer,GetUsage)416 TEST(HighResolutionTimer, GetUsage) {
417   Time::ResetHighResolutionTimerUsage();
418 
419   // 0% usage since the timer isn't activated regardless of how much time has
420   // elapsed.
421   EXPECT_EQ(0.0, Time::GetHighResolutionTimerUsage());
422   Sleep(10);
423   EXPECT_EQ(0.0, Time::GetHighResolutionTimerUsage());
424 
425   Time::ActivateHighResolutionTimer(true);
426   Time::ResetHighResolutionTimerUsage();
427 
428   Sleep(20);
429   // 100% usage since the timer has been activated entire time.
430   EXPECT_EQ(100.0, Time::GetHighResolutionTimerUsage());
431 
432   Time::ActivateHighResolutionTimer(false);
433   Sleep(20);
434   double usage1 = Time::GetHighResolutionTimerUsage();
435   // usage1 should be about 50%.
436   EXPECT_LT(usage1, 100.0);
437   EXPECT_GT(usage1, 0.0);
438 
439   Time::ActivateHighResolutionTimer(true);
440   Sleep(10);
441   Time::ActivateHighResolutionTimer(false);
442   double usage2 = Time::GetHighResolutionTimerUsage();
443   // usage2 should be about 60%.
444   EXPECT_LT(usage2, 100.0);
445   EXPECT_GT(usage2, usage1);
446 
447   Time::ResetHighResolutionTimerUsage();
448   EXPECT_EQ(0.0, Time::GetHighResolutionTimerUsage());
449 }
450 
451 }  // namespace base
452