• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: flat_hash_map.h
17 // -----------------------------------------------------------------------------
18 //
19 // An `absl::flat_hash_map<K, V>` is an unordered associative container of
20 // unique keys and associated values designed to be a more efficient replacement
21 // for `std::unordered_map`. Like `unordered_map`, search, insertion, and
22 // deletion of map elements can be done as an `O(1)` operation. However,
23 // `flat_hash_map` (and other unordered associative containers known as the
24 // collection of Abseil "Swiss tables") contain other optimizations that result
25 // in both memory and computation advantages.
26 //
27 // In most cases, your default choice for a hash map should be a map of type
28 // `flat_hash_map`.
29 
30 #ifndef ABSL_CONTAINER_FLAT_HASH_MAP_H_
31 #define ABSL_CONTAINER_FLAT_HASH_MAP_H_
32 
33 #include <cstddef>
34 #include <new>
35 #include <type_traits>
36 #include <utility>
37 
38 #include "absl/algorithm/container.h"
39 #include "absl/base/macros.h"
40 #include "absl/container/internal/container_memory.h"
41 #include "absl/container/internal/hash_function_defaults.h"  // IWYU pragma: export
42 #include "absl/container/internal/raw_hash_map.h"  // IWYU pragma: export
43 #include "absl/memory/memory.h"
44 
45 namespace absl {
46 ABSL_NAMESPACE_BEGIN
47 namespace container_internal {
48 template <class K, class V>
49 struct FlatHashMapPolicy;
50 }  // namespace container_internal
51 
52 // -----------------------------------------------------------------------------
53 // absl::flat_hash_map
54 // -----------------------------------------------------------------------------
55 //
56 // An `absl::flat_hash_map<K, V>` is an unordered associative container which
57 // has been optimized for both speed and memory footprint in most common use
58 // cases. Its interface is similar to that of `std::unordered_map<K, V>` with
59 // the following notable differences:
60 //
61 // * Requires keys that are CopyConstructible
62 // * Requires values that are MoveConstructible
63 // * Supports heterogeneous lookup, through `find()`, `operator[]()` and
64 //   `insert()`, provided that the map is provided a compatible heterogeneous
65 //   hashing function and equality operator.
66 // * Invalidates any references and pointers to elements within the table after
67 //   `rehash()`.
68 // * Contains a `capacity()` member function indicating the number of element
69 //   slots (open, deleted, and empty) within the hash map.
70 // * Returns `void` from the `erase(iterator)` overload.
71 //
72 // By default, `flat_hash_map` uses the `absl::Hash` hashing framework.
73 // All fundamental and Abseil types that support the `absl::Hash` framework have
74 // a compatible equality operator for comparing insertions into `flat_hash_map`.
75 // If your type is not yet supported by the `absl::Hash` framework, see
76 // absl/hash/hash.h for information on extending Abseil hashing to user-defined
77 // types.
78 //
79 // Using `absl::flat_hash_map` at interface boundaries in dynamically loaded
80 // libraries (e.g. .dll, .so) is unsupported due to way `absl::Hash` values may
81 // be randomized across dynamically loaded libraries.
82 //
83 // NOTE: A `flat_hash_map` stores its value types directly inside its
84 // implementation array to avoid memory indirection. Because a `flat_hash_map`
85 // is designed to move data when rehashed, map values will not retain pointer
86 // stability. If you require pointer stability, or if your values are large,
87 // consider using `absl::flat_hash_map<Key, std::unique_ptr<Value>>` instead.
88 // If your types are not moveable or you require pointer stability for keys,
89 // consider `absl::node_hash_map`.
90 //
91 // Example:
92 //
93 //   // Create a flat hash map of three strings (that map to strings)
94 //   absl::flat_hash_map<std::string, std::string> ducks =
95 //     {{"a", "huey"}, {"b", "dewey"}, {"c", "louie"}};
96 //
97 //  // Insert a new element into the flat hash map
98 //  ducks.insert({"d", "donald"});
99 //
100 //  // Force a rehash of the flat hash map
101 //  ducks.rehash(0);
102 //
103 //  // Find the element with the key "b"
104 //  std::string search_key = "b";
105 //  auto result = ducks.find(search_key);
106 //  if (result != ducks.end()) {
107 //    std::cout << "Result: " << result->second << std::endl;
108 //  }
109 template <class K, class V,
110           class Hash = absl::container_internal::hash_default_hash<K>,
111           class Eq = absl::container_internal::hash_default_eq<K>,
112           class Allocator = std::allocator<std::pair<const K, V>>>
113 class flat_hash_map : public absl::container_internal::raw_hash_map<
114                           absl::container_internal::FlatHashMapPolicy<K, V>,
115                           Hash, Eq, Allocator> {
116   using Base = typename flat_hash_map::raw_hash_map;
117 
118  public:
119   // Constructors and Assignment Operators
120   //
121   // A flat_hash_map supports the same overload set as `std::unordered_map`
122   // for construction and assignment:
123   //
124   // *  Default constructor
125   //
126   //    // No allocation for the table's elements is made.
127   //    absl::flat_hash_map<int, std::string> map1;
128   //
129   // * Initializer List constructor
130   //
131   //   absl::flat_hash_map<int, std::string> map2 =
132   //       {{1, "huey"}, {2, "dewey"}, {3, "louie"},};
133   //
134   // * Copy constructor
135   //
136   //   absl::flat_hash_map<int, std::string> map3(map2);
137   //
138   // * Copy assignment operator
139   //
140   //  // Hash functor and Comparator are copied as well
141   //  absl::flat_hash_map<int, std::string> map4;
142   //  map4 = map3;
143   //
144   // * Move constructor
145   //
146   //   // Move is guaranteed efficient
147   //   absl::flat_hash_map<int, std::string> map5(std::move(map4));
148   //
149   // * Move assignment operator
150   //
151   //   // May be efficient if allocators are compatible
152   //   absl::flat_hash_map<int, std::string> map6;
153   //   map6 = std::move(map5);
154   //
155   // * Range constructor
156   //
157   //   std::vector<std::pair<int, std::string>> v = {{1, "a"}, {2, "b"}};
158   //   absl::flat_hash_map<int, std::string> map7(v.begin(), v.end());
flat_hash_map()159   flat_hash_map() {}
160   using Base::Base;
161 
162   // flat_hash_map::begin()
163   //
164   // Returns an iterator to the beginning of the `flat_hash_map`.
165   using Base::begin;
166 
167   // flat_hash_map::cbegin()
168   //
169   // Returns a const iterator to the beginning of the `flat_hash_map`.
170   using Base::cbegin;
171 
172   // flat_hash_map::cend()
173   //
174   // Returns a const iterator to the end of the `flat_hash_map`.
175   using Base::cend;
176 
177   // flat_hash_map::end()
178   //
179   // Returns an iterator to the end of the `flat_hash_map`.
180   using Base::end;
181 
182   // flat_hash_map::capacity()
183   //
184   // Returns the number of element slots (assigned, deleted, and empty)
185   // available within the `flat_hash_map`.
186   //
187   // NOTE: this member function is particular to `absl::flat_hash_map` and is
188   // not provided in the `std::unordered_map` API.
189   using Base::capacity;
190 
191   // flat_hash_map::empty()
192   //
193   // Returns whether or not the `flat_hash_map` is empty.
194   using Base::empty;
195 
196   // flat_hash_map::max_size()
197   //
198   // Returns the largest theoretical possible number of elements within a
199   // `flat_hash_map` under current memory constraints. This value can be thought
200   // of the largest value of `std::distance(begin(), end())` for a
201   // `flat_hash_map<K, V>`.
202   using Base::max_size;
203 
204   // flat_hash_map::size()
205   //
206   // Returns the number of elements currently within the `flat_hash_map`.
207   using Base::size;
208 
209   // flat_hash_map::clear()
210   //
211   // Removes all elements from the `flat_hash_map`. Invalidates any references,
212   // pointers, or iterators referring to contained elements.
213   //
214   // NOTE: this operation may shrink the underlying buffer. To avoid shrinking
215   // the underlying buffer call `erase(begin(), end())`.
216   using Base::clear;
217 
218   // flat_hash_map::erase()
219   //
220   // Erases elements within the `flat_hash_map`. Erasing does not trigger a
221   // rehash. Overloads are listed below.
222   //
223   // void erase(const_iterator pos):
224   //
225   //   Erases the element at `position` of the `flat_hash_map`, returning
226   //   `void`.
227   //
228   //   NOTE: returning `void` in this case is different than that of STL
229   //   containers in general and `std::unordered_map` in particular (which
230   //   return an iterator to the element following the erased element). If that
231   //   iterator is needed, simply post increment the iterator:
232   //
233   //     map.erase(it++);
234   //
235   // iterator erase(const_iterator first, const_iterator last):
236   //
237   //   Erases the elements in the open interval [`first`, `last`), returning an
238   //   iterator pointing to `last`.
239   //
240   // size_type erase(const key_type& key):
241   //
242   //   Erases the element with the matching key, if it exists, returning the
243   //   number of elements erased (0 or 1).
244   using Base::erase;
245 
246   // flat_hash_map::insert()
247   //
248   // Inserts an element of the specified value into the `flat_hash_map`,
249   // returning an iterator pointing to the newly inserted element, provided that
250   // an element with the given key does not already exist. If rehashing occurs
251   // due to the insertion, all iterators are invalidated. Overloads are listed
252   // below.
253   //
254   // std::pair<iterator,bool> insert(const init_type& value):
255   //
256   //   Inserts a value into the `flat_hash_map`. Returns a pair consisting of an
257   //   iterator to the inserted element (or to the element that prevented the
258   //   insertion) and a bool denoting whether the insertion took place.
259   //
260   // std::pair<iterator,bool> insert(T&& value):
261   // std::pair<iterator,bool> insert(init_type&& value):
262   //
263   //   Inserts a moveable value into the `flat_hash_map`. Returns a pair
264   //   consisting of an iterator to the inserted element (or to the element that
265   //   prevented the insertion) and a bool denoting whether the insertion took
266   //   place.
267   //
268   // iterator insert(const_iterator hint, const init_type& value):
269   // iterator insert(const_iterator hint, T&& value):
270   // iterator insert(const_iterator hint, init_type&& value);
271   //
272   //   Inserts a value, using the position of `hint` as a non-binding suggestion
273   //   for where to begin the insertion search. Returns an iterator to the
274   //   inserted element, or to the existing element that prevented the
275   //   insertion.
276   //
277   // void insert(InputIterator first, InputIterator last):
278   //
279   //   Inserts a range of values [`first`, `last`).
280   //
281   //   NOTE: Although the STL does not specify which element may be inserted if
282   //   multiple keys compare equivalently, for `flat_hash_map` we guarantee the
283   //   first match is inserted.
284   //
285   // void insert(std::initializer_list<init_type> ilist):
286   //
287   //   Inserts the elements within the initializer list `ilist`.
288   //
289   //   NOTE: Although the STL does not specify which element may be inserted if
290   //   multiple keys compare equivalently within the initializer list, for
291   //   `flat_hash_map` we guarantee the first match is inserted.
292   using Base::insert;
293 
294   // flat_hash_map::insert_or_assign()
295   //
296   // Inserts an element of the specified value into the `flat_hash_map` provided
297   // that a value with the given key does not already exist, or replaces it with
298   // the element value if a key for that value already exists, returning an
299   // iterator pointing to the newly inserted element.  If rehashing occurs due
300   // to the insertion, all existing iterators are invalidated. Overloads are
301   // listed below.
302   //
303   // pair<iterator, bool> insert_or_assign(const init_type& k, T&& obj):
304   // pair<iterator, bool> insert_or_assign(init_type&& k, T&& obj):
305   //
306   //   Inserts/Assigns (or moves) the element of the specified key into the
307   //   `flat_hash_map`.
308   //
309   // iterator insert_or_assign(const_iterator hint,
310   //                           const init_type& k, T&& obj):
311   // iterator insert_or_assign(const_iterator hint, init_type&& k, T&& obj):
312   //
313   //   Inserts/Assigns (or moves) the element of the specified key into the
314   //   `flat_hash_map` using the position of `hint` as a non-binding suggestion
315   //   for where to begin the insertion search.
316   using Base::insert_or_assign;
317 
318   // flat_hash_map::emplace()
319   //
320   // Inserts an element of the specified value by constructing it in-place
321   // within the `flat_hash_map`, provided that no element with the given key
322   // already exists.
323   //
324   // The element may be constructed even if there already is an element with the
325   // key in the container, in which case the newly constructed element will be
326   // destroyed immediately. Prefer `try_emplace()` unless your key is not
327   // copyable or moveable.
328   //
329   // If rehashing occurs due to the insertion, all iterators are invalidated.
330   using Base::emplace;
331 
332   // flat_hash_map::emplace_hint()
333   //
334   // Inserts an element of the specified value by constructing it in-place
335   // within the `flat_hash_map`, using the position of `hint` as a non-binding
336   // suggestion for where to begin the insertion search, and only inserts
337   // provided that no element with the given key already exists.
338   //
339   // The element may be constructed even if there already is an element with the
340   // key in the container, in which case the newly constructed element will be
341   // destroyed immediately. Prefer `try_emplace()` unless your key is not
342   // copyable or moveable.
343   //
344   // If rehashing occurs due to the insertion, all iterators are invalidated.
345   using Base::emplace_hint;
346 
347   // flat_hash_map::try_emplace()
348   //
349   // Inserts an element of the specified value by constructing it in-place
350   // within the `flat_hash_map`, provided that no element with the given key
351   // already exists. Unlike `emplace()`, if an element with the given key
352   // already exists, we guarantee that no element is constructed.
353   //
354   // If rehashing occurs due to the insertion, all iterators are invalidated.
355   // Overloads are listed below.
356   //
357   //   pair<iterator, bool> try_emplace(const key_type& k, Args&&... args):
358   //   pair<iterator, bool> try_emplace(key_type&& k, Args&&... args):
359   //
360   // Inserts (via copy or move) the element of the specified key into the
361   // `flat_hash_map`.
362   //
363   //   iterator try_emplace(const_iterator hint,
364   //                        const key_type& k, Args&&... args):
365   //   iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args):
366   //
367   // Inserts (via copy or move) the element of the specified key into the
368   // `flat_hash_map` using the position of `hint` as a non-binding suggestion
369   // for where to begin the insertion search.
370   //
371   // All `try_emplace()` overloads make the same guarantees regarding rvalue
372   // arguments as `std::unordered_map::try_emplace()`, namely that these
373   // functions will not move from rvalue arguments if insertions do not happen.
374   using Base::try_emplace;
375 
376   // flat_hash_map::extract()
377   //
378   // Extracts the indicated element, erasing it in the process, and returns it
379   // as a C++17-compatible node handle. Overloads are listed below.
380   //
381   // node_type extract(const_iterator position):
382   //
383   //   Extracts the key,value pair of the element at the indicated position and
384   //   returns a node handle owning that extracted data.
385   //
386   // node_type extract(const key_type& x):
387   //
388   //   Extracts the key,value pair of the element with a key matching the passed
389   //   key value and returns a node handle owning that extracted data. If the
390   //   `flat_hash_map` does not contain an element with a matching key, this
391   //   function returns an empty node handle.
392   //
393   // NOTE: when compiled in an earlier version of C++ than C++17,
394   // `node_type::key()` returns a const reference to the key instead of a
395   // mutable reference. We cannot safely return a mutable reference without
396   // std::launder (which is not available before C++17).
397   using Base::extract;
398 
399   // flat_hash_map::merge()
400   //
401   // Extracts elements from a given `source` flat hash map into this
402   // `flat_hash_map`. If the destination `flat_hash_map` already contains an
403   // element with an equivalent key, that element is not extracted.
404   using Base::merge;
405 
406   // flat_hash_map::swap(flat_hash_map& other)
407   //
408   // Exchanges the contents of this `flat_hash_map` with those of the `other`
409   // flat hash map, avoiding invocation of any move, copy, or swap operations on
410   // individual elements.
411   //
412   // All iterators and references on the `flat_hash_map` remain valid, excepting
413   // for the past-the-end iterator, which is invalidated.
414   //
415   // `swap()` requires that the flat hash map's hashing and key equivalence
416   // functions be Swappable, and are exchanged using unqualified calls to
417   // non-member `swap()`. If the map's allocator has
418   // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
419   // set to `true`, the allocators are also exchanged using an unqualified call
420   // to non-member `swap()`; otherwise, the allocators are not swapped.
421   using Base::swap;
422 
423   // flat_hash_map::rehash(count)
424   //
425   // Rehashes the `flat_hash_map`, setting the number of slots to be at least
426   // the passed value. If the new number of slots increases the load factor more
427   // than the current maximum load factor
428   // (`count` < `size()` / `max_load_factor()`), then the new number of slots
429   // will be at least `size()` / `max_load_factor()`.
430   //
431   // To force a rehash, pass rehash(0).
432   //
433   // NOTE: unlike behavior in `std::unordered_map`, references are also
434   // invalidated upon a `rehash()`.
435   using Base::rehash;
436 
437   // flat_hash_map::reserve(count)
438   //
439   // Sets the number of slots in the `flat_hash_map` to the number needed to
440   // accommodate at least `count` total elements without exceeding the current
441   // maximum load factor, and may rehash the container if needed.
442   using Base::reserve;
443 
444   // flat_hash_map::at()
445   //
446   // Returns a reference to the mapped value of the element with key equivalent
447   // to the passed key.
448   using Base::at;
449 
450   // flat_hash_map::contains()
451   //
452   // Determines whether an element with a key comparing equal to the given `key`
453   // exists within the `flat_hash_map`, returning `true` if so or `false`
454   // otherwise.
455   using Base::contains;
456 
457   // flat_hash_map::count(const Key& key) const
458   //
459   // Returns the number of elements with a key comparing equal to the given
460   // `key` within the `flat_hash_map`. note that this function will return
461   // either `1` or `0` since duplicate keys are not allowed within a
462   // `flat_hash_map`.
463   using Base::count;
464 
465   // flat_hash_map::equal_range()
466   //
467   // Returns a closed range [first, last], defined by a `std::pair` of two
468   // iterators, containing all elements with the passed key in the
469   // `flat_hash_map`.
470   using Base::equal_range;
471 
472   // flat_hash_map::find()
473   //
474   // Finds an element with the passed `key` within the `flat_hash_map`.
475   using Base::find;
476 
477   // flat_hash_map::operator[]()
478   //
479   // Returns a reference to the value mapped to the passed key within the
480   // `flat_hash_map`, performing an `insert()` if the key does not already
481   // exist.
482   //
483   // If an insertion occurs and results in a rehashing of the container, all
484   // iterators are invalidated. Otherwise iterators are not affected and
485   // references are not invalidated. Overloads are listed below.
486   //
487   // T& operator[](const Key& key):
488   //
489   //   Inserts an init_type object constructed in-place if the element with the
490   //   given key does not exist.
491   //
492   // T& operator[](Key&& key):
493   //
494   //   Inserts an init_type object constructed in-place provided that an element
495   //   with the given key does not exist.
496   using Base::operator[];
497 
498   // flat_hash_map::bucket_count()
499   //
500   // Returns the number of "buckets" within the `flat_hash_map`. Note that
501   // because a flat hash map contains all elements within its internal storage,
502   // this value simply equals the current capacity of the `flat_hash_map`.
503   using Base::bucket_count;
504 
505   // flat_hash_map::load_factor()
506   //
507   // Returns the current load factor of the `flat_hash_map` (the average number
508   // of slots occupied with a value within the hash map).
509   using Base::load_factor;
510 
511   // flat_hash_map::max_load_factor()
512   //
513   // Manages the maximum load factor of the `flat_hash_map`. Overloads are
514   // listed below.
515   //
516   // float flat_hash_map::max_load_factor()
517   //
518   //   Returns the current maximum load factor of the `flat_hash_map`.
519   //
520   // void flat_hash_map::max_load_factor(float ml)
521   //
522   //   Sets the maximum load factor of the `flat_hash_map` to the passed value.
523   //
524   //   NOTE: This overload is provided only for API compatibility with the STL;
525   //   `flat_hash_map` will ignore any set load factor and manage its rehashing
526   //   internally as an implementation detail.
527   using Base::max_load_factor;
528 
529   // flat_hash_map::get_allocator()
530   //
531   // Returns the allocator function associated with this `flat_hash_map`.
532   using Base::get_allocator;
533 
534   // flat_hash_map::hash_function()
535   //
536   // Returns the hashing function used to hash the keys within this
537   // `flat_hash_map`.
538   using Base::hash_function;
539 
540   // flat_hash_map::key_eq()
541   //
542   // Returns the function used for comparing keys equality.
543   using Base::key_eq;
544 };
545 
546 // erase_if(flat_hash_map<>, Pred)
547 //
548 // Erases all elements that satisfy the predicate `pred` from the container `c`.
549 // Returns the number of erased elements.
550 template <typename K, typename V, typename H, typename E, typename A,
551           typename Predicate>
erase_if(flat_hash_map<K,V,H,E,A> & c,Predicate pred)552 typename flat_hash_map<K, V, H, E, A>::size_type erase_if(
553     flat_hash_map<K, V, H, E, A>& c, Predicate pred) {
554   return container_internal::EraseIf(pred, &c);
555 }
556 
557 namespace container_internal {
558 
559 template <class K, class V>
560 struct FlatHashMapPolicy {
561   using slot_policy = container_internal::map_slot_policy<K, V>;
562   using slot_type = typename slot_policy::slot_type;
563   using key_type = K;
564   using mapped_type = V;
565   using init_type = std::pair</*non const*/ key_type, mapped_type>;
566 
567   template <class Allocator, class... Args>
constructFlatHashMapPolicy568   static void construct(Allocator* alloc, slot_type* slot, Args&&... args) {
569     slot_policy::construct(alloc, slot, std::forward<Args>(args)...);
570   }
571 
572   template <class Allocator>
destroyFlatHashMapPolicy573   static void destroy(Allocator* alloc, slot_type* slot) {
574     slot_policy::destroy(alloc, slot);
575   }
576 
577   template <class Allocator>
transferFlatHashMapPolicy578   static void transfer(Allocator* alloc, slot_type* new_slot,
579                        slot_type* old_slot) {
580     slot_policy::transfer(alloc, new_slot, old_slot);
581   }
582 
583   template <class F, class... Args>
decltypeFlatHashMapPolicy584   static decltype(absl::container_internal::DecomposePair(
585       std::declval<F>(), std::declval<Args>()...))
586   apply(F&& f, Args&&... args) {
587     return absl::container_internal::DecomposePair(std::forward<F>(f),
588                                                    std::forward<Args>(args)...);
589   }
590 
space_usedFlatHashMapPolicy591   static size_t space_used(const slot_type*) { return 0; }
592 
elementFlatHashMapPolicy593   static std::pair<const K, V>& element(slot_type* slot) { return slot->value; }
594 
valueFlatHashMapPolicy595   static V& value(std::pair<const K, V>* kv) { return kv->second; }
valueFlatHashMapPolicy596   static const V& value(const std::pair<const K, V>* kv) { return kv->second; }
597 };
598 
599 }  // namespace container_internal
600 
601 namespace container_algorithm_internal {
602 
603 // Specialization of trait in absl/algorithm/container.h
604 template <class Key, class T, class Hash, class KeyEqual, class Allocator>
605 struct IsUnorderedContainer<
606     absl::flat_hash_map<Key, T, Hash, KeyEqual, Allocator>> : std::true_type {};
607 
608 }  // namespace container_algorithm_internal
609 
610 ABSL_NAMESPACE_END
611 }  // namespace absl
612 
613 #endif  // ABSL_CONTAINER_FLAT_HASH_MAP_H_
614